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Abstract: Many colloidal-sized particles encountered in biological and membrane-
based separation applications can be characterized as soft vesicles such as cells,
yeast, viruses and surfactant micelles. The deformation of these vesicles is ex-
pected to critically affect permeation by accommodating pore shapes and sizes or
enhancing the adhesion with a pore surface. Numerical and theoretical modelings
will be critical to fully understand these processes and thus design novel filtration
membranes that target, not only size, but deformability as a selection criterion. The
present paper therefore introduces a multiscale strategy that enables the determina-
tion of the permeability of a fibrous network with respect to complex fluids loaded
with vesicles. The contributions are two-fold. First, we introduce a particle-based
moving interface method that can be used to characterized the severe deformation
of vesicles interacting with an immersed fibrous network. Second, we present a
homogenization strategy that permits the determination of a network permeabili-
ty, based on the micromechanisms of vesicle deformation and permeation. As a
proof of concept, we then investigate the role of vesicle-solvent surface tension on
the permeation of both solvent and vesicle through a simple fiber network. We find
that vesicles are always retarded relative to the continuum (or solvent) flow, and that
the relative selectivity for the continuum versus the vesicle is inversely proportional
to the capillary number.
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1 Introduction

Filtration membranes are ubiquitous to most biological systems and are at the heart
of important applications in bio-medical engineering [Baker (2004); Desai, Hans-
ford, Nashat, Rasi, Tu, Wang, Zhang, and Ferrari (2000)], food industry and both
fossil and renewable fuels processes [Cheryan (2005)]. In the majority of these
applications, membranes are used to either (a) separate undesired particles from a
solution or (b) produce (and fractionate) stable emulsions with specific size con-
trols (such as liposomes) used in medical diagnosis and therapy [Cevc (2004)]. In
addition, a novel area of biological medicine is drug delivery using liposomes [Gre-
goriadis and Florence (1993); Allen and Cullis (2013)]. A liposome is a micron-
sized vesicle (bubble) whose interfacial surface is stabilized by lipids. The interior
of the liposome can be filled with drugs to be delivered for treatment of various
diseases. Filtration of fluids containing liposomes are required at various step-
s within their manufacture and delivery to patients, in order to provide sterility.
These filtration steps can require both allowing liposomes to freely pass through the
porous filter, while retaining possible biological contaminants, as well as, retaining
and concentrating the liposomes. Despite the very soft nature of these colloidal
particles, current membrane designs have consistently relied on the assumptions
that they are rigid particles [Faibish, Elimelech, and Cohen (1998); Song (1998);
Hoek, Kim, and Elimelech (2002)]. In fact, it has only been in recent years that
hindrance factors for transport of non-spheroidal (rod) shaped rigid particles in
ideal pores has been theoretically addressed [Baltus, Badireddy, Xu, and Chellam
(2009); Dechadilok and Deen (2006)]. This has strongly hindered the performance
of current membrane systems. The incorporation of deformation is, however, ex-
pected to critically affect the above mechanisms since particles can easily change
their shape to accommodate a variety of pore shapes and sizes (Fig. 1). It can also
increase the adhesion between a particle and a surface (by effectively increasing
the contact surface area) and thus hinder particle entry and permeation.

From a computational modeling viewpoint, studies of the mechanics of soft vesi-
cles and their interactions with an immersed porous network has been hindered by
a number of theoretical challenges, which include the coupled fluid-structure inter-
actions, intense particle deformations and perhaps separation, as well as the effect
of surface forces that are very significant at micron (and lower) length scales. Fur-
thermore, when fibers are present, the geometry of sharp tips create singular flow
fields which have been resolved through the use of refinement methods [Alleborn,
Nandakumar, Raszillier, and Durst (1997); Mullin, Seddon, Mantle, and Sederman
(2009)]. Such approaches are not only costly but can never truly resolve the steep
gradient and hyperbolic pressure field that appears at the fiber tips [Moffatt (1963)].
Regarding modeling immersed vesicles, one of the most acknowledged methods is
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the Immersed Boundary Method [Peskin (1972)], which basically relies on three
features. First, the fluid flow equations are handled with an classical Eulerian ap-
proach. Second, the deformation of the vesicle’s boundary (which can be described
as a shell, membrane or bi-fluid interface) is done within a Lagrangian frame and
third, the fluid-structure interactions are handled via a forcing term that is localized
on the membrane domain. Numerous biological problems were approached in this
manner, such as red blood cell motion [Eggleton and Popel (1998)], or cell growth
and division [Li, Yun, and Kim (2011); Dillon, Owen, and Painter (2008)]. Later
improvement of the method includes the Immersed Finite Element Method [Zhang,
Gerstenberger, and Wang (2002)], where the Lagrangian solid mesh evolves on top
of a background Eulerian mesh that covers the entire computational domain. This
simplifies greatly the mesh generation. Another computational method for the treat-
ment of fluid-solid interactions is the Immersed Particle Method, where both the
fluid and the structure are described using Lagrangian mesh free particles [Rabczuk,
Gracie, Hsong, and Belytschko (2000)]. However, due to the lagrangian treatmen-
t of interfaces, these methods becomes cumbersome when extreme deformations
and subsequently severe distortions of the finite element mesh or the particle dis-
tribution are observed. The use of mesh regularization techniques [Ma and Klug
(2008)] may provide a solution but they remain computationally expensive. When
studying vesicle permeation through porous media, a second challenge is to link
macroscopic models, traditionally casted in terms of Darcy’s law Chen, Huan, and
Ma (2006) to the micromechanics of vesicle transport through a network. Linking
two very disparate length-scales is a long standing issue in computational methods
as they typically lead to simulation sizes that are too large to be computationally
efficient, if feasible.

