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Abstract: Mechanical properties of proteins play an important role in their bi-
ological function. For example, microtubules carry large loads to transport or-
ganelles inside the cell, and virus shells undergo changes in shape and mechani-
cal properties during maturation which affect their infectivity. Various theoretical
models including continuum elasticity have been applied to study these structural
properties, and a significant success has been achieved. But, the previous frame-
works lack a connection between the atomic and continuum descriptions. Here this
is accomplished through the development of a meshfree framework based on re-
producing kernel shape functions for the large deformation mechanics of protein
structures. The framework is validated by comparing thermal fluctuations of small
proteins against well established elastic network model. To demonstrate the us-
ability of this framework, solutions to several other problems are presented. The
response of virus shells to indentation under atomic force microscope tip is sim-
ulated and compared to the finite element results. Finally, the large scale confor-
mational changes of viruses are analyzed by computing the deformations/strains
associated with the conformational motions. Excellent agreement with the previ-
ously published results is observed while increasing the efficiency of numerical
analysis. Furthermore, the results provide insights into the continuum behavior of
proteins and the optimum amount of geometric details necessary for calculating
their mechanical properties.
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1 Introduction and Motivation

Experimental techniques like x-ray crystallography, optical tweezers, atomic force
microscope (AFM) and other single molecule experiments [Klug et al. (2006); I-
vanovska et al. (2004); Evilevitch et al. (2008); Roos et al. (2009)] provide us with
insight into the structure and mechanical properties of biomolecules. Such ex-
perimental results are consolidated using theoretical models based upon physical
laws to provide in-depth understanding of their mechanical behavior and formu-
late generalized principles. Proteins have been modeled with full atomic details
in molecular dynamics (MD) simulations [Zink et al. (2009)]. However, these en-
tail fairly expensive calculations and are, thus, limited by available computational
resources to small systems in terms of the number of atoms and length of time.
New techniques that make some approximations to bring down the numerical com-
plexity of the problem have been designed. Usually, this is done by reducing the
number of degrees of freedom of the system and/or making assumptions about the
interaction potential between atoms. These methods, for example elastic network
model, Gaussian network model and continuum mechanics, rely on the hypothesis
that large wavelength motions and deformations of the proteins are not affected by
the fine-scale atomic details, but rather depend on the overall coarse shape. These
techniques have been shown to have good accuracy for many cases while mak-
ing the computations much faster [Tama et al. (2005); Atilgan et al. (2001); Bathe
(2008); Gibbons et al. (2008)].

One of the most widely used method — the elastic network model (ENM) as-
sumes that interactions between atoms are spring-like, and, under this assump-
tion, atoms within a certain radius are connected by linear springs. Rotational-
translational block normal mode analysis (RTB-NMA) adds another assumption
that each residue in the protein moves as a rigid-body [Tama et al. (2005)]. These
methods have been used to calculate the normal modes and fluctuations of proteins.
Gaussian network model is a similar method but uses statistical mechanics to define
the energy of the system [Atilgan et al. (2001)]. Despite the success of these meth-
ods, their formulations involve some arbitrary parameters, like the cut-off radius
and spring constant which are not physically related to the proteins. Replacing the
atomic description of proteins with continuum one has also been successful [Bathe
(2008); Gibbons et al. (2008); Aggarwal et al. (2012); Klug et al. (2006)]. Finite
element method (FEM) is a very well-studied numerical method most common-
ly used to discretize and solve the governing equations of continuum mechanics
[Hughes (2012); Zienkiewicz et al. (1977)]. Bathe (2008) presented a framework to
apply the finite element method for calculating the normal modes of proteins. Gib-
bons et al. (2008) used FEM to model the indentation of viral capsids using AFM.
Both approaches provided new insights into the mechanics of macromolecules.
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The success of FEM has been widespread with applications in a variety of fields
– structural analysis, plasticity, electrophysiology, heat transfer etc. However, it
has some limitations. Fundamentally, FEM needs a “good-quality” mesh which
discretizes the continuum domain, with mesh comprising of discrete “elements”.
These elements are usually of polyhedral shape and are used to define the approxi-
mation of the field variable, e.g. displacements in elasticity problems. The quality
of these elements is determined from factors like their aspect ratio and affects the
numerical accuracy of the overall method. For example, equilateral triangles and
tetrahedra are good quality elements, while long and narrow “sliver elements” are
of bad quality. Creating and maintaining such a good quality mesh presents a chal-
lenge and can limit the application of FEM. Mesh generation is often a tedious task
which consumes about 80% of the analysis time in industrial applications [Hugh-
es et al. (2005)]. Also, the basic finite element shapes like triangles and tetra-
hedra yield over-stiff results and higher order elements add to the computational
cost. Lastly, during large deformations, such as those observed in conformation-
al changes of protein assemblies, an initially good quality mesh usually becomes
skewed and needs adaptive remeshing to prevent numerical problems.

In addition to the usual problems related to meshing, application of FEM to bio-
molecules involves more problems. Since the continuum domain of these bio-
molecules is not uniquely defined, it is not clear how to discretize them. For
calculating the surface bounding the continuum domain of biomolecules, Bathe
(2008) used the solvent excluded surface [Sanner et al. (1996)], while Gibbons
et al. (2008) used iso-surfacing of a function similar to electron-density. Once a tri-
angulated representation of such bounding surface was obtained, the volume mesh
of tetrahedral elements was created by the Delaunay triangulation algorithm [Lee
et al. (1980)]. Filling of the domain with tetrahedra requires insertion of nodes in
between the surfaces. This has also led to more nodes than atoms in Bathe (2008)
— an idea contrary to the coarse-graining, and challenges in creating good quality
meshes for certain types of biomolecules in Roos et al. (2010). More importantly,
the nodes in these methods were placed at positions chosen based upon the element
shape criteria and, therefore, did not have direct reference to the atomic positions.
In other words, these methods drew only an indirect connection between the atomic
and continuum descriptions of macromolecular structures.

