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On Solving Three-dimensional Laplacian Problems in a
Multiply Connected Domain Using the Multiple Scale

Trefftz Method

Cheng-Yu Ku1,2

Abstract: This paper proposes the numerical solution of three-dimensional La-
placian problems in a multiply connected domain using the collocation Trefftz
method with multiple source points. A numerical solution for three-dimensional
Laplacian problems was approximated by superpositioning T-complete functions
formulated from 36 independent functions satisfying the governing equation in the
cylindrical coordinate system. To deal with complicated problems for multiply con-
nected domain, we adopted the generalized multiple source point boundary collo-
cation Trefftz method which allows many source points in the Trefftz formulation
without using the decomposition of the problem domain. In addition, to mitigate
a severely ill-conditioned system of linear equations, this study adopted the newly
developed multiple scale Trefftz method and the dynamical Jacobian-inverse free
method. Numerical solutions were conducted for five three-dimensional ground-
water flow problems in a simply connected domain, an infinite domain, a doubly
connected domain, and a multiply connected domain. The results revealed that the
proposed method can obtain accurate numerical solutions for three-dimensional
Laplacian problems in a multiply connected domain, yielding a superior conver-
gence in numerical stability to that of the conventional Trefftz method.

Keywords: Trefftz method, Ill-conditioned, Multiply connected domain, The mul-
tiple scale, Three-dimensional.

1 Introduction

The Trefftz method [Trefftz (1926)] is a meshless numerical method for solving
boundary value problems where approximate solutions are expressed as a linear
combination of functions automatically satisfy governing equations. According
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to Kita and Kamiya (1995), Trefftz methods are classified as either direct or in-
direct formulations. Unknown coefficients are determined by matching boundary
conditions. Li et al. (2008) provided a comprehensive comparison of the Trefftz
method collocation and other boundary methods concluding that the collocation
Trefftz method (CTM) is the simplest algorithm and provides the most accurate
solutions with optimal numerical stability. To deal with complicated problems for
the multiply connected domain with genus greater than one in the Trefftz method,
one needs to use the domain decomposition method [Kita, Kamiya, and Iio (1999)]
which decomposes the problem domain into several simply connected subdomains
and to use the Trefftz method in each one. The domain decomposition method may
successfully resolve the difficulty when facing the multiply connected domain with
genus greater than one. However, the artificial boundaries introduced in the domain
decomposition method are not unique and depend on the users’ preference.

The Trefftz method has been increasingly used because it is a numerical method ap-
plicable for easily and rapidly solving boundary value problems. Kita et al. (2005)
described the application of the Trefftz method for solving a three-dimensional
Poisson equation; an inhomogeneous term containing the unknown function was
approximated using a polynomial function in the Cartesian coordinates to deter-
mine the solution for the Poisson equation. Applications of the Trefftz method
in engineering problems, such as Laplace and biharmonic equations [Chen et al.
(2007)] and the two-dimensional boundary detection problem [Fan et al. (2012)],
have been reported Because of complexity, most applications of the Trefftz method
are still based on two-dimensional problems.

This study presents a numerical solution for three-dimensional Laplacian problems
in a multiply connected domain by using the CTM with multiple source points
based on a cylindrical coordinate system. In the present formulation, the unknown
solution is approximated by superpositioning the T-complete functions satisfying
the governing equation in the cylindrical coordinate system. The T-complete func-
tions are composed of a set of linearly independent vectors. The basis for the
T-complete functions includes 36 linearly independent functions The generalized
multiple source point boundary collocation Trefftz method [Yeih et al. (2010);
Dong and Atluri (2012)] is adopted to deal with the problems in a multiply con-
nected domain. For the indirect Trefftz formulation, the solution is expressed as
the linear combination of these basic functions. Because using conventional CTMs
results in extremely ill-conditioned linear equation systems, particularly when solv-
ing three-dimensional Laplacian problems, the resulting numerical solutions may
be unstable. In order to obtain an accurate solution of the linear equations, spe-
cial techniques [Chen, Cho, and Golberg (2006); Liu (2007)], e.g., the Tikhonov
regularization, the singular value decomposition conditioning by a suitable precon-
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ditioner, and truncated singular value decomposition, may be required. Liu (2007)
has modified the Trefftz method, and refined it by incorporating a single charac-
teristic length into the T-complete functions to reduce substantially the condition
number of the resulting linear equation system. Moreover Liu (2008) proposed
the multiple scale Trefftz method for solving the inverse Cauchy problem for the
Laplace equation. Because applying the multiple-scale concept can significantly
reduce condition numbers, the numerical solution for three-dimensional Laplacian
problems was approximated based on the multiplescale Trefftz method in this study.

In addition to the multiple scale Trefftz method, we adopted the general dynamical
method proposed by Ku et al. (2011). The general dynamical method is based on
the scalar homotopy method and demonstrates great numerical stability for solving
linear algebraic equations particularly for systems involving ill-conditioned prob-
lems With the combination of the multiple scale Trefftz method and the dynamical
Jacobian-inverse free method (DJIFM), solutions for extremely ill-conditioned sys-
tems of linear equations for three-dimensional Laplacian problems can be obtained.

The remainder of this paper is organized as follows: Section 2 describes the formu-
lation of the Trefftz method for three-dimensional Laplacian problems in a multiply
connected domain based on cylindrical coordinate systems. Section 3.1 explains
the derivation of the multiplescale Trefftz method for solving three-dimensional
Laplacian problems, and Section 3.2 demonstrates the incorporation of the DJIFM
for solving the extremely ill-conditioned system of linear equations for three-dimen-
sional Laplacian problems. In Section 4, the numerical solutions for four problems
involving three-dimensional groundwater flow problems are addressed. Finally,
conclusions are drawn in Section 5.