To address these issues, the objectives of the work are two-folds. First, we inte-
grate a recently developed Particle-based Moving Interface Method (PMIM) [Fou-
card and Vernerey (2014b)] to describe the mechanics of immersed and porous
interfaces [Vernerey (2011, 2012)] with a numerical technique to describe creeping
flow through a fibrous network [Foucard and Vernerey (2014a)]. In this frame-
work, the motion of an immersed soft vesicle is coupled with an Eulerian fluid
description via a particle-enriched interface that can evolve as dictated by mechan-
ical force equilibrium. Using an updated Lagrangian description of the vesicle,
the motion of the deformable vesicle is completely independent from the spatial
numerical discretization and it enables a very precise description of the curvature
and motion of the vesicle over time. The method also use a enriched finite ele-
ment approach to match the analytical asymptotic fields near the tip of fibers to
smoothen far-field velocity and pressure fields. This ensures that a high fidelity
solution is obtained without using refinement techniques. Note that the model is p-
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resented in two dimensions and fibers can actually be better described as plates that
extend to infinity in the third dimension. The second contribution of the paper is
the introduction of a homogenization approach, inspired by research efforts in solid
mechanics [Vernerey, Liu, and Moran (2007)], to bridge the microscale mechanics
of flow and vesicle transport to the estimation of the macroscale permeability of the
network. For this, we introduce a so-called elementary volume element in which
one can computationally average the flux of fluid/vesicles subjected to macroscopic
pressure gradients. This operation eventually permits the determination of macro-
scopic network permeabilities as illustrated in subsequent examples. To showcase
the potential of the method, we then predict the role of a microscopic parameter,
the surface tension at the vesicle-solvent interface, on the overall permeation of
particles through the network. This study highlights the role of surface tension,
pressure differential and porosity configuration on the entry and perhaps immobi-
lization of the vesicle within a porous media. It should be noted that in our current
model, the colloidal vesicle is actually a deformable fluid "cylinder" that extent in
the third dimension. The closest physical embodiment of this type of vesicles might
be coalescing media for oil in water separations.

The paper is organized as follows. In the next section, we provide a mathemati-
cal description to describe the deformation of a soft fluid-like colloid interacting
with an immersed fibrous network. In section 3, we then discuss the numeri-
cal formulation based on a mixed-finite element and particle method. Section 4
then concentrates on the derivation of a homogenization technique that bridges the
micro-mechanisms of vesicle permeation to macroscopic permeabilities. We final-
ly conclude the paper with a discussion of the method, results and potential for
improvement.

2 Multiscale mathematical formulation for a soft droplet in an immersed fi-
brous network

2.1 Basic governing equations

Consider a two-dimensional incompressible viscous flow in a domain Ω delimited
by a boundary ∂Ω in which exists one or multiple no-slip rigid boundaries ΓF tak-
ing the shape of thin fibers (or plates) (Fig.1). We also consider a number of closed
vesicles, with boundaries ΓI and that are able to move with the surrounding fluid.
The problem is characterized by the Reynolds number Re = HV ρ/µ where H is
the characteristic length scale, V the characteristic fluid velocity, µ the kinematic
viscosity and ρ the fluid densities in and out of the vesicles. We choose here to
remain in the Stokes flow assumption with Re � 1, where inertial effect may be
neglected. The velocity of a fluid particle is given in terms of its material time



Particle-Based Moving Interface Method 105

derivative v(x, t) = Dx/Dt, where x = {x y} is the current position of the fluid
particle at time t. Under these conditions, the governing equations and boundary
conditions for the Stokes flow are written:

∇ ·σ = 0 ∀x ∈Ω/Γ (1)

∇ ·v = 0 ∀x ∈Ω/Γ (2)

where σ is the Cauchy stress tensor in the fluid and the second equation imposes
the condition of incompressibility. These equations are combined with the moving
interface problem:

[σ ·n] = fI + fF/I ∀x ∈ ΓI (3)

DXI(t)/Dt = v(x(XI, t), t) ∀x ∈ ΓI (4)

Here XI denotes a point on the vesicle boundary, the vector n represent the normal
direction to the moving interface, the force fI is the unbalanced interface force due
to its deformation and fF/I is the interaction force between fibers and the moving in-
terface. Finally, the boundary conditions for fluid motion on the external boundary
and on fibers read:

σ ·n = pon ∀x ∈ ∂Ω (5)

v(x, t) = 0 ∀x ∈ ΓF . (6)

where p0 is an external pressure surrounding the domain Ω, and a zero-velocity
condition is applied on the fiber domain. The latter assumption arises from the
model that (a) the fiber are rigid and (b) a no-slip condition is assumed between the
fluid and the fibers.

2.2 Constitutive equations

To complement the above system of equation, a number of constitutive relation
must be introduced. They can be broken down into three components that describe
in turns: (a) the behavior of the fluid, (b) the mechanical behavior of the inter-
face and (c) the interactions forces between interface and fibers. In this work, we
consider a simple incompressible Newtownian fluid with viscosity µ that can be
different within the colloids and the external fluid.

σ = µD−pI (7)

where D is the rate of deformation and p is the hydrostatic pressure enforcing the
incompressibility condition. For the sake of simplicity, we consider here a bi-fluid
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interface without elastic stiffness and characterized by the liquid-liquid surface ten-
sion γ between the vesicle and the continuum fluid. More complex cases can later
be considered as discussed in [Foucard and Vernerey (2014b)]. In these conditions,
the force fI of the interface can be written:

fI = −γH (8)

with H the mean curvature of the surface, computed in section 3.3 . Finally, the
fiber-interface interaction forces is considered to be of repulsive nature at short dis-
tance. For this initial modeling effort, we have used an interaction energy function
of the same form as the electrostatic potential function. That is, the force is inverse-
ly proportional to the distance between hypothetical point charges on the surface of
the flake (fiber):

fF/I ∝ 1/φF(XI) (9)

where φF is the distance function with respect to the fiber. Future work can incor-
porate more complex formulations including van derWaals interactions.