In spite of these problems, it is often desirable to use a continuum model because of
the efficiency and flexibility it provides. Elastic networks can maintain the kinemat-
ic structure of the atomic model, but only indirectly posses continuum-like prop-
erties. For example, the ability of large deformation analysis using FEM allowed
application to conformational change in virus capsids and provided new insights
into their maturation behavior [Aggarwal et al. (2012)], which cannot be achieved
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with ENM. There have been efforts to develop methods that do not need a mesh to
solve continuum mechanics problems, often termed as meshfree [Li et al. (2004)].
In this paper, we present a meshfree framework that systematically bridges the gap
between the molecular and continuum descriptions of a biomolecule by construct-
ing a continuum model that directly employs the atomic degrees of freedom. This
allows for the first time, a one-to-one mapping between the two models. The Re-
producing Kernel Particle Method (RKPM) [Chen et al. (1996); Liu et al. (1995)]
is used to approximate a function in terms of nodal values. To calculate the domain
integrals in weak form of the governing equations, stabilized non-conforming nodal
integration (SNNI) [Chen et al. (2007)] is used, where only nodal coordinates and
their corresponding volumes are needed as input. It should be noted that the curren-
t method uses the same constitutive approximations as in [Bathe (2008); Gibbons
et al. (2008)], that of homogeneous isotropic elasticity. However, nodes in this case
can be chosen as a subset of atoms of the system (for most of the proteins, atomic
coordinates with good resolution are available from the x-ray crystallography or
cryo-EM [Westbrook et al. (2002)]). This gives us a direct association between
the nodes and the atomic positions, which makes the flow of information from
atomic system to the continuum model (or vice-versa) straightforward. The utility
and robustness of this framework is demonstrated through three different problems
– calculation of atomic fluctuations, large-deformation indentation simulation and
analysis of strains related to the conformational changes in viruses.

This paper is organized as follows: next we present the details of protein structures
we want to model using proposed method and describe the quantities of interest
we seek to calculate. These examples are chosen to demonstrate the robustness
and utility of this novel framework. We present the mathematical formulation of
this framework, including the details of approximation and integration, followed by
the solution techniques used. Then, we present some validation and convergence
studies of the new stabilizing kernel we observe. This framework is applied to
chosen example problems and the results are presented, which are compared to
the experiments and other available methods. We conclude with a summary of the
contributions of present framework and discuss the possible future developments
using this method.

2 Methods

The key length scales of protein structures range from a few nanometers for single
proteins to micrometers for assemblies of several proteins in a well defined arrange-
ment. We use the following structures to demonstrate and validate our framework.

• T4-lysozyme is a small protein with 164 amino acids (also termed as residues).
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The atomic coordinates have been determined using X-ray crystallography
and are available on the protein data bank (PDB ID – 3LZM) [Westbrook
et al. (2002)].

• ADP bound G-actin is a slightly larger protein with 375 residues (PDB ID –
1J6Z).

• CCMV is a plant virus made up of 180 copies of a protein in T = 3 arrange-
ment (according to Caspar-Klug classification [Caspar et al. (1962)]), which
is similar to a truncated icosahedron shape. Each of those proteins are made
up of around 200 amino acids with a total of approximately 400,000 atoms
(including hydrogen) in the capsid. The fully packaged CCMV capsid exists
in two distinct structural states. The native structure of the wild-type CCMV
capsid, which is stable at pH 5 either with or without the genome, has an
average diameter of approximately 28 nm and an average inner diameter of
about 21 nm. As the pH is raised to about 7 at low ionic strength, a reversible
swelling transition occurs in which the average radius increases by approx-
imately 20% to 33 nm as shown in Fig. 2. For the native form, the atomic
coordinates of asymmetric unit are available on protein data bank (PDB ID
– 1CWP) and of the full capsid on viperdb [Shepherd et al. (2006)]. Model
atomic coordinates of swollen form are available on viperdb.

• HK-97 is a double stranded DNA bacteriophage that attacks E. coli and relat-
ed bacteria. It is made up of 420 copies of proteins arranged in a left-handed
T = 7 arrangement [Caspar et al. (1962)]. It first assembles into a prohead s-
tate and, then, goes through a maturation process constituting several stages.
It starts from a prohead state (diameter=53.2 nm) and DNA is packaged into
the capsid using a motor protein. Next, it goes through various expansion
intermediate stages (EI) which are accompanied by other chemical reactions
that lead to changes in size, shape and mechanical properties of the capsid.
The final head (H) state is the infectious particle. Three of these states used
in present study are shown in Fig. 2 (PDB IDs – 1IF0 (P-II), 3DDX (EI-II)
and 2FT1 (H-II)).

• Hepatitis B virus (HBV) is an enveloped animal virus which exists in poly-
morphic forms. Here we consider two different forms – T=4 arrangement
with 240 proteins and an average diameter of about 30 nm (single protein
PDB ID – 1QGT), and T=3 arrangement with 180 proteins and an average
diameter of 25 nm (pseudo-atomic model, unpublished structure from Steven
et al.). HBV capsid structure poses special challenges in meshing due to the
sharp protrusions on the surface.
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Figure 1: Left to right: Cartoon ribbon diagram of the atomic structure; solvent
excluded surface; Meshfree model with nodes at only alpha carbons; with nodes at
all carbons; with nodes at all atoms for (Top) T4 lysozyme and (Bottom) G-actin
proteins.