2 Trefftz formulation based on the cylindrical coordinate system

Considering a three-dimensional domain Ω enclosed by a boundary Γ, the Laplace
governing equation is expressed as

∇
2u = 0 in Ω (1)

and

u = f on ΓD (2)

un =
∂u
∂n

= q̄ on ΓN (3)

where Ω denotes the object domain under consideration, n denotes the outward
normal direction, ΓD denotes the boundary where the Dirichlet boundary condition
is given, and ΓN denotes the boundary where the Neumann boundary condition is
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given. In this study, we adopted the cylindrical coordinate system, as shown in
Fig. 1. The Laplace governing equation in the cylindrical coordinate system can be
written as

∂ 2u
∂ρ2 +

1
ρ

∂u
∂ρ

+
1

ρ2
∂ 2u
∂θ 2 +

∂ 2u
∂ z2 = 0. (4)

In the Trefftz method, the unknown solution is approximated by superpositioning
the T-complete functions satisfying the governing equation, as shown in Eq. (4).
The T-complete functions are composed of a set of linearly independent functions.




z

 

Figure 1: The cylindrical coordinate system.

For a simply connected domain illustrated in Fig. 2(a), one may locate a source
point inside the domain and the T-complete basis functions are expressed

N = {N1,N2,N3, ...,N18}. (5)

For an infinite domain with a cavity as illustrated in Fig. 2(b), one may locate a
source point inside the cavity and the T-complete basis functions are expressed

N = {N1,N19,N23,N24,N29,N30,N31,N32,N33,N34}. (6)

For the doubly and multiply connected domains with genus greater than one, as
illustrated in Fig. 2(c) and (d), the domain decomposition method was often used.
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(a) a simply connected domain (b) an infinite domain with a cavity 

  

(c) a doubly connected domain (d) a multiply connected domain 

 Figure 2: Illustration of four different types of domain.

For the domain decomposition method, extra works are needed to decompose the
problem domain into several simply connected subdomains. On the real bound-
ary, the Trefftz method requires the approximate solution to satisfy the boundary
conditions at each collocation point. On the other hand, the continuity conditions
are required to adopt to connect the adjacent subdomains on artificial boundaries.
In present formulation, we adopted the generalized multiple source point bound-
ary collocation Trefftz method. Instead of decomposing the problem domain into
several simply connected subdomains, one can locate many source points in the
domain. Usually, at least one source point inside the cavity is required. Because
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no extra collocation points on the artificial boundaries are required, the proposed
method may be more efficient, particularly in three-dimensional problems. The
T-complete basis functions for the doubly and multiply connected domains with
genus greater than one, can be expressed

N = {N1,N2,N3, ...,N36}. (7)

Using this formulation, we can deal with a multiply connected domain with genus
greater than one without introducing artificial boundaries. The basis N for the
above T-complete functions includes 36 functions obtained from the separation of
variables in the cylindrical coordinate system, which are listed in Table 1.

Table 1: The basis for the T-complete functions.
N1 1 N2 z
N3 cosh(kz)J0(kρ) N4 sinh(kz)J0(kρ)
N5 cos(kz)I0(kρ) N6 sin(kz)I0(kρ)
N7 cos(vθ)cosh(kz)Jν(kρ) N8 sin(vθ)sinh(kz)Jν(kρ)
N9 cos(vθ)sinh(kz)Jν(kρ) N10 sin(vθ)cosh(kz)Jν(kρ)
N11 cos(vθ)cos(kz)Iν(kρ) N12 sin(vθ)sin(kz)Iν(kρ)
N13 cos(vθ)sin(kz)Iν(kρ) N14 sin(vθ)cos(kz)Iν(kρ)
N15 ρν cos(vθ) N16 ρν sin(vθ)
N17 zρν cos(vθ) N18 zρν sin(vθ)
N19 lnρ N20 z lnρ

N21 cosh(kz)Y0(kρ) N22 sinh(kz)Y0(kρ)
N23 cos(kz)K0(kρ) N24 sin(kz)K0(kρ)
N25 cos(vθ)cosh(kz)Yν(kρ) N26 sin(vθ)sinh(kz)Yν(kρ)
N27 cos(vθ)sinh(kz)Yν(kρ) N28 sin(vθ)cosh(kz)Yν(kρ)
N29 cos(vθ)cos(kz)Kν(kρ) N30 sin(vθ)sin(kz)Kν(kρ)
N31 cos(vθ)sin(kz)Kν(kρ) N32 sin(vθ)cos(kz)Kν(kρ)
N33 ρ−ν cos(νθ) N34 ρ−ν sin(νθ)
N35 zρ−ν cos(νθ) N36 zρ−ν sin(νθ)

In the above table, I0 and Iν are the modified Bessel functions of the first kind of
zero order and of ν order, respectively. J0 and Jν are the Bessel functions of the
first kind of zero order and of ν order, respectively. K0 and Kν are the modified
Bessel functions of the second kind of zero order and of ν order, respectively. Y0
and Yν are the Bessel functions of the second kind of zero order and of ν order,
respectively.

For the indirect Trefftz formulation one can say that the solutions for a simply
connected domain, an infinite domain with a cavity, and the doubly and multiply
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connected domains are written as the linear combination of these basis functions as
shown in Eqs. (8), (9), and (10), respectively.

U =a+bz+
g

∑
k=1

{
c1k cosh(kz)J0(kρ)+ c2k sinh(kz)J0(kρ)
+c3k cos(kz)I0(kρ)+ c4k sin(kz)I0(kρ)

+
h

∑
ν=1


d1kν cos(vθ)cosh(kz)Jν(kρ)+d2kν sin(vθ)sinh(kz)Jν(kρ)
+d3kν cos(vθ)sinh(kz)Jν(kρ)+d4kν sin(vθ)cosh(kzi)Jν(kρ)
+d5kν cos(vθ)cos(kz)Iν(kρ)+d6kν sin(vθ)sin(kz)Iν(kρ)
+d7kν cos(vθ)sin(kz)Iν(kρ)+d8kν sin(vθ)cos(kz)Iν(kρ)




+
h

∑
ν=1
{e1ν ρ

ν cos(νθ)+ e2ν ρ
ν sin(νθ)+ e3ν zρ

ν cos(νθ)+ e4ν zρ
ν sin(νθ)}

(8)