Figure 1: fluid domain Ω, interface ΓI and fixed structure ΓF with no-slip/no-
penetration boundary condition. The local polar coordinate system is centred at
the fiber tip and oriented in the direction of the fiber.

2.3 A two-scale asymptotic solution to describe the fluid flow around thin fibers

When the diameter of fibers constituting the network is very small compared to
characteristic size of a particle, the above mathematical problem admits a solution
that displays variation across three disparate length-scales (Fig. 1): macroscop-
ic fields variations are on the order of the domain size, mesoscopic variations are
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on the order of the particle size and finally, microscopic fields vary on the order
of the fiber diameter size. This creates a significant issue to later derive an accu-
rate numerical solution at a reasonable computational cost. Inspired by asymptotic
methods [Hawa and Rusak (2002); Moës, Dolbow, and Belytschko (1999)], we
here propose to address the problem as follows; First, we derive a solution for the
fluid flow around the tip of a fiber and subjected to the far-fields boundary condi-
tions. Then, we enrich our macroscopic solution with this solution in the regions
of interests, which result in introducing a limited number of "microscopic" degrees
of freedom. Finally, we compute a solution that ensures that both microscopic and
mesoscopic are consistent within the entire computational domain.

To simplify our analysis, let us first assume that the width of our fibers is infinites-
imally small compared to other dimensions of the problem. In this case, the flow
field near the tip of fibers admits a singular solution that was derived by Moffat in
[Moffatt (1963)]. Adopting a polar coordinate system (r,θ) centred on the fiber
tip, where r =

√
x′2 + y′2, θ = arctan(y′/x′) and the axis x′ and y′ are aligned with

the fiber (Fig. 1). The streamline function ψ(r,θ) solution to the Stokes equation
∇ψ = 0 in the region 0 < r� H can be written in the following separated form:

ψ(r,θ) = rα fα(θ) (10)

where α is an unknown complex exponent that determines the structure of the flow,
and is to be found as part of the solution. Following [Moffatt (1963)], the function
fα(θ) is written:

fα(θ) = Acos(αθ)+Bsin(αθ)+C cos((α−2)θ)+Dsin((α−2)θ) (11)

where A,B,C and D are arbitrary complex constants. In the cases where α = 0,1
or 2, the above equation degenerates into other forms that are not relevant to the
problem studied here, and we will henceforth only consider values of α such that
α 6= 0,1,2. The axial and radial velocities of the flow are deduced from the stream
function ψ(r,θ) as follows:

vr =
1
r

∂ψ

∂θ
and vθ = −∂ψ

∂ r
, (12)

and are subjected to the following no-slip/no-penetration boundary conditions at
the wall:

vr(r,θ = α) = 0, vθ (r,θ = α) = 0 (13)

Enforcing these boundary conditions on (12) and (11) yields the constant A,B,C
and D [Moffatt (1963)]:

A = cos(α−2)α, B = sin(α−2)α, C = −sinαα and D = −cosαα (14)
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as well as the exponent α , found to be α = 3/2 in the particular case of infinitesi-
mally thin fibers [Moffatt (1963)]. The pressure can then be calculated by solving
the momentum equation

∇p = µ∇
2v (15)

where v = vrer + vθ eθ is computed using equations (10) and (12).

3 Numerical approach: the Particle Enriched Moving Interface Method

The idea of the Extended Finite Element Method is to enrich a finite element space
with additional functions. Our numerical technique takes the same approach: the
Stokes flow is solved using the traditional C0 conforming finite elements (in our
cases 4 node bilinear elements for the pressure and 9 node quadratic elements for
the velocity) space, and we enrich this space with additional degrees of freedom
that allow the pressure jump across the interface (the velocity stays continuous) and
singular pressure and velocity fields around the corner tip. To enrich the standard
finite element space, we make use of the linearity of the Stokes flow and simply
sum the enrichments for the pressure jump and the asymptotic solution around the
corner tip. The velocity and pressure fields in this enriched space are therefore
interpolated as follows:

p(x) = ∑
i

Ni(x)pi +∑
j

N j(x)(H(φF(x))−H j)p̌ j

+ ∑
k

∑
l

Nk(Gl (r(x),θ(x))−Gk)p̂k

+ ∑
j

N j(x)(H(φI(x))−H j)p̌ j (16)

v(x) = ∑
i

N̂i(x)vi +∑
k

∑
l

N̂k(F l (r(x),θ(x))−Fk)ṽk (17)

where N and N̂ are the regular 4 nodes and 9 nodes shape functions, H is the Heav-
iside function that provides the needed discontinuity, and F and G are the special
asymptotic corner tip functions. The terms φI and φF denote level-set functions, i.e.
the signed distance functions with respect to the interface and the fibers. Table 1
shows a summary of asymptotic functions used as enrichment for both pressure and
velocity fields [Foucard and Vernerey (2014a)]: The terms p̌ j and p̂ j correspond
to the enriched degrees of freedom associated with the jump in pressure across
the fibers and the droplet interface respectively, while the terms p̃k and ṽk are the
enrichment degrees of freedom associated with the near corner tip pressure and ve-
locity fields. In addition to the velocity and pressure degrees of freedom and their
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Table 1: Corner tip asymptotic functions