Figure 2: (Top) CCMV structure in native and swollen configurations and (Bottom)
HK97 structure changes during maturation. Three distinct stages are shown here.

To demonstrate the capabilities of current method, we solve three specific problems
for the above structures:

1. Under thermal energy the protein structure fluctuate around their minimum
energy configuration. These fluctuations in the atomic positions can be quan-
tified in an average sense using normal mode analysis and equipartition theo-
rem. The normal mode analysis can be performed with a variety of methods.
Fluctuations, thus calculated, give an insight into the mechanical properties
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of the protein and the mechanical coupling between different parts of it.

2. Atomic force microscopy (AFM), originally invented for imaging surfaces,
has been widely used for calculating force response of nano-scale structures.
Experimental results are available for the force response of many virus cap-
sids during indentation with AFM tip. This experimental setup can be simu-
lated using continuum mechanics to calculate the force-displacement relation
and compared to the experimental results to provide an estimate of capsid’s
elastic modulus. Such an analysis on different configurations of the same
virus provides insights into the assembly and infection mechanisms.

3. Conformational changes in virus capsids, e.g., of CCMV with pH change and
HK-97 during maturation, are fundamentally due to changes in the molecu-
lar interactions that in-turn affect the mechanical properties of capsid as a
whole. However, very little is known about these changes in terms of con-
tinuum description. We seek to calculate the strains associated with such
conformational variations in viruses and determine their relation to changes
in global mechanical properties. This kind of analysis is almost impossible
with the conventional finite element based methods but becomes straightfor-
ward with the method presented here.

These problems can be framed mathematically using the continuum theory of large
deformation elasticity. We start with a generalized form including all the terms and
then, later, specialize them to each specific problem.

2.1 Mathematical Formulation

Continuum mechanics describes an object as a continuous domain where material
fills up all the points in the domain. To use such an approximation for biomolecules,
which are arguably discrete, a consistent domain needs to be defined first from
the atomic coordinates. This is done using the solvent excluded surface [Sanner
et al. (1996)], which is the domain carved out by the closest point of a sphere
of solvent molecule as it rolls over the macromolecule defined by atomic van der
Waals spheres. Once this domain is determined, we formulate the conventional
continuum elasticity theory for the system.

For deriving the governing equations, assume a general continuum elastic system
with domain Ω ∈R3 and its boundary ∂Ω. Under the action of external body force
bbb on Ω, surface force fff on part of the boundary Γf ⊂ ∂Ω, and displacement ug

on part of the boundary Γg ⊂ ∂Ω (such that ∂Ω = Γg ∪Γf and Γg ∩Γf = ∅), the
material points of system which were originally at position xxx at time t0 undergo
displacement and move to yyy at time t. The mapping is denoted by ΦΦΦ(t), that is,
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xxx(t0)→ yyy(t) : yyy(t) = ΦΦΦ(xxx, t) = xxx+uuu(xxx, t), where uuu(xxx, t) is the displacement field.
The total mechanical energy of such an elastic system can be written as:

Π =
∫

Ω

[
1
2

ρ0|vvv|2 +W (C(ΦΦΦ))

]
dΩ−

∫
Ω

bbb ·ΦΦΦdΩ−
∫

Γ f

fff ·ΦΦΦdΓ. (1)

Here vvv = Φ̇ΦΦ = u̇uu (with ˙( ) signifying the derivative with respect to time t) is the
velocity, first term is the kinetic energy, second is the elastic internal strain en-
ergy, and third and fourth terms are the work done by body force and surface
traction respectively. Since, we would not be dealing with body forces in present
work, henceforth we drop the third term. The elastic strain energy density func-
tion W depends on C = FT ·F – the right Cauchy-Green deformation tensor. Here,
F = ∂ΦΦΦ/∂xxx = I+∂uuu/∂xxx is called the deformation gradient. The exact form of W
depends on the material properties of the solid and, in case of isotropic solids, de-
pends only on the first three invariants of C. Using Lagrange’s equation of motion,
the weak form of the governing equation (also known as momentum balance) can
be derived as∫

Ω

[
ρ0üuu ·ηηη +F ·S :

∂ηηη

∂xxx

]
dΩ =

∫
Γ f

fff ·ηηη dΓ, (2)

where ηηη is the virtual displacement and S is the second Piola-Kirchhoff stress (S =
2∂W /∂C). The problem can be framed as follows: given ρ0, fff , uuug and material
strain energy density function W , find uuu ∈H1 (Ω) , uuu(Γg) = uuug such that Eq. (2) is
satisfied ∀ηηη ∈H1 (Ω) , ηηη (Γg)= 0. Here H1 (Ω)= {w | w ∈ L2 (Ω) and w,i∈ L2 (Ω)}
is the first Sobolev space (L2 (Ω) =

{
w |
∫

Ω
w2dΩ < ∞

}
). These equations general-

ly cannot be solved in closed form and an approximate numerical method has to be
used. The numerical method solves a discrete form of the equations at some finite
number of points in the domain. These points, often termed as nodes, are the points
of interest where solution is sought. In the context of biomolecules, it is natural to
ask for these points to be related to atoms. Thus, the nodes in this study are chosen
as a subset of the atoms or their linear combination, e.g., unweighted centeroids
of the atoms in each amino acid in the polypeptide chain of protein referred to as
“residue centers”. Here it is required that the atomic coordinates are known with
high resolution, which is true for a large number of proteins from cryo-EM or x-ray
crystallography, coordinates being available online at protein data bank [Westbrook
et al. (2002)]. Furthermore, the number of nodes can be chosen as per desired ac-
curacy and resolution of the numerical solution. Three different refinement levels
for two proteins — T4-Lysozyme and G-Actin are shown in Fig. 1.