U =a+a lnρ +
g

∑
k=1
{c3k cos(kz)K0(kρ)+ c4k sin(kz)K0(kρ)

+
h

∑
ν=1

{
+d5kν cos(vθ)cos(kz)Kν(kρ)+d6kν sin(vθ)sin(kz)Kν(kρ)
+d7kν cos(vθ)sin(kz)Kν(kρ)+d8kν sin(vθ)cos(kz)Kν(kρ)

}}

+
h

∑
ν=1
{e1ν ρ

−ν cos(νθ)+ e2ν ρ
−ν sin(νθ)}

(9)

U =a+bz+
g

∑
k=1

{
c1k cosh(kz)J0(kρ)+ c2k sinh(kz)J0(kρ)
+c3k cos(kz)I0(kρ)+ c4k sin(kz)I0(kρ)

+
h

∑
ν=1


d1kν cos(vθ)cosh(kz)Jν(kρ)+d2kν sin(vθ)sinh(kz)Jν(kρ)
+d3kν cos(vθ)sinh(kz)Jν(kρ)+d4kν sin(vθ)cosh(kz)Jν(kρ)
+d5kν cos(vθ)cos(kz)Iν(kρ)+d6kν sin(vθ)sin(kz)Iν(kρ)
+d7kν cos(vθ)sin(kz)Iν(kρ)+d8kν sin(vθ)cos(kz)Iν(kρ)




+
h

∑
ν=1
{e1νρ

ν cos(νθ)+ e2νρ
ν sin(νθ)+ e3νzρ

ν cos(νθ)+ e4νzρ
ν sin(νθ)}

+a lnρ +bz lnρ +
g

∑
k=1

{
c1k cosh(kz)Y0(kρ)+ c2k sinh(kz)Y0(kρ)
+c3k cos(kz)K0(kρ)+ c4k sin(kz)K0(kρ)

+
h

∑
ν=1


d1kν cos(vθ)cosh(kz)Yν(kρ)+d2kν sin(vθ)sinh(kz)Yν(kρ)

+d3kν cos(vθ)sinh(kz)Yν(kρ)+d4kν sin(vθ)cosh(kz)Yν(kρ)

+d5kν cos(vθ)cos(kz)Kν(kρ)+d6kν sin(vθ)sin(kz)Kν(kρ)

+d7kν cos(vθ)sin(kz)Kν(kρ)+d8kν sin(vθ)cos(kz)Kν(kρ)




+
h

∑
ν=1
{e1νρ

−νcos(νθ)+e2νρ
−νsin(νθ)+e3νzρ

−νcos(νθ)+e4νzρ
−νsin(νθ)}

(10)
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where k and ν are the order of the T-complete function for approximating the so-
lution. For determining the coefficients of a, b, c1k, c2k, ..., e4ν , we employ the
collocation method. Eqs. (8), (9), and (10) can be discretized at a number of collo-
cated points on the Dirichlet boundary. For example, we obtain a system of linear
algebraic equations for Eq. (10) as follows:

1 z1 cosh(kz1)J0(kρ1) · · · z1ρ
−ν

1 sin(νθ1)
1 z2 cosh(kz2)J0(kρ2) · · · z2ρ

−ν

2 sin(νθ2)
1 z3 cosh(kz3)J0(kρ3) · · · z3ρ

−ν

3 sin(νθ3)
...

...
...

. . .
...

1 zaa cosh(kzaa)J0(kρaa) · · · zaaρ−ν
aa sin(νθaa)




a
b

c1k
...

e4v

=


U1
U2
U3
...

Uaa

 (11)

Eq. (11) can be written as:

Ay = b. (12)

In Eq. (12), A is an aa×bb matrix, y is a bb×1 vector, and b is an aa×1 vector.
Considering the Neumann boundary condition, the collocation method can also be
applied. Regarding a problem given in a Cartesian coordinate domain, the flux
boundary where the Neumann boundary condition is given can be expressed as

Un =
∂U
∂n

= ∇U ·n (13)

where n denotes the outward normal direction. Using the chain rule, we obtain the
expression of Ux, Uy, and Uz in the cylindrical coordinate system. The complete
expressions of Ux, Uy, and Uz are listed in Appendix A.

3 Algorithm for solving the ill-posed matrix of the Trefftz method

3.1 The multiple-scale Trefftz method

The accuracy of the numerical solution obtained using the Trefftz method depends
sensitively on the distribution of collocated points in satisfying the boundary con-
ditions and particularly on the number of the Trefftz trial functions. Because the
resultant system of linear equations is highly ill-conditioned, the numerical solution
may be unstable. Hence, we must consider the reduction in the condition number
of the resulting linear system.

To mitigate a severely ill-conditioned system of linear equations, this study adopted
the multiple scale Trefftz method. According to Liu (2008), the multiple-scale char-
acteristic lengths can significantly reduce condition number of the ill-conditioned
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system of linear equations. The multiple-scale characteristic lengths, Rl , can be
determined from the A matrix in Eq. (12) by using

Rl =

√
aa

∑
i=1

A2
i,l, l = 1, · · · ,bb. (14)

Using the multiple-scale characteristic lengths, Eq. (8) can be rewritten as

1
R1

z1
R2

cosh(kz1)J0(kρ1)
R3

· · · z1ρ
−ν

1 sin(νθ1)
Rbb

1
R1

z2
R2

cosh(kz2)J0(kρ2)
R3

· · · z2ρ
−ν

2 sin(νθ2)
Rbb

1
R1

z3
R2

cosh(kz3)J0(kρ3)
R3

· · · z3ρ
−ν

3 sin(νθ3)
Rbb

...
...

...
. . .

...
1

R1

zaa
R2

cosh(kzaa)J0(kρaa)
R3

· · · zaaρ−ν
aa sin(νθaa)

Rbb




a∗

b∗

c∗1k
...

e∗4ν

=


U1
U2
U3
...