G
{

rα−2 sin(αθ),rα−2 sin((α1−2)θ),rα−2 cos(αθ),rα−2 cos((α−2)θ)
}

F
{

rα−1 sin((α−2)θ)sinθ ,rα−1 cos((α−2)θ)cosθ ,

rα−1 sin((α−2)θ)cosθ ,rα−1 cos((α−2)θ)sinθ
}

Figure 2: Black dots denote tip enrichment for the velocity and pressure (only the
four corner nodes in the case of the pressure) while squares and triangles indicate
split enrichment for the pressure for the fibers and the interface respectively.

respective enrichment, let us introduce the Lagrange multipliers λ I and λ I
p. These

are used to enforce the no-slip/no-penetration boundary condition (6) on the corner
walls and tip and the pressure jump condition at the interface. They are discretized
at the intersection between the corner walls and the underlying mesh for λ I , and
at the intersection between the interface and the underlying mesh for λ I

p, as shown
in Fig.2. They are interpolated along the interface Γ using one-dimensional shape
functions λi(x, t) = ∑

2
I=1 N̄I(x)λ I

i (t) where I denotes the numbering of the nodes
for each segment of the corner walls, and i runs over the dimensions 1 and 2 (in
2D).

3.1 Weak formulation

Introducing the test functions wv, wp, wλ and wλp , integrating by parts and using
the divergence theorem, the weak form of the governing equations (1)-(5) in the
fluid domain can be written as: given the position XI at time t, find v ∈ V , p ∈P ,
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λ ∈L and λp ∈Lp such that for all wv ∈ V , wp ∈P , wλ ∈L and wλp ∈Lp

(∇wv,µ∇v)
Ω
− (∇wv, pI)

Ω
+(wv,ρf)

Ω
+(wv,λ )Γ

+
(
wv, fI + fR/I)

)
Γ
= 0

(wp,∇ ·v)Ω +(wp,λp)Γ = 0

(wλp , [p])Γ +(wλp ,(fI + fR/I) ·n)Γ = 0

(wλ ,v)Γ
= 0 (18)

where the notation (·, ·)Ω indicates the L2 inner product with respect to the domain
Ω. The Lagrange multipliers λ and λp enforce the no-slip/no-penetration boundary
conditions (6) and the pressure jump conditions on the implicitly defined corner
walls. The test functions wλ and wλp are associated with the Lagrange multipliers
and V , P , L and Lp are admissible spaces for the velocity, pressure and Lagrange
multipliers.

3.2 Discretized form

The weak form (18) is then discretized in space by using the XFEM approximation,
and after simplifications yields the following linear system:

Ktdt = ft (19)

where Kt is the consistent tangent matrix, dt = {v p λp λ} the global vector of
unknowns and ft the global force vector at time t. The element contribution to Kt

and ft are as follows:

ke =


ke

vv ke
vp 0 ke

vλ

ke
pv 0 ke

pλp
0

0 ke
λp p 0 0

ke
λv 0 0 0

 , fe =
{

fe
v 0 fe

λp
0
}T

. (20)

The form of the components in the ke matrix and and the fe are given in appendix
A. The finite element equation (19) can be solved with a linear solver to yield an
expression for the fluid (and interface) velocity v at time t. Given the interface ve-
locity v, the position XI of the vesicle interface ΓI is then updated to compute Kt+dt

and ft+dt for the next time step, with dt the time step increment. Once the vesicle
has left the computational domain, or once ||dt+dt −dt ||< TOL, the algorithm has
converged and the interface is in equilibrium with the surrounding fluid. The next
step involves the transport of the interface using a mesh-based particle method, as
discussed next.
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3.3 Grid based particle method for interface evolution

To track the deformation of the interface ΓI , we choose here to use a grid-based
particle method similar to what was introduced in [Leung, Lowengrub, and Zhao
(2011)]. This method indeed possesses the double advantage of tracking the inter-
face explicitly with particles while using the underlying fixed finite element mesh
to ensure a fairly uniform repartition of the particles on the interface. Here we
summarize the grid based particle method and discuss the update of the interface
position and deformations measures. The particles, whose position vector is denot-
ed by y, are chosen as the normal projection of the underlying mesh nodes, with
position vector p, on Γ (Fig. 3a.). Initially, the interface is described implicitly as
the zero level-set of a signed distance function φI(p, t = 0). The initial coordinates
of particles y can then found as follows:

y = p−φI(p,0)∇φI(p,0) (21)

To limit the number of particles, we define a so-called computational tube such that
only nodes p whose distance to ΓI is smaller than a cut-off value λtube are accounted
for. It is important to note here that there is a one to one correspondence between
each particle y and node p. This ensure a quasi-uniform repartition of particles
along the interface throughout its evolution. Between two subsequent time steps,
the particles are moved according to the normal component of the interface velocity
v⊥(ξ , t) as follows:

yt+dt = yt +v⊥(yt , t)dt +Ω ·v⊥(yt , t)
dt2

2
(22)

where Ω is the matricial form of the angular velocity of the interface normal [Jason
and Kumar (2012)]:

ω = −
(

v⊥,ξ1

)
[0 0 1]T and Ωik = εi jkω j (23)

with εi jk the permutation tensor and ξ1 the local coordinate running along the in-
terface (Fig. 3b.). After the motion of the interface, the particles y may not be
the closest point on ΓI to their associated nodes p. Moreover, the motion of the
particles may cause their distribution on ΓI to become uneven, which can affect
the geometrical resolution of the interface. To overcome this issue, the interface is
ressampled after motion by recomputing the particles as the closest points on ΓI to
the nodes p inside the updated computational tube (which has moved with the inter-
face) (Fig.3a.). This is done by first approximating the interface with polynomials
locally around each particle. The procedure, explained here in the two dimensional
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Figure 3: (a) particles and associated nodes in the computational tube. (b) Local
polynomial approximation of the surface (and of any Lagrangian field). The poly-
nomial ξ 3(ξ 1,ξ 2) that approximates the interface is constructed via least square
fitting using neighbouring particles in the local referential {a0, n̄0} centered on
particle y0.