The displacement field uuu(xxx) in integral/weak form of the governing equation (Eq. 2)
is replaced with an approximation uuuh(xxx). So the Galerkin problem statement is:
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given ρ0, fff , uuug and W , find uuuh ∈ H1 (Ω) , uuuh (Γg) = uuug such that

∫
Ω

[
ρ0üuuh ·ηηηh +F ·S :

∂ηηηh

∂xxx

]
dΩ =

∫
Γ f

fff ·ηηηh dΓ (3)

∀ ηηηh ∈ H1 (Ω) , ηηηh (Γg) = 0. Further, the approximation function uuuh is written as
an interpolation of its value at the nodes uuuI

uuuh(xxx, t) =
NP

∑
I=1

ΨI(xxx)uuuI(t), (4a)

where ΨI are shape functions defining the approximation and NP is the number
of nodes. These shape functions defined on the reference configuration Ω(xxx) are
required to have the partition of unity property, i.e. ∑I ΨI(xxx) = 1 ∀ xxx∈Ω, and exist-
ing spatial derivatives within domain Ω. In the Bubnov-Galerkin class of methods,
the virtual displacement is also approximated using the same shape functions, i.e.

ηηη
h(xxx) =

NP

∑
I=1

ΨI(xxx)ηηη I. (4b)

Following the conventional FEM, tessellation of nodes by the Delaunay algorithm
could be used to construct piecewise polynomial shape functions. However, high-
ly non-uniform spacing of the atoms, and thus the nodes, leads to highly skewed
tetrahedra resulting in a bad approximation properties and poor numerical accuracy
of the solution. To avoid that, we use a meshfree technique which does not need
a connectivity and defines the shape functions solely based on the node positions.
A commonly used approximation in meshfree methods is the Reproducing Kernel
(RK) approximation [Chen et al. (1996, 2003)] and its details are presented next.

2.2 Reproducing Kernel Particle Method (RKPM)

Reproducing kernel (RK) shape function ΨI(xxx) is assumed to be of the form:

ΨI(xxx) =C(xxx;xxx− xxxI)φaI (xxx− xxxI), (5a)

where C(xxx;xxx− xxxI) is the correction function – a linear combination of the basis hi,
i.e.

C(xxx;xxx− xxxI) =
n

∑
i=1

hi(xxx− xxxI)bi(xxx) = HT (xxx− xxxI)b(xxx), (5b)
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φaI is the kernel function which determines the continuity and locality of the shape
function, and aI is the support size of the kernel — the radius of domain where
ΨI has non-zero value. The basis function is usually chosen as a polynomial of
order q, i.e. H(xxx) = {xxxα}|α|≤q. Here we have introduced the multi-index notation
in dimension d: α = (α1,α2, . . . ,αd), |α| = ∑

d
i=1 αi and xxxα = xα1

1 · x
α2
2 · ... · x

αd
d . In

present formulation we use linear basis, so it simplifies to H(xxx)= [1,x1,x2, . . . ,xd ]
T .

The coefficients bi in the correction function are obtained by applying reproducing
conditions

NP

∑
I=1

ΨI(xxx)xxxα
I = xxxα ∀|α|= 0 . . .n. (6)

In other words, the kernel approximation should be able to reproduce the basis func-
tions exactly up to order n (and hence the name – Reproducing Kernel). Applying
the reproducing condition gives us the following matrix equation for coefficients
bi(xxx)

M(xxx)b(xxx) =

[
NP

∑
I=1

H(xxx− xxxI)HT (xxx− xxxI)φaI (xxx− xxxI)

]
b(xxx) = H(0). (7)

Equation (7) can be solved for bi to get the shape function ΨI . The RK shape
functions have the same continuity as that of the kernel function and, in general, are
non-interpolating, i.e. ΨI(xxxJ) 6= δIJ . The lack of Kronecker delta property means
that the coefficients of the approximation are not equal to the displacement at the
nodes which poses some complexity in applying displacement boundary conditions
and implementing contact type constraints. In the present context of modeling the
mechanics of biomolecules, the lack of a Kronecker delta property also presents a
challenge in associating nodes with atomic coordinates, which is the key objective
of our model. To recover the Kronecker delta property, Chen et al. (2003) modified
the kernel approximation to have two parts:

uuuh(xxx) =
NP

∑
I=1

ΨI(xxx)uuuI =
NP

∑
I=1

(
Ψ̂I(xxx)+ΨI(xxx)

)
uuuI. (8)

Here Ψ̂I(xxx) is a primitive function used to introduce Kronecker delta properties in
the approximation, and ΨI(xxx) is an enrichment function for imposing the reproduc-
ing conditions. With a polynomial basis hi(xxx), we have the reproducing condition

∑
I

ΨI(xxx)xxxα
I = ∑

I

[
Ψ̂I(xxx)+ΨI(xxx)

]
xxxα

I = xxxα ∀|α|= 0 . . .n. (9)
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Under the three combined conditions that 1) Eq. (9) holds, 2) the primitive function
Ψ̂I(xxxJ) = δIJ , and 3) the enrichment function ΨI(xxx) is of the form:

ΨI(xxx) = GT (xxx− xxxI)a(xxx), (10a)

it can be verified that ΨI(xxxJ) = 0. Equation (10a) can be satisfied by invoking the
same shape function form as used previously in Eq 5, i.e.,