Uaa

 . (15)

When the above scales Rl in Eq. (14) are used, the condition number of the system
of linear equations is greatly reduced. Instead of solving for [ a b c1k · · · e4v ]T

in Eq. (11), we must solve for the unknown coefficients [ a∗ b∗ c∗
1k
· · · e∗4v ]T

in the multiple scale Trefftz method. In Eq. (15), Rl , l = 1, · · · ,bb, are the multiple-
scale characteristic lengths. We can then rewrite Eq. (15) as:

Bx = b. (16)

where

B =



1
R1

z1
R2

cosh(kz1)J0(kρ1)
R3

· · · z1ρ
−ν

1 sin(νθ1)
Rbb

1
R1

z2
R2

cosh(kz2)J0(kρ2)
R3

· · · z2ρ
−ν

2 sin(νθ2)
Rbb

1
R1

z3
R2

cosh(kz3)J0(kρ3)
R3

· · · z3ρ
−ν

3 sin(νθ3)
Rbb

...
...

...
. . .

...
1

R1

zaa
R2

cosh(kzaa)J0(kρaa)
R3

· · · zaaρ−ν
aa sin(νθaa)

Rbb


, x =


a∗

b∗

c∗1k
...

e∗4ν

 , b =


U1
U2
U3
...

Uaa

 .

(17)

In Eq. (17), B is an aa×bb matrix, x is a bb×1 vector, and b is an aa×1 vector.
For solving Eq. (16), we multiply BT on both sides to form an n×n system of Eq.
(16) as

BT Bx = BT b. (18)

Eq. (18) can be written as

Cx = D (19)
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where C = BT B is an bb× bb matrix, x is the unknown coefficients that is an
bb× 1 vector, and D = BT b is an bb× 1 vector. Generally, linear algebraic equa-
tion systems are severely ill-conditioned if k and ν increase in value This becomes
an obstacle in solving three-dimensional Laplacian problems by using the CTM. To
evaluate whether a given nonsingular matrix is ill-conditioned, we used the condi-
tion number in this study. The condition number of the square nonsingular matrix
C is defined by

Cond(C) = ‖C‖ ·
∥∥C−1∥∥ (20)

where the matrix norm is the Frobenius norm. If the C matrix is singular, the con-
dition number is infinite. The detailed study of the multiple-scale Trefftz method
for solving three-dimensional Laplacian problems are given in section 4. Since the
condition number of the system of linear equations is greatly reduced by using the
multiple-scale Trefftz method, we can then apply the DJIFM for solving the linear
system. The DJIFM is described in the following section.

3.2 The Dynamical Jacobian-Inverse Free Method (DJIFM)

In recent years, various contributions toward the numerical solutions of linear alge-
braic equations have been made. An iterative-based method such as the conjugate
gradient method (CGM) [Liu, Hong, and Atluri, (2010)] is perhaps the best-known
technique for determining successively enhanced approximations to the solutions
of a system of linear algebraic equations. That the convergence of the CGM de-
pends on the eigenvalue distribution of a system of linear algebraic equations is
well-known. When a linear algebraic equation system is typically extremely ill-
conditioned, the convergence of the CGM can be unacceptably slow or may be
unable to converge [Vuik, Segal, and Meijerinky (1999)].

In addition to the CGM, the Fictitious Time Integration Method (FTIM) was first
used to solve a nonlinear system of algebraic equations by introducing fictitious
time [Liu and Atluri (2008); Ku, Yeih, Liu, and Chi (2009)]. Inspired by the FTIM,
the DJIFM from the general dynamical method [Ku, Yeih, and Liu (2010); Ku and
Yeih (2012)] has been proposed using a scalar homotopy function to transform a
vector function of linear or non-linear algebraic equations into a time-dependent
scalar function by introducing a fictitious time-like variable. This demonstrated
great numerical stability for solving linear or non-linear algebraic equations, par-
ticularly for systems involving ill-conditioned Jacobian or poor initial values that
cause convergence problems. Accordingly, we adopted the DJIFM for mitigating
the ill-conditioned systems of linear algebraic equations in this study. The system
of linear equations for solving the three-dimensional Laplacian problems by using
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the CTM, as shown in Eq. (16), can be rewritten as

F(x) = Cx−D = 0 (21)

The general dynamical equation for solving linear algebraic equations can be ex-
pressed as

ẋ =− Q̇(t)
2Q(t)

‖F(x)‖2

FT (x)BTF(x)
TF(x). (22)

Based on the general dynamical method, the Q(t) in the above equation is a mono-
tonically increasing function of t and it must satisfy the conditions that Q(t) > 0
and Q(0) = 1. A suitable function of Q(t) can be easily found as Q(t) = et . Ac-
cordingly, we have Q̇(t)/Q(t) = 1. Eq. (19) can be rewritten as

ẋ =−1
2
‖F(x)‖2

FT (x)BTF(x)
TF(x). (23)

If we let the transformation matrix, T, be the identity matrix, I, then Eq. (23)
becomes the DJIFM and can be written as

ẋ =−1
2
‖F(x)‖2

FT (x)BF(x)
F(x). (24)

In Eq. (24), B is a Jacobian matrix of F(x). Because F(x) is a system of linear
algebraic equations, B is simply equal to the C matrix in this study. In using Eq.
(24), we may employ a forward Euler scheme and obtain the following equations:

xk+1 = xk− ht

2

∥∥F(xk)
∥∥2

FT (xk)B(xk)F(xk)
F(xk). (25)

In the above equation ht is the fictitious time step. The numerator and denominator
of the fraction in this equation are scalars. Accordingly, we can avoid computing
the inverse of the Jacobian matrix, thus improving numerical stability. Because the
condition number of the C matrix has been reduced, the system of linear algebraic
equations, Cx−D = 0, can be solved yielding an extremely high accuracy. In ad-
dition, the limitation of convergence for solving the ill-conditioned linear algebraic
equations can also be released.