case, is as follows: for each node p inside the computational tube, the closest m
particles y0...ym are collected, carrying with them the tangent at

0...a
t
m and normal

n̄t
0...n̄

t
m to the interface before motion. Denoting y0 as the particle closest to p, a

polynomial of degree n < m is fitted to the particles y0...ym in the local coordinate
system {st

0; n̄t
0} centered on y0 (Fig.3b). The location ỹi of particle i in this local

coordinate system is given by:

ỹi =

{
ξ 1

i
ξ 2

i

}
= Rt · (yi−y0) with Rt =

[
(at

0)
T

(n̄t
0)

T

]
. (24)

Taking the example of a quadratic polynomial (n = 2), the interface around particle
y0 is represented in the local referential as the graph function ξ 2(ξ 1) = c0+c1ξ 1+
c2(ξ

1)2, where the coefficients c0,c1 and c2 are found by minimizing the L2 differ-
ence between the ξ 2(ξ 1

i ) and the ξ 2
i . The coordinates

{
ξ 1,ξ 2(ξ 1)

}
defines a local

parameterization rl(ξ 1) of Γ in the neighbourhood of y0:

rl(ξ 1) =

{
ξ 1

ξ 2(ξ 1)

}
. (25)

The relationship between the local parameterization rl(ξ 1) and the global param-
eterization XI(ξ

1) defined in section 2.1 is then found via rotation and translation
operations in the form:

XI(ξ
1, t +dt) = (Rt)−1 rl(ξ 1)+y0. (26)
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The parameterization XI(ξ
1, t + dt) can now be used to ressample the interface,

i.e. recalculate the closest point on the interface to the nodes p. This is done by
minimizing the distance function d(r(ξ 1, t + dt);p) = 1/2

∣∣r(ξ 1, t +dt)−p
∣∣ with

respect to ξ 1. In two dimensions, the solution can be found explicitly by solving a
cubic equation. Other geometrical quantities can also be found using the parame-
terization XI(ξ

1, t +dt), such as the updated basis
{

at+dt , n̄t+dt
}

:

at+dt = r(ξ 1, t +dt),1 = Rt ∂rl(ξ 1, t +dt)
∂ξ1

(27)

n̄t+dt = at+dt × z/|at+dt × z|. (28)

and the mean curvature can be found as follows [Leung and Zhao (2009)]:

H =
ξ ′′2

(1+ξ ′2)
3/2 (29)

where ′ denotes the derivative with respect to ξ1. Finally, a new level-set function
φI(p, t + dt) can be calculated as the signed distance function to ΓI at nodes p as
follows:

φI(p, t +dt) = −sgn(
yt+dt −p
|yt+dt −p|

· n̄t
0)|yt+dt −p|, (30)

where yt+dt is the particle associated with p at time t + dt and the sign function
sgn(((yt+dt−p)/|yt+dt−p|) · n̄t

0) determines whether node p is in Ω+ or Ω−. The
reconstruction of the level-set function using the local polynomial approximation
of the interface is computationally inexpensive, and is used in the X-FEM part of
the algorithm.

3.4 Validation for the pressure/velocity field in the tip vicinity

Here we investigate the accuracy of the numerical technique by comparing it with
the analytical solution developed by Moffat [Moffatt (1963)] for the velocity and
the pressure field around the fiber tip, with and without a circular droplet in the
vicinity. The velocity given by the analytical solution is imposed at the boundary
of the computational domain. The Reynolds number is given by:

Re =
V rReal[λ ]

ν
(31)

with µ the kinematic viscosity and V the fluid velocity away from the corner. The
parameters V and µ are chosen such that Re� 1 everywhere in the computational
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Figure 4: Error Ev made in computing the flow velocity around the corner tip in
mode I and II, for different corner angle α . The error can be lessened by more then
a factor of 10 using corner tip enrichment.

domain. The error made in computing the velocity of the flow near a corner is
calculated as follows:

Ev =
∫ x1

x0

||vnum(x)−vasymp(x)||
||vasymp(x)||

dx, (32)

Ep =
∫ x1

x0

||pnum(x)− pasymp(x)||
||pasymp(x)||

dx (33)

where vnum denotes the velocity calculated using the numerical method, vasymp the
asymptotic solution and x0,x1 two points in the vicinity of the fiber tip (Fig.4a.).

Table 2: Error made in computing the pressure and velocity fields Ep and Ev, with-
out enrichment, with enrichment and with a vesicle in the vicinity of the fiber tip.

w/o enrichment with enrichment with enrichment & vesicle
Ev 18.2% 0.7% 0.7%
Ep 22.1% 3.1% 3.1%

The circular vesicle in the neighbourhood of the fiber tip is shown in Fig.4a., as well
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as a close up of the singular pressure field around the fiber tip and the pressure jump
across the vesicle interface. Fig.4b. shows the velocity and the pressure field in the
neighbourhood of the fiber tip, along the line from point x0 to x1. We observe in
table 2 that without enrichment, the errors Ev and Ep are fairly high, at 18.2% and
22.1% respectively. However, the incorporation of the tip enrichment developed
above reduces the errors down to 0.7% and 3.1% respectively. The presence of a
circular vesicle in the vicinity of the fiber tip does not significantly affect the accu-
racy of the scheme, and we can note the appearance of a pressure jump across the
vesicle interface from its surface tension, as expected. The source of the remaining
error stems from the weak enforcement of the no-slip/no-penetration condition on
the corner wall. Future studies will investigate reducing the error by using quadrat-
ic instead of linear shape function for the interpolation of Lagrange multipliers.
Overall, the numerical technique presented here is shown to significantly increase
the accuracy of the simulation of a flow near a sharp corner using the extended
finite element method, at a much lesser computational cost than classical methods
since no mesh refinement is needed.