ΨI(xxx) = HT (xxx− xxxI)a(xxx)φ aI
(xxx− xxxI). (10b)

In the above equation the coefficients of the correction function have been changed
from b to a to make the distinction. Since ΨI(xxxJ) = 0 and Ψ̂I(xxxJ) = δIJ , it implies
that the total shape function also satisfies the Kronecker delta property ΨI(xxxJ) =
Ψ̂I(xxxJ) +ΨI(xxxJ) = δIJ . Using the above formulation, the reproducing condition
gives the following system of equations for the coefficients a(xxx)

a(xxx) = M−1(xxx)
[
H(0)− F̂(xxx)

]
, (11a)

where M is the same moment matrix as in usual RK method defined in Eq. (7) and

F̂(xxx) =
NP

∑
I

H(xxx− xxxI)
φ̂âI (xxx− xxxI)

φ̂âI (0)
. (11b)

For Ψ̂I(xxx) to satisfy the Kronecker delta property, the following form is chosen in
the present study:

Ψ̂I(xxx) =
φ̂âI (xxx− xxxI)

φ̂âI (0)
, where âI = γ min{||xxxI− xxxJ|| ∀J 6= I} and 0≤ γ < 1. (12)

Also, the same functional form is used for the two kernels φ̂âI and φ aI
although with

different support sizes âI and aI respectively. These are chosen in a way such that
support âI does not cover any other nodes (γ is taken as 0.9 in the results presented
here) and aI covers enough nodes to make the system of equation of reproducing
conditions (Eq. 11a) non-singular.

Once, we have the shape functions, the two approximations from Eq. (4) can be
substituted into the weak-form of the governing equation (Eq. 3) to give

∫
Ω

[
∑
IJ

ρ0ηηη IΨI(xxx)ΨJ(xxx)üuuJ +∑
I

ηηη IF ·S :
∂ΨI

∂xxx

]
dΩ =

∫
Γ f

fff ·∑
I

ΨIηηη I dΓ ∀ηηη I.

(13a)
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The above equation can be simplified to get

∑
I

ηηη I

[
∑
J

(∫
Ω

ρ0ΨI(xxx)ΨJ(xxx) dΩ

)
üuuJ + fint

I

]
= ∑

I
ηηη I

[∫
Γ f

fff ΨI dΓ

]
∀ηηη I, (13b)

where, fint
I =

∫
Ω

F ·S : ∂ΨI
∂xxx dΩ is the internal force vector at a particular time. For

small increments in displacements this can be linearized as fint
I = fint

I0 +
∂ fint

I
∂uuuJ

∆uuuJ .
Thus the above equation can be written in the compact form

∑
IJ

ηηη I [MIJ∆üuuJ +KIJ∆uuuJ] = ∑
I

ηηη I
(
fext
I − fint

I0
)
∀ηηη I. (13c)

Here MIJ =
∫

Ω
ρ0ΨI(xxx)ΨJ(xxx) dΩ denotes the element (I,J) of mass matrix, KIJ =

∂ fint
I

∂uuuJ
that of the stiffness matrix and fext

I =
∫

Γ f
fff ΨI dΓ is element I of the external

force vector. Although it is possible to derive the analytical form of the stiffness
matrix components [cf. Zienkiewicz et al. (1977)], in current formulation, for sim-
plicity, it is calculated by numerically differentiating the internal force vector. To
evaluate these components of mass matrix and internal/external force vectors, an
integration over the domain Ω is required. Since the shape functions are zero every-
where except the nodal domain, these integrations can be localized. The integration
technique has an effect on the overall stability of the framework and the numerical
method to evaluate these integrals is discussed next.

2.3 Numerical Integration

For numerically calculating the domain integral in Eq. (13), Gaussian quadrature
rule is commonly used in conventional FEM. A p-th order Gaussian quadrature rule
gives exact integration result for polynomials of an order up to 2p− 1. However,
as can be seen from Eq. (7), the RKPM shape functions are rational functions and
Gaussian quadrature cannot give exact integration. This leads to inexact integration
resulting in spurious zero-energy modes in the stiffness matrix and instabilities
of the numerical method unless very high order quadrature rule is used. Also,
applying Gaussian quadrature rule requires definition of a background mesh which
may not match the domain of influence of the RK shape functions and adds to
the complexity of the problem setup. To solve all these problems, in the present
framework we use nodal integration.

The components of mass matrix MIJ =
∫

Ω
ρ0ΨI(xxx)ΨJ(xxx) dΩ can be evaluated by

replacing the integral with values as the node. That is

MIJ = ∑
L

ρ0ΨI(xxxL)ΨJ(xxxL)VL. (14)



Meshfree for proteins 81

Since our shape functions have Kronecker delta property, it simplifies to MIJ =
ρ0VIδIJ , giving us a diagonal mass matrix. Similarly, the external force vector is
simply the external force at boundary node multiplied by the surface area of that
nodal domain.

For evaluating the internal force vector, and thus the stiffness matrix, we need spa-
tial derivatives of the shape functions at the nodes. Instead of using exact deriva-
tives of the shape functions, “smoothed" derivatives were shown to remove the spu-
rious zero-energy modes in nodal integration by Chen et al. (2001). It was shown
that the exact derivatives pass the patch test in analytical form but not discrete form,
where as smoothed derivatives pass linear patch test in the discrete form. Therefore,
numerical convergence and stability using the smoothed derivatives are superior to
that using the exact derivatives. Smoothed derivatives are defined as an average
over the nodal domain, i.e.