4 Numerical examples

4.1 Example 1

The first scenario investigated is a three-dimensional homogenous isotropic ground-
water flow problem [Strack (1989)]. With a three-dimensional simply connected
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domain Ω enclosed by boundary, the Laplace governing equation is expressed as

∇
2u = 0 in Ω. (26)

An object domain under consideration Ω is defined as

Ω = {(x,y,z) |x = r sinθ cosφ , y = r sinθ sinφ , z = r cosθ }. (27)

where r = 2, 0≤ θ ≤ 2π, 0≤ φ ≤ π .

The analytical solution is given by

u = eycosx+ exsinz. (28)

The Dirichlet boundary condition is given on the boundaries by using the analytical
solution for the problem as shown in Eq. (28). In this example, 2106 boundary
collocation points were uniformly placed on the entire boundary, as depicted in Fig.
3. Figure 4 shows that the relationship of the condition number versus the order of
ν and k after using the CTM and the multiple scale Trefftz method. It is found that
the condition number increases with ν and k and the maximum condition number
is 1.74× 1048 for the CTM when ν = k = 20. However, it is also interesting to
find that the condition number remains in the order of 1019 after ν and k greater
than six for the multiple scale Trefftz method. It is obvious that the multiple scale
Trefftz method can effectively reduce the condition number of the system of linear
equations. It is also demonstrated that no any available methods can be used to
solve the severely ill-conditioned system if we use the CTM for solving this three-
dimensional problem.

Using the multiple scale Trefftz method, the condition number of the system of
linear equations is 2.71× 1018 for ν = k = 12. Although the condition number is
greatly reduced, it is still too ill-conditioned to solve for most of the linear equation
solvers. To overcome this difficulty, we adopted the DJIFM to solve this three-
dimensional Laplacian problem. The root mean square norm of 1.00×10−8 is set
as the stopping criterion. The fictitious time step ht in the DJIFM is assumed to be
1. To demonstrate the capability of the DJIFM for dealing with the ill-conditioned
system of linear equations, the CGM was adopted for the comparison. Figure 5
shows the convergence of the DJIFM as well as the CGM. The number of fictitious
steps is about 1.5×105 to reach the stopping criterion for the DJIFM. However, it
is found that the CGM is not able to converge to the preset stopping criterion due
to the severely ill-conditioned system. To view the results clearly, the computed
data were projected onto xy and xz planes and were compared with the analytical
solution on the internal 8000 collocation points as shown in Fig. 6 and Fig. 7. It
is found that the maximum error was less than 5.00×10−5 and that the numerical
solution agreed well with the analytical solution.
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Figure 3: A simply connected domain and total 2106 boundary collocation points
for the analysis of example 1.

 

Figure 4: The condition number versus the order of v and k for example 1.
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Figure 5: Convergence of the DJIFM for example 1.

 

Figure 6: Absolute error of the computed results with exact solution for example 1.
(projected in xy plane)
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Figure 7: Absolute error of the computed results with exact solution for example 1.
(projected in xz plane)

4.2 Example 2

The second example investigated was a three-dimensional homogenous isotropic
groundwater flow problem in an infinite domain with a cavity. The example is
usually referred as an exterior problem. The cavity is enclosed by a cylinder-type
boundary as shown in Fig. 8 the Laplace governing equation is expressed as

∇
2u = 0 in Ω. (29)

The object domain under consideration Ω is an infinite domain with a cavity. The
boundary of the cavity is defined as

Γ = {(x,y,z) | x = ρ cosθ , y = ρ sinθ , −1≤ z≤ 1}. (30)

where ρ = 1.2 and 0≤ θ ≤ 2π .

The analytical solution of the problem is given as

u =
1√

x2 + y2 + z2
. (31)

The Dirichlet boundary condition is given on the boundary of the cavity by using
the analytical solution for the problem as shown in Eq. (31). In this example,
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the total 4896 boundary collocation points were uniformly placed on the entire
boundary as shown in Fig. 8. Figure 9 shows that the relationship of the condition
number versus the order of ν and k after using the CTM and the multiple scale
Trefftz method. The maximum condition number is 2.95× 10112 for the CTM
when ν = k = 20. It is noted that the condition number remains in the order of 1019

after ν and k greater than six for the multiple scale Trefftz method.

Using the multiple scale Trefftz method, the condition number of the system of
linear equations is 3.83×1020 for ν = k = 20. We adopted the DJIFM to solve the
three-dimensional Laplacian problem by using the multiple scale Trefftz method.
Both the root mean square norm of 1.00×10−6 and the maximum number of 5×
105 fictitious steps were set as the stopping criterion. The fictitious time step ht

in the DJIFM was assumed to be one. In this example, the maximum number of
fictitious steps was first reached. Because this example is an interior problem, we
selected a ring outside the cylinder for comparing the results. The computed results
were compared with the analytical solution as shown in Fig. 10. It is found that the
maximum error was less than 3.00× 10−3 and that the numerical solution agreed
well with the analytical solution.

 

Figure 8: An infinite domain with a cavity and total 4896 boundary collocation
points for the analysis of example 2.
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Figure 9: The condition number versus the order of v and k for example 2.

 

Figure 10: Absolute error of the computed results with exact solution for example
2.
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4.3 Example 3

The third example investigated was a three-dimensional homogenous isotropic ground-
water flow problem with an imperious cylinder in a domain. In this example, we
solved the boundary value problem with the Dirichlet boundary data and the Neu-
mann boundary data. With a three-dimensional doubly connected domain Ω en-
closed by boundary, as shown in Fig. 11, the Laplace governing equation is ex-
pressed as

∇
2u = 0 in Ω. (32)

An object domain under consideration Ω is defined as

Ω ∈ {−6≤ x≤ 6,−6≤ y≤ 6,−6≤ z≤ 6}. (33)

The boundary of the internal cylinder is defined as

Γ = {(x,y,z) | x = ρ cosθ , y = ρ sinθ , −6≤ z≤ 6}. (34)

where ρ = 2.23 and 0≤ θ ≤ 2π .