4 Numerical approach to predict the permeation of a soft colloids though a
fibrous network

In this section, we present a generalized homogenization scheme to determine how
different phases of a fluid (such as solvent or various vesicles present in the sol-
vent) can permeate through a fibrous filtration membrane. For this, we first present
a general homogenization scheme based on the Hill-Mendel conditions that then
served as a basis to express macroscopic permeabilities in terms of flux and pres-
sure on the boundary of a volume element. We then apply these concepts to the
specific problem of soft vesicles travelling through a small fibrous network and pay
particular attention to the role of surface tension at the vesicle-solvent interface.

4.1 General homogenization scheme to compute macroscopic permeabilities

From a macroscopic viewpoint, the phenomenon of fluid flow through porous medi-
a has traditionally been described by Darcy’s law relating volumic flux to pressure
gradient throughout a porous network. The relationship between the flux Qα of
fluid α and the macroscopic pressure gradient ∇̄p̄ is established via the definition
of so-called macroscopic permeability tensor κα in the form

Qα =−κα

µα

∇̄p̄ (34)

where µα is the fluid viscosity. We note that for isotropic porous network such as
those studied in this paper, the permeability can be expressed in terms of a single
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Figure 5: Periodic assumption of a fibrous network with a population of permeating
particles. A unit periodic cell is identified and analysized to extract the macroscopic
properties of the network.

scalar quantity κα such that κα = καI with I representing the second order identity
tensor.

It is clear here that the quantity κα represents the ease by which a fluid permeat-
ed through the network. Theoretically, it may therefore be determined through a
thorough study of the micromechanisms of vesicle flow and deformation and a con-
sistent averaging operation to bridge micro to macroscale. We propose here to use
classical homogenization theory where we assume that at the mesoscale, a mem-
brane is made of a periodic array of unit cells comprised of a pseudo-random fiber
distribution. For the sake of simplicity, we also assume that a number of vesicles
can be found within each of these cells and that they all have the same position
relative the their corresponding unit cells (Fig. 5). For each elementary volume
(of dimension, W ×H), it is possible to introduce a local coordinate system (ξ ,η)
whose origin is at the center of the volume. With this, it is possible to express the
microscopic pressure field p in such a domain as a first order expansion as follows:

p(ξ , t) =
(
∇̄p̄
)
(t) ·ξ +∆p̃(t) (35)

where ∇̄ p̄ is the macroscopic pressure gradient and ∆p̃(t) is a fluctuation field aris-
ing from the presence of random fibers and vesicles in the domain. Using the fact
that the macroscopic pressure gradient is an average of the microscopic pressure
gradient over the unit cell, one can show that:

∇̄p̄ =
1
∆t

∫
∆t

[
1

V0

∫
Ω

(∇p)dV
]

dt =
1
∆t

∫
∆t

[
1

V0

∫
Γ

pndS
]

dt (36)
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with n the unit vector normal to the boundary Γ and V0 the volume of the domain.
Note that we used the divergence theorem to obtain the last equality. The above
relation is particularly useful as it enables to characterise the macroscopic pressure
gradient in terms of the microscopic pressure field on the boundary of the unit cell.
We also obtain that

1
∆t

∫
∆t

[
1

V0

∫
Ω

p̃dV
]

dt = 0 (37)

In other words, the macroscopic average of the microscopic fluctuation fields iden-
tically vanish. To further establish a relationship between fluxes and pressure gra-
dients, we invoke the Hill-Mendel condition on energy dissipation. More precisely,
we postulate that the macroscopic energy dissipation per unit volume and time is
equal to the average of the microscopic dissipation over the elementary volume and
during a characteristic time period ∆t. Note that this elementary time increment is
related to the time needed for a vesicle α to go through the elementary volume. We
write:

(
Qα · ∇̄p̄

)
V ∆t =

∫
∆t

[∫
Γ

(qα · pn)dS
]

dt (38)

On the left hand side, we expressed the energy dissipation of a Darcy-type flow over
a volume V0 =W×H×1 and a period ∆t. On the right hand side, we expressed this
same energy in terms of the product of surface forces pn where p is the pressure
and n the normal to the boundary, and the velocity v of fluid particle moving across
the boundary. Substituting the expression (35) for p into (38) and identifying the
terms, one can show that:

Qα =
1
∆t

∫
∆t

[
1

V0

∫
Γ

(qα ·n)ξ dS
]

dt (39)

This establishes a relation between the macroscopic volumic flux Q̄α and the mi-
croscopic flux qα across the boundary of the elementary volume. The macroscopic
permeability can then be numerically determined by relating the macroscopic flux
(39) to pressure gradient (43) via equation (34).

4.2 Application to the numerical evaluation of the permeation of soft colloidal
particles

Let us now apply the above findings to the computation of a network permeability to
two fluids: (a) the solvent and (b) the immersed vesicles. To simplify the analysis,
we consider a two-dimensional vertical porous flow (Fig. 6) for which boundary
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Figure 6: Schematic of the geometry, dimensions and boundary conditions for as-
sessing the permeation of a soft colloid particle through a fibrous network.

conditions are given in terms of the macroscopic solvent flow qs =V and a no-flux
boundary condition on the left and right boundaries of the domain. The relevant
quantities to compute are therefore (a) the overall vertical solvent flux Qs

y, (b) the
overall vertical vesicle flux Qs

v and the vertical macroscopic pressure gradient ∇̄y p̄.
For each simulation, the elementary time ∆t is computed as the time required for a
vesicle to travel the entire (vertical) length of the domain.