∇̃ΨI(xxxL) =
1

VL

∫
ΩL

∇ΨI dΩ (15a)

where ΩL is the nodal domain of Lth node and VL is its volume. Nodal domain
is usually taken as the Voronoi cell corresponding to that node (Fig. 3). Applying
divergence theorem, the volume integral in the above equation can be replaced by
a surface integral

∇̃ΨI(xxxL) =
1

VL

∫
∂ΩL

ΨI nnn dΓ, (15b)

where ∂ΩL is the boundary of the domain of Lth node and nnn is the outward surface
normal of ∂ΩL. Voronoi tessellation is expensive to calculate for an arbitrary set
of 3-dimensional points. As an approximation, instead of using an exact nodal
volume a spherical nodal domain of the same volume centered at the node can
be considered as shown in Fig. 3 [Chen et al. (2007)]. In this Figure, ΩL is an
approximation to the nodal domain ΩL and ∂ΩL is its boundary with normal nnn.
Using this approximation, the above expression simplifies as

∇̃ΨI(xxxL)≈
1

VL

∫
∂ΩL

ΨI nnn dΓ. (15c)

This surface integral is calculated using 20 integration points located equidistan-
t on a sphere (taken as the 20 vertices of a dodecahedron inscribed inside that
sphere). This approximation makes the computation significantly easier as the
only information needed is the volume corresponding to the nodes and their po-
sitions. No underlying grid or any other information about the nodal domain is
required. Using this shape function derivative, the deformation gradient becomes
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F̃IJ(xxxL) = δIJ +uuuI∇̃ΨJ(xxxL). Strain energy density W̃ and stress S̃ can be calculat-
ed using the deformation gradient, thus giving us the expression for internal force
vector:

fint
I = ∑

L
F̃(xxxL) · S̃(xxxL) : ∇̃ΨI(xxxL)VL. (16)

Figure 3: Stabilized non-conforming nodal integration (SNNI) approximates the
nodal domain as a simplified shape (spherical here) instead of the exact voronoi
tessellation simplifying the formulation

2.4 Determination of Nodal Domain

For determining nodal domains, the positions of the nodes are calculated directly
from the atomic coordinates, which in turn are available from protein data bank.
Usually, the nodal domains are represented by Voronoi tessellation of nodal point
cloud. However, in three-dimensions and for non-convex domain boundaries, it
is not straightforward to determine the Voronoi tessellation. Therefore, instead
we focus on calculating only the nodal volumes. We use the Delaunay algorithm
to tessellate the nodal set [Si et al. (2006)]. For each tetrahedra, a quarter of its
volume is assigned to each of its four nodes to give us the nodal volumes. In
general, (unconstrained) Delaunay tessellation procedures create a tetrahedral mesh
of the convex hull of a point cloud. Biomolecule boundaries are generally not
convex, so when we tessellate the node set we get some tetrahedra that are outside
the biomolecule boundary. To remove these extra tetrahedra, the solvent excluded
surface (SES) is calculated using the program MSMS [Sanner et al. (1996)] and
any tetrahedra lying outside this surface are removed.

SES is defined as the surface carved out when a solvent sphere roles on the molecule.
Here, a probe radius of 6 Å is used so as to obtain all the necessary details of sur-
face without getting any artificial holes. In MSMS program’s algorithm, by default,
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the solvent molecule approaches the surface from infinity. This calculates the outer
surface of protein in a very efficient way. However, this does not calculate the in-
ner surface of structures like virus capsids. In order to obtain both inner and outer
surfaces, we decompose the structure into two hemispherical parts and then use
MSMS algorithm to get two surfaces. Then these are combined to obtain the final
SES surface and used for the removal of extra tetrahedra.

Using the nodal volumes and smoothed derivative formulation presented in this
section, expressions of the mass matrix, external and internal force vector, and
stiffness matrix are evaluated. The support size aI is assigned same for all the
nodes in our model. It is chosen as the minimum value such that the matrix M in
Eq. (11a) is non-singular at all the nodes in our system. The minimum possible
support size is chosen so that the accuracy of approximation can be maximized.
Usually, the support size thus determined comes out to be in the range of 7–12 Å.
The governing equations thus obtained can be formulated for specific problems.
Details of the solution procedures are presented in the next section.

2.5 Solution Procedures

2.5.1 Normal Modes

The governing equation (Eq 13c) obtained using meshfree formulation can be as-
sembled into a matrix form:

ηηη
T · [M ·∆üuu+K ·∆uuu] = ηηη

T ·
(
fext− fint

0
)
∀ηηη . (17a)

Arbitrariness of ηηη implies that it can be dropped to give us the final equation of
motion

M ·∆üuu+K ·∆uuu = fext− fint
0 . (17b)

Given the applied forces and initial conditions, this equation can be integrated in
time and solved iteratively to obtain the trajectory of motion. In the absence of
external forces and when linearized with respect to the reference configuration (i.e.
fint
0 = 0), the equation further simplifies to

M · üuu+K ·uuu = 0. (17c)

The above equation, often termed as the normal mode equation, can be converted
into a generalized eigenvalue problem. It is done by assuming the solution of the
form uuu =UUU (k)eiωkt , which gives the eigenvalue problem