The analytical solution of the problem is given as

u = xyz. (35)

The Dirichlet boundary and the Neumann boundary conditions as shown in Fig.
12 are given on the boundaries by using the analytical solution for the problem.
Therefore, the Dirichlet boundary condition with the analytical solution for u = xyz
is applied to ΓD1 and ΓD2 as

ΓD1 = {(x,y,z) |x =±6, −6≤ y≤ 6, −6≤ z≤ 6}. (36)

ΓD2 = {(x,y,z) |−6≤ x≤ 6, −6≤ y≤ 6, z = ±6}. (37)

The Neumann boundary condition with the analytical solution of un = xz is applied
to

ΓN where ΓN = {(x,y,z) |−6≤ x≤ 6, y =±6, −6≤ z≤ 6}. (38)

In this example, 18168 boundary collocation points were uniformly placed on the
entire boundary, as depicted in Fig. 11 Figure 13 shows that the relationship of the
condition number versus the order of ν and k after using the CTM and the multiple
scale Trefftz method. The maximum condition number is 4.78×10165 for the CTM
when ν = k = 20. It is noted that the condition number remains in the order of 1020

after ν and k greater than eight for the multiple scale Trefftz method.
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Figure 11: A doubly connected domain and total 18168 boundary collocation
points for the analysis of example 3.

 

Figure 12: A doubly connected domain with the Neumann boundary condition (the
dark area) for the analysis of example 3.
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Figure 13: The condition number versus the order of v and k for example 3.

 

Figure 14: Absolute error of the computed results with exact solution for example
3. (projected in xy plane)
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Using ν = k = 6, we adopted the DJIFM to solve the three-dimensional Laplacian
problem by using the multiple scale Trefftz method. The root mean square norm of
1.00×10−7 is set as the stopping criterion. The computed data were projected onto
an xy plane and were compared with the analytical solution as shown in Fig 14.
It is found that the maximum error was less the 3.0×10−6 and that the numerical
solution agreed very well with the analytical solution.

4.4 Example 4

Dong and Atluri (2012) developed 3D T-Trefftz Voronoi cell finite elements with/
without spherical voids &/or elastic/rigid inclusions for micromechanical model-
ing of heterogeneous materials. It is interesting to investigate a three-dimensional
homogenous isotropic groundwater flow problem with an imperious spherical void
in a domain. Therefore, in this example we solved the boundary value problem
with the Dirichlet boundary data and the Neumann boundary data. With a three-
dimensional doubly connected domain Ω enclosed by boundary, as shown in Fig.
15 the Laplace governing equation is expressed as

∇
2u = 0 in Ω. (39)

An object domain under consideration Ω is defined as

Ω ∈ {−2≤ x≤ 2,−2≤ y≤ 2,−2≤ z≤ 2}. (40)

The boundary of the internal sphere is defined as

Γ = {(x,y,z) | x = ρ cosς sinξ , y = ρ sinς sinξ , z = ρ cosξ}. (41)

where ρ = 1, −π/2≤ ς ≤ π/2, and −π ≤ ξ ≤ π .

The analytical solution of the problem is given as

u = xyz. (42)

Both of the Dirichlet boundary and the Neumann boundary data are applied on 2168
collocation points of six identical square faces of the cubic domain. The Dirichlet
boundary data are applied on 2016 collocation points of the internal surface of the
sphere, as depicted in Fig. 15 To study the effect of the order of ν and k, we only
used ν = k = 2. In this particular example, the condition number is about 1.47×
1017. Because it is not very ill-conditioned system, we adopted the commercial
program MATLAB backslash operator to solve a system of simultaneous linear
equations.

The internal 9000 collocation points were placed inside the cubic domain. To view
the results clearly, the profiles on x = 0 and y = 0 were selected to compare with the
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analytical solution. The computed data on x = 0 and y = 0 profiles were projected
onto yz and xz planes and were compared with the analytical solution as shown in
Fig 16 and Fig. 17. It is found that the maximum error was less the 3.0× 10−15

and that the numerical solution agreed very well with the analytical solution.

Dong and Atluri (2012) developed 3D Trefftz Voronoi cells with ellipsoidal voids
&/or elastic/rigid inclusions for micromechanical modeling of heterogeneous ma-
terials. To further investigate the effect of the geometry in this study, we conducted
this example again. Considering this problem with an imperious ellipsoidal in a
domain as shown in Fig. 18 other conditions are remained exactly the same as the
previous one. The boundary of the internal ellipsoidal is defined as

Γ = {(x,y,z) | x = ρa cosς cosξ , y = ρb cosς sinξ , z = ρc sinς}. (43)

where ρa = 1.8, ρb = 1.0, ρc = 0.8, −π ≤ ς ≤ π , and −π/2≤ ξ ≤ π/2.

Again, to study the effect of the order of ν and k, we only used ν = k = 3. In this
example, the condition number is about 1.06×105. Because it is not ill-conditioned
system, we adopted the commercial program MATLAB backslash operator to solve
a system of simultaneous linear equations.

 

Figure 15: A doubly connected domain with a spherical cavity for the analysis of
example 4.
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Figure 16: Absolute error of the computed results with exact solution on x = 0 slice
for example 4. (projected in yz plane)

 

Figure 17: Absolute error of the computed results with exact solution on y = 0 slice
for example 4. (projected in xz plane)
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Figure 18: A doubly connected domain with an ellipsoidal cavity for the analysis
of example 4.

 

Figure 19: Absolute error of the computed results with exact solution on x = 0 slice
for example 4. (projected in yz plane)
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Figure 20: Absolute error of the computed results with exact solution on y = 0 slice
for example 4. (projected in xz plane)

The internal 9000 collocation points were placed inside the cubic domain. To view
the results clearly, the profiles on x = 0 and y = 0 were selected to compare with the
analytical solution. The computed data on x = 0 and y = 0 profiles were projected
onto yz and xz planes and were compared with the analytical solution as shown in
Fig 19 and Fig. 20. It is found that the maximum error was less the 2.0× 10−6

and that the numerical solution agreed very well with the analytical solution This
example also demonstrates that the proposed method can obtain accurate numerical
solutions with ν and k in very low order.