Flux. For this particular problem, the homogenization relation (39) becomes, for
the solvent:

Qs
y =

1
WH∆t

∫
∆t

[∫ W/2

ξ=−W/2
(−HV dξ )

]
dt =−V (40)

where the final equality was obtained by realizing that the volumic flux of the fluid
across the boundary is constant in time. The volumic flux of vesicle can similary
be computed by:

Qv
y =

1
WH∆t

∫
∆t

[∫ W/2

ξ=−W/2
(−Hvvdξ )

]
dt =− f v H

∆t
(41)

where we used the fact that for incompressible fluids, the cumulative volumic flux
entering the domain during a time interval ∆t is equal to the volume Ωv in the
vesicle. In other words, we have:

Ω
v =

∫
∆t

[∫ W/2

ξ=−W/2
(vvdξ )

]
dt (42)

This relation, together with the expression of the volume fraction of a vesicle f v =
Ωv/(WH) yields the second equality in (41). This result indicates that the volumic
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flux of vesicles is proportional to their volume fraction and inversely proportional
to the time ∆t needed to travel a vertical distance H in the network.

Pressure gradient. As mentioned above, we are here interested in computing the
vertical macroscopic velocity gradient ∇̄y p̄. Using (43) for the geometry shown in
Fig. 6, it is straightforward to show that:

∇̄y p̄ =
1

HW∆t

∫
∆t

∫
Γ

(
p(ξ ,

H
2
)− p(ξ ,−H

2
)

)
dξ dt (43)

Numerically, the above spatial integrals over the top and bottom boundaries of the
domain can be evaluated using a surface gausian quadrature rule while the time
integral can be evaluated using the trapezoidal rule.

Macroscopic permeabilities With the knowledge of (40), (41) and (43), it is now
possible to compute the macroscopic permeabilities of the network. Indeed, writing
(34) in the vertical direction, it is straightforward to show that:

κs =
µV
∇̄y p̄

and κv =
µH f v

∆t ∇̄y p̄
(44)

In summary, our numerical approach can be divided into four steps: (a) Build a
fibrous network, apply given boundary conditions and simulate the permeation of a
vesicle through the elementary volume, (b) Determine the elementary time ∆t, (c)
Using numerical integration of the boundary of the elementary volume, compute
fluxes and pressure gradients as given by (40), (41) and (43) and (d) Compute the
macroscopic permeabilities using (44).

4.3 Numerical investigation of the role of surface tension soft vesicles perme-
ation

The objective of this last section is to illustrate how the proposed numerical and
homogenization scheme can give precious insights regarding the effect of vesicle
deformability on its permeation through a fibrous network. For this, we consid-
er the problem shown in Fig. 6 and studied four quasi-random fibrous networks
distinguished by similar fiber densities and distributions. For each network, we
then investigate the permeation of vesicles that are characterized by a range of de-
formability, measured in terms of a nondimensional capillary number Ca = µV/γ .
Small capillary numbers correspond to vesicles with high surface tension and low
deformability; in contrast, a high capillary number reduces the solvent-vesicle sur-
face tension and allows vesicles to undergo very large deformation and flow though
narrow pores. Other parameters needed to describe the permeation of the vesicle
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include the non-dimensional time and permeabilities, written as:

t∗ =
tH
V

, κ
∗
s =

κs

κ̄
and κ

∗
v =

κv

κ̄
(45)

where κ̄ is the average fluid permeability for networks 1-4 without vesicle. The
simulations were run on finite element mesh of size 26×31 (806 elements), suffi-
ciently small to resolve the high curvature of the vesicle interface at large capillary
numbers. Due to the presence of second order terms (e.g. the mean curvature) in
the force generated by the vesicle-solvent surface tension, the explicit time evolu-
tive simulations are subjected to a strict Courant-Friedrichs-Lewy (CFL) condition
on the time step of the second order in mesh size dt ≈ O(∆h)2, with ∆h the size of
a single element. In this context, Fig. 7 shows the history of the non-dimensional
speed of the vesicle vv/V as it travels through network 1 for capillary numbers
Ca = 0.04 (Fig.7a) and Ca = 0.2 (Fig.7b). We observe that for a capillary number
low enough (Ca = 0.04), the vesicle is too rigid to squeeze through the network
(Fig. 7a). As a result, it remains trapped between two fibers while the surround-
ing fluid is diverted away from the obstructed pore. For higher capillary numbers
(Ca = 0.2), the vesicle is slowed downed at the pore but is deformable enough to
fully permeate through the same network (Fig 7b). These two example clearly in-
dicate that deformation, in addition to size, dictate wether a vesicle can go through
a porous medium. We further see that low deformability may result in the accumu-
lation of trapped vesicles within the network and thus decrease the overall effective
permability. This phenomenon is known as fouling [REF].

Figure 7: Vesicle speed as a function of non-dimensionalized time t∗ for network 1,
Ca = 0.04 (a) and Ca = 0.2 (b).

Let us now turn to the macroscopic effects of these observations. For this, we
compute for each network and capillary numbers the macroscopic permeabilities
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Figure 8: Vesicle permeability as a function of the capillary number Ca =
µU
γ

Figure 9: Fluid permeability as a function of the capillary number Ca =
µU
γ

given in (44). For clarity, we particularly focus on understanding how the non-
dimensional vesicle and solvent permeabilities κ∗v and κ∗s change as functions of
the capillary number Ca in Fig. 8 and Fig. 9 respectively. For all networks, we ob-
serve, as expected, that the vesicle permeability decreases with the capillary num-
ber, since less deformable vesicles have more difficulties squeezing through the
tight pores. We also note that the vesicle permeability decreases to zero in the cas-
es where the capillary number is low enough to cause the vesicle to be permanently
trapped into the pores (fouling). On the other hand, the vesicle permeability is
shown to approach that of the fluid without vesicle as the capillary number increas-
es. Similarly, the solvent permeability κ∗f is shown to decrease with the capillary
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number in Fig. 9. This is explained by the fact that more rigid vesicles hinder the
fluid flow through the network, and that pores can be permanently obstructed by
the most rigid vesicles. More importantly, even when pores are not obstructed, Fig.
9 shows that the presence of the vesicles can lessen the fluid permeability by as
much as 20% for the network studied here.