KUUU (k) = ω
2
k MUUU (k). (18)
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This equation can be solved to obtain 3N mode shapes (eigenvectors UUU (k), N being
the number of nodes in the system) and mode frequencies (eigenvalues ωk). Normal
modes can also be computed using other methods – elastic network model and
molecular dynamics, which yield the same form of equation as Eq (18). However,
in those cases, the stiffness matrix K is defined as the Hessian of potential energy
V with respect to degrees of freedom of the system about the minimum energy
configuration: KIJ = ∂ 2V /∂uuuI∂uuuJ|0. In the case of elastic network model, the
potential energy is the sum of spring energies, and in the case of MD, it is the sum
of bonded and non-bonded interactions [Vanommeslaeghe et al. (2010)]. In all of
these cases, the mass matrix M is diagonal and thus the eigenvalue problem (18)
can be simplified to

KŨUU
(k)

= ω
2
k ŨUU

(k)
, (19)

where ŨUU
(k)

is the root-mass normalized eigenvector. It should be noted that the
normalization is done on a node-by-node basis. That is, if ma is the mass of n-
ode a, normalizing the displacement of node a in mode (k) by square root of the

nodal mass ŨUU
(k)
a = UUU (k)

a /
√

ma, we obtain (19). This form will be used in deriving
expression for thermal fluctuations.

2.5.2 Indentation and Pressurization

For quasi-static problems like indentation of virus capsids with spherical tip and
pressurization of a thick elastic sphere, the inertia term can be dropped from general
governing equation (Eq. 13b). Keeping the internal force vector as it is (instead
of replacing it with the linearized stiffness matrix expression) and dropping the
virtual displacement ηηη because of its arbitrariness, we get the governing equation
fint
I = fext

I . This equation is solved iteratively using quasi-Newton method based
limited memory BFGS solver [Zhu et al. (1997)]. For applying the internal pressure
in thick sphere, the external force vector is simply calculated using pressure force
in radial direction. For indentation simulation, the external force is zero. However,
the rigid indentor introduces constraints on the boundary, where the contact friction
is set to be high enough (µ = 1) to avoid any slipping. The contact constraint from
AFM is implemented using the augmented Lagrange algorithm. The indentor is
modeled with a rigid flat plate at the bottom for the substrate and a rigid sphere of
radius 20 nm at the top for the AFM tip.
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3 Results

3.1 Effect of Different Kernels on Stability

In most of the applications using RKPM based meshfree method, a cubic B-spline
function is used for the kernel function (φ and φ̂ in Eqns. (9-11a)). However,
that results in instability from the soft modes. As discussed in the section 2.3,
nodal integration reduces the computation complexity and cost, but, usually, poses
problems of numerical instability and spurious energy modes. It is known that
using SCNI/SNNI removes the spurious zero energy modes but, still, exhibits soft
modes [Puso et al. (2008)]. In Puso et al. (2008), an additional stabilization was
introduced to suppress those soft modes. To investigate this numerical instability,
we turn to a simpler problem of calculating the normal modes of a regular elastic
3D solid (Young’s modulus=200 MPa, Poisson’s ratio=0.4, density=1 g/mm3 and
size=10×10×10 mm3). The instability can be observed while looking at the first
four non-zero energy normal modes of a regular elastic 3D solid (using a cubic
B-spline kernel which has C2 continuity) as shown in Fig. 4. Similar instability is
observed when using quintic B-spline and linear kernels with C4 and C0 continuity
respectively (not shown here).

In the framework presented here, we use instead a constant kernel with C−1 conti-
nuity (φ(xxx;a) = 1 if |xxx| < a and 0 otherwise) which was observed to suppress the
soft modes (Fig. 4). Furthermore, SNNI method approximates the nodal domain
as a simplified shape — usually a cube or sphere. This approximation leads to an
assumed strain calculated as the average over some neighborhood of the node. The
neighborhood size varies slightly based upon assumed domain shape. To full de-
termine the effect of the size of the smoothing neighborhood zone, we introduce an
additional parameter α such that

r̄L = αrL. (20)

Here, r̄L is radius of the nodal domain used for calculating the smoothed derivative
using Eq. (15c) and rL =

(3VL
4π

)1/3
is radius of the actual nodal domain. By varying

the value of α , it was observed that a smaller smoothing zone (α = 0.6) produces
additional stabilization (i.e. the first soft mode appears as a very high mode). The
modes thus calculated are shown in Fig. 4. To further test the numerical error and
convergence properties using different kernels and smoothing regions, the follow-
ing one dimensional Poisson’s problem is solved:

d2u
dx2 =−sin(x); 0≤ x≤ π; u(0) = u(π) = 0. (21)

Analytical solution of the above equation is u(x) = sin(x). The L2 error= ‖uh−u‖2
‖u‖2

is plotted for different node spacings in Fig. 5a. The two types of kernel have
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approximately the same rate of convergence but different absolute errors, with cu-
bic kernel being more accurate than the constant kernel, in general. However, the
normal modes of three dimensional solid indicated that constant kernel is more ac-
curate than the cubic one (Fig. 4). To examine the effect of problem dimensions
on the numerical accuracy, we numerically solve the problem of a thick pressur-
ized sphere, for which the exact solution is known. The analytical solution for the
linear compressible Hookean response (Poisson’s ratio ν = 0.3) is compared to the
numerical solution in Fig. 5b. It is clear that for a three dimensional analysis the
cubic kernel gives higher error compared to the constant kernel.

Figure 4: First four non-zero energy normal modes of an elastic cube using different
methods with their eigenfrequencies ω2

k

(
×10−6

)
provided in the parentheses.

3.2 Thermal Fluctuations

In this section, normal modes are computed for two small proteins – T4 lysozyme
(PDB ID - 3LZM) and ADP-bound G-actin (PDB ID - 1J6Z), which are further
used to calculate their average thermal fluctuations using theorem of equipartition.
The results are compared against other benchmark methods of elastic network mod-
el and all atomic MD potentials.