4.5 Example 5

The last example investigated was a three-dimensional homogenous isotropic grou-
ndwater flow problem with two imperious cylinders in a domain, as shown in Fig.
21. With a three-dimensional multiply connected domain Ω enclosed by boundary,
the Laplace governing equation is expressed as

∇
2u = 0 in Ω. (44)
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An object domain under consideration Ω is defined as

Ω ∈ {−4≤ x≤ 4,−4≤ y≤ 4,−4≤ z≤ 4}. (45)

The center of the first cylinder is (x1, y1,z1) = (0, 0, 0) and the boundary is defined
as

Γ1 = {(x,y,z) | x = x1 +ρ1 cosθ1, y = y1 +ρ1 sinθ1, −4≤ z≤ 4} (46)

where ρ1 = 1 and 0≤ θ1 ≤ 2π .

The center of the second cylinder is (x2, y2,z2) = (2, 2, 0) and the boundary is
defined as

Γ2 = {(x,y,z) | x = x2 +ρ2 cosθ2, y = y2 +ρ2 sinθ2, −4≤ z≤ 4} (47)

where ρ2 = 1.2 and 0≤ θ2 ≤ 2π .

The analytical solution of the problem is given as

u =
zcosθi1

ρi1
+

zcosθi2

ρi2
, (48)

where ρi1 =
√

(x− x1)2 +(y− y1)2, θi1 = arc tan( y−y1
x−x1

) and

ρi2 =
√

(x− x2)2 +(y− y2)2, θi2 = arc tan(
y− y2

x− x2
). (49)

The Dirichlet boundary condition is given on the boundaries by using the analytical
solution for the problem, as shown in Eq. (48). In this example, 4808 boundary
collocation points were uniformly placed on the entire boundary, as depicted in
Fig. 21. Figure 22 shows that the relationship of the condition number versus the
order of ν and k after using the CTM and the multiple scale Trefftz method. The
maximum condition number is 1.09× 10122 for the CTM when ν = k = 20. It is
noted that the condition number remains in the order of 1020 after ν and k greater
than six for the multiple scale Trefftz method.

Using ν = k = 9, we adopted the DJIFM to solve the three-dimensional Laplacian
problem by using the multiple scale Trefftz method. The root mean square norm of
1.00×10−6 is set as the stopping criterion. The computed data were projected onto
an xy plane and were compared with the analytical solution as shown in Fig 23.
It is found that the maximum error was less the 1.4×10−3 and that the numerical
solution agreed very well with the analytical solution.
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Figure 21: A multiply connected domain and total 4808 boundary collocation
points for the analysis of example 5.

 

Figure 22: The condition number versus the order of v and k for example 5.
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Figure 23: Absolute error of the computed results with exact solution for example
5. (projected in xy plane)

5 Conclusion

This study proposes a numerical solution for three-dimensional Laplacian prob-
lems in a multiply connected domain approximated with the T-complete function
and formulated using 36 functions in the cylindrical coordinate system. The funda-
mental concepts and the construct of the proposed method are addressed in detail.
The findings are addressed as follows:

The Trefftz formulation based on the cylindrical coordinate system for the numer-
ical solution of three-dimensional Laplacian problems in a multiply connected do-
main was first successfully developed. The basis for the T-complete function in-
cluding 36 functions was derived. Numerical solutions including three-dimensional
groundwater flow problems in a simply connected domain, an infinite domain, a
doubly connected domain, and a multiply connected domain demonstrate the pro-
posed method can be used to deal with complicated three-dimensional engineering
problems with great ease.

Due to the adoption of the generalized multiple source point boundary collocation
Trefftz method, the complicated three-dimensional problems in a multiply con-
nected domain can be tackled without introducing the decomposition of the prob-
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lem domain. The advantage of the proposed method can be used to deal with more
complicated three-dimensional object domain in the future.

The resulting system of linear equations based on the conventional CTM is typi-
cally extremely ill-conditioned. The obstacle for the solution of three-dimensional
Laplacian problems by the collocation Trefftz method was successfully overcome
by the multiple scale Trefftz method and the DJIFM. The results revealed that the
proposed method can obtain accurate numerical solutions for three-dimensional
Laplacian problems, yielding a superior convergence in numerical stability to that
of the conventional Trefftz method.
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Appendix A. Complete expressions of Ux, Uy and Uz

If a problem is given in Cartesian coordinates then the chain rule can be applied
and the Neumann boundary conditions of Ux, Uy, and Uz can be written as

∂U
∂x

=
∂U
∂ρ

∂ρ

∂x
+

∂U
∂θ

∂θ

∂x

∂U
∂y

=
∂U
∂ρ

∂ρ

∂y
+

∂U
∂θ

∂θ

∂y
∂U
∂ z

Through a series of mathematical operations, we obtain the expressions of Ux, Uy,
and Uz in the cylindrical coordinate system as follows.