5 Summary and future work

We have described a new numerical modeling approach that can be used to quan-
titatively examine the interplay between a rigid media’s structure, the surface en-
ergy of deformable, immiscible, suspended particles (vesicles), and an externally
imposed continuum flow, on the particles’ conductance through that media. The
novelty of the approach is two-fold: (a) the inclusion of locally-explicit contin-
uum solutions for the pressure and velocity fields that eliminate the need for the
computational cost of mesh refinement and (b) the derivation of a numerical ho-
mogenization scheme that permits to calculate the macroscopic permeabilities of
a fibrous network for complex fluids. We have illustrated the usefulness of the
approach by performing a study on an idealized two-dimensional problem contain-
ing deformable, "cylindrical-shaped" vesicles being transported in a simple fluid
through a media containing rigid flakes (which project as "fibers" in our 2-d prob-
lem). The major macroscopic figures-of-merit were the permeability coefficients
of the continuous fluid and the vesicles. For the range of parameters studied, our
results have illustrated that vesicles are always retarded relative to the continuum
flow, and that the relative selectivity for the continuum versus the vesicle is in-
versely proportional to the Capillary number (based on the vesicle’s surface energy
relative to the continuum fluid). Overall, these results show the capability of the
proposed approach to both accurately describe the micro-scale physics of a vesicle
permeation, and their effects at the macroscale in terms of effective permeability
estimations. A number of improvements is however necessary to increase the fi-
delity of the models. First, a thorough study of the physical interaction between
fibers and vesicles must be carried out. For instance, the consideration of a repul-
sive force between the two entities in the proposed study ultimately facilitated the
flow of vesicles away from fibers. In an alternate case, where fiber-vesicle adhesion
occurs, one may predict very different behaviors [De Gennes, Brochard-Wyart, and
Quere (2004)]. Our two-dimensional (2D) assumptions may also drastically affec-
t the overall behavior of the system for several reasons. First, in 3D, one might
expect a lower flow resistance from the fibers, but an increase in fiber-fiber con-
nections, which might act as traps for vesicles. On the other hand, 3D vesicles
possess more deformation potential to escape from these obstacles. From a mod-
eling viewpoint, the proposed computational scheme is applicable in 3D although
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it is not straightforward. Asympotic flows around fibers and the deformation of 3D
vesicles are indeed significantly more complex than in a 2D setting, involving nu-
merous theoretical and numerical challenges. Such research endeavors are however
necessary as a fundamental undertanding of the interactions between soft vesicles
and porous media can help design new membranes for medical and energy appli-
cations [Gregoriadis and Florence (1993); Allen and Cullis (2013)], but also help
understand fundamental problems in biology such as the interactions between cells
and their surrounding fibrous matrix [Foucard and Vernerey (2012); Vernerey and
Farsad (2011); Vernerey, Foucard, and Farsad (2011)].
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Appendix A:

Using the spatial discretization scheme from section 3, the components of the ma-
trix ke and vector fe take the following form:

kvv =
∫

Ωe
µBT ·B dΩ (46a)

ke
vp =

∫
Ωe
−BT · N̂ dΩ (46b)

ke
vλ

=
∫

Γe
NT · N̄dΓ (46c)

ke
pv =

∫
Ωe

N̂T ·B dΩ (46d)

ke
λv =

∫
Γe

N̄T ·NdΓ (46e)

ke
λp p =

∫
Γe

N̄T · N̂dΓ (46f)

ke
pλp

=
∫

Γe
N̂T · N̄dΓ (46g)
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and

fe
v =

∫
Ωe

NT ·ρf dΩ+
∫

Γe
NT · (fI + fR/I) dΓ. (47)

fe
λp

=
∫

Γe
N̄T n · (fI + fR/I) dΓ. (48)

The shape function matrices N, N̂, N̂ and B take the following form:

N =
[
N1, ...,N9, Ñ1, ..., Ñ9] (49a)

N̂ =
[
N̂1, ..., N̂4, ˇ̂N1, ..., ˇ̂N4, ˜̂N1, ..., ˜̂N4

]
(49b)

N̄ =
[
N̄1 N̄2] (49c)

B =
[
B1, ...,B9, B̃1, ..., B̃9] (49d)

with

Ni =

[
Ni 0
0 Ni

]
, Ñi =

[
(F−F1)

[
Ni 0
0 Ni

]
, ...,(F−F8)

[
Ni 0
0 Ni

]]

(50a)
ˇ̂Ni = (H−H i)N̂i , ˜̂Ni =

[
(G−G1)N̂i, ...,(G−G4)N̂i] (50b)

Bi =


Ni
,1 0

0 Ni
,2

Ni
,2 0

0 Ni
,1

 (50c)

B̃i =




(F−F1)Ni),1 0
0 (F−F1)Ni),2

(F−F1)Ni),2 0
0 (F−F1)Ni),1

 , ...,


(F−F8)Ni),1 0
0 (F−F8)Ni),2

(F−F8)Ni),2 0
0 (F−F8)Ni),1


 .

(50d)

where F i and Gi are the asymptotic functions used to enriched the standard finite
element space around the corner tips introduced earlier.
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