Uρ =
g
∑

k=1


−c1kk cosh(kz)J1(kρ)
−c2kk sinh(kz)J1(kρ)
+c3kk cos(kz)I1(kρ)
+c4kk sin(kz)I1(kρ)

+
h
∑

ν=1



d1kν k cos(νθ)cosh(kz)(−Jν+1(kρ)+ ν

kρ
Jν(kρ))

+d2kν k sin(νθ)sinh(kz)(−Jν+1(kρ)+ ν

kρ
Jν(kρ))

+d3kν k cos(νθ)sinh(kz)(−Jν+1(kρ)+ ν

kρ
Jν(kρ))

+d4kν k sin(νθ)cosh(kz)(−Jν+1(kρ)+ ν

kρ
Jν(kρ))

+d5kν k cos(νθ)cos(kz)(Iν+1(kρ)+ ν

kρ
Iν(kρ))

+d6kν k sin(νθ)sin(kz)(Iν+1(kρ)+ ν

kρ
Iν(kρ))

+d7kν k cos(νθ)sin(kz)(Iν+1(kρ)+ ν

kρ
Iν(kρ))

+d8kν k sin(νθ)cos(kz)(Iν+1(kρ)+ ν

kρ
Iν(kρ))




+

h
∑

ν=1


e1ν νρ(ν−1) cos(νθ)

+e2ν νρ(ν−1) sin(νθ)

+e3ν νziρ
(ν−1) cos(νθ)

+e4ν νziρ
(ν−1) sin(νθ)
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+a/ρ +bz/ρ

+
g
∑

k=1


−c1kk cosh(kz)Y1(kρ)
−c2kk sinh(kz)Y1(kρ)
−c3kk cos(kz)K1(kρ)
−c4kk sin(kz)K1(kρ)

+
h
∑

ν=1



d1kν k cos(νθ)cosh(kz)(−Y(ν+1)(kρ)+ ν

kρ
Yν(kρ))

+d2kν k sin(νθ)sinh(kz)(−Y(ν+1)(kρ)+ ν

kρ
Yν(kρ))

+d3kν k cos(νθ)sinh(kz)(−Y(ν+1)(kρ)+ ν

kρ
Yν(kρ))

+d4kν k sin(νθ)cosh(kz)(−Y(ν+1)(kρ)+ ν

kρ
Yν(kρ))

+d5kν k cos(νθ)cos(kz)(−K(ν+1)(kρ)+ ν

kρ
Kν(kρ))

+d6kν k sin(νθ)sin(kz)(−K(ν+1)(kρ)+ ν

kρ
Kν(kρ))

+d7kν k cos(νθ)sin(kz)(−K(ν+1)(kρ)+ ν

kρ
Kν(kρ))

+d8kν k sin(νθ)cos(kz)(−K(ν+1)(kρ)+ ν

kρ
Kν(kρ))




+

h
∑

ν=1


−e1ν νρ−(ν−1) cos(νθ)

−e2ν νρ−(ν−1) sin(νθ)

−e3ν νzρ−(ν−1) cos(νθ)

−e4ν νzρ−(ν−1) sin(νθ)



Uθ =
g
∑

k=1

h
∑

ν=1



−d1kν ν sin(vθ)cosh(kz)Jν(kρ)
+d2kν ν cos(νθ)sinh(kz)Jν(kρ)
−d3kν ν sin(νθ)sinh(kz)Jν(kρ)
+d4kν ν cos(νθ)cosh(kz)Jν(kρ)
−d5kν ν sin(νθ)cos(kz)Iν(kρ)
+d6kν ν cos(νθ)sin(kz)Iν(kρ)
−d7kν ν sin(νθ)sin(kz)Iν(kρ)
+d8kν ν cos(νθ)cos(kz)Iν(kρ)


+

h
∑

ν=1


−e1ν νρv sin(νθ)
+e2ν νρv cos(νθ)
−e3ν νzρv sin(νθ)
+e4ν νzρv cos(νθ)



+
g
∑

k=1

h
∑

ν=1



−d1kν ν sin(vθ)cosh(kz)Yν(kρ)
+d2kν ν cos(vθ)sinh(kz)Yν(kρ)
−d3kν ν sin(vθ)sin(kz)Yν(kρ)
+d4kν ν cos(vθ)cosh(kρ)Yν(kρ)
−d5kν ν sin(vθ)cos(kz)Kν(kρ)
+d6kν ν cos(vθ)sin(kz)Kν(kρ)
−d7kν ν sin(vθ)sinh(kz)Kν(kρ)
+d8kν ν cos(vθ)cos(kz)Kν(kρ)


+

h
∑

ν=1


−e1ν νρ−ν sin(νθ)
+e2ν νρ−ν cos(νθ)
−e3ν νzρ−ν sin(νθ)
+e4ν νzρ−ν cos(νθ)
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Uz = b+
g
∑

k=1

{
c1kk sinh(kz)J0(kρ)+ c2kk cosh(kz)J0(kρ)
−c3kk sin(kz)I0(kρ)+ c4kk cos(kz)I0(kρ)

+
h
∑

ν=1


d1kνk cos(νθ)sinh(kz)Jν(kρ)+d2kνk cos(νθ)cosh(kz)Jν(kρ)
+d3kνk cos(νθ)cosh(kz)Jν(kρ)+d4kνk sin(νθ)sinh(kz)Jν(kρ)
−d5kνk cos(νθ)sin(kz)Iν(kρ)+d6kνk sin(νθ)cos(kz)Iν(kρ)
+d7kνk cos(νθ)cos(kz)Iν(kρ)−d8kνk sin(νθ)sin(kz)Iν(kρ)




+
h
∑

ν=1
{e3νρν cos(νθ)+ e4νρν sin(νθ)}

+b lnρ +
g
∑

k=1

{
c1kk sinh(kz)Y0(kρ)+ c2kk cosh(kz)Y0(kρ)
−c3kk sin(kz)K0(kρ)+ c4kk cos(kz)K0(kρ)

+
h
∑

ν=1


d1kνk cos(νθ)sinh(kz)Yν(kρ)+d2kνk sin(νθ)cosh(kz)Yν(kρ)+

d3kνk cos(νθ)cosh(kz)Yν(kρ)+d4kνk sin(νθ)sinh(kz)Yν(kρ)−
d5kνk cos(νθ)sin(kz)Kν(kρ)+d6kνk sin(νθ)cos(kz)Kν(kρ)+

d7kνk cos(νθ)cos(kz)Kν(kρ)−d8kνk sin(νθ)sin(kz)Kν(kρ)




+
h
∑

ν=1
{e3νρ−ν cos(νθ)+ e4νρ−ν sin(νθ)}

∂ρ

∂x
= cosθ

∂θ

∂x
=
−sinθ

r
∂ρ

∂y
= sinθ

∂θ

∂y
=

cosθ

r