General solution of the governing equation of motion without external forces (E-
q. 17c) can be obtained by superposition of 3N linearly independent solutions of
eigenvalue problem (Eq. 19):

uuu =
3N

∑
k=1

βkŨUU
(k)

ei(ωkt+εk), (22)
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Figure 5: (a) Error calculation for the 1D Poisson’s equation, considering constant
and cubic kernel functions with different α values and (b) comparison of numerical
solution with analytical solution for a 3D thick pressurized sphere

where the βk and the phase shift εk depend on initial conditions of the problem.

Here ωk is the natural frequency and ŨUU
(k)

is the root-mass-normalized eigenvector
of mode k, which are calculated from the normal mode analysis as described in the
last section (Eq. 18, 19). Mean elastic energy of kth normal mode can be written as

〈Vk〉=
〈

1
2

(
βkŨUU

(k))T
K
(

βkŨUU
(k))〉

=
1
2
〈
β

2
k ω

2
k
〉
, (23)

where Eq. (19) was used for the second equality. According to the theorem of
equipartition each mode carries an energy of kBT/2 (kB being the Boltzmann’s
constant and T being the absolute temperature). Equating this to the expression
of mean mode elastic energy gives us an expression for the mode amplitudes βk =√

kBT
ω2

k
. Therefore, the displacement of atom a due to mode k is ∆rrrak =

√
kBT

maω2
k
UUU (k)

a

where ma is it’s mass and UUU (k) is the kth orthonormal eigenvector [Brooks et al.
(1995)]. Therefore, the total mean-squared fluctuation due to all the modes is given
by

〈∆r2
a〉= ∑

k

kBT
maω2

k
|UUU (k)

a |2 (24)

and the cross-correlation in the fluctuations of two atoms a and b are given by

Cab =
〈∆rrra ·∆rrrb〉√
〈∆r2

a〉〈∆r2
b〉

(25a)

where

〈∆rrra ·∆rrrb〉= ∑
k

kBT
√

mambω2
k

UUU (k)
a .UUU (k)

b . (25b)
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The normal modes and mean-squared thermal fluctuations of each residue are thus
calculated using different methods. The all atomic potentials as defined in CHAR-
MM force field [Vanommeslaeghe et al. (2010)] are used to get the benchmark (All
Atom MD) results which do not involve any scaling factor. Elastic network mod-
el is used with rotational-translational block assumption (RTB), where the eigen-
values and, thus, the thermal fluctuations are proportional to the spring constant
[Tama et al. (2005)]. The continuum elasticity based meshfree (MF) method pre-
sented here also gives results which can be scaled with the elastic modulus E, if
the Poisson’s ratio ν is held constant. Our method is verified against the previous
two methods by calculating the thermal fluctuations at three levels of refinement –
one node per residue, one node per carbon atom and one node per atom. For the
summation in above equations, lowest 30 eigenvectors are considered. The RMS
fluctuations of the two proteins calculated by different methods are shown in Fig. 6.
The results from different methods match well and overlap for the most part. To
quantify the similarity between different results in Fig. 6, their correlations are cal-
culated as

Correlation(x-y) =
n∑xy−∑x∑y√(

n∑x2− (∑x)2
)(

n∑y2− (∑y)2
) , (26)

and are listed in Tab. 1. The MF results match extremely well with the RTB result-
s and do not change significantly upon refinement, thus, indicating convergence.
Such convergence can not be obtained with regular cubic kernel because of stabil-
ity issues demonstrated in the last section. The experimental values are obtained
from the B-factors in pdb files, and are only a rough estimate of the RMSF values.
The correlations of these experimental B-factors with the current meshfree results
are within an acceptable range. Also, the current method performs as well as the
RTB and finite elements [Bathe (2008)]. The contour plots of cross-correlations
Cab for the two proteins are shown in Fig. 7. The close similarity between different
plots again demonstrates the agreement between current method and RTB, and the
convergence of meshfree results upon refinement.

3.3 AFM Indentation

Indentation of viral capsids using atomic force microscope (AFM) is an important
experimental technique for probing their mechanical properties. The results have
been theoretically explained using continuum mechanics solved by finite element
method [Gibbons et al. (2007, 2008); Michel et al. (2006)]. Here, meshfree method
is used to simulate the indentation of cowpea chlorotic mottle virus (CCMV) native
capsid. The meshfree nodes are defined at the α-carbon positions from the atomic
coordinates available at [Shepherd et al. (2006)].
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(a) (b)

Figure 6: Root mean square fluctuations 〈∆r2
a〉 = ∑k |∆rrrak|2 for T4-Lysozyme (a)

and G-Actin (b) – The values with meshfree converge with refinement and are in
agreement with the results using RTB and all atom MD.

Table 1: Correlations of RMSF calculated by meshfree (MF) method with the elas-
tic network model (RTB) and experimental B-factor (EXP)

(a) T4 lysozyme (b) G-Actin
RTB EXP

MF α-Carbons 0.929 0.647
MF All Carbons 0.939 0.631
MF All Atoms 0.939 0.620

RTB EXP
MF α-Carbons 0.938 0.574
MF All Carbons 0.951 0.523
MF All Atoms 0.976 0.521

Figure 7: Cross correlation of fluctuations using (from Left to Right) RTB-NMA,
meshfree α-carbons, all carbons, all atoms for T4-Lysozyme (a) and G-Actin (b)

In Fig. 8 results are compared to the results from FEM [Gibbons et al. (2008)]. Both
cases are calculated with compressible neo-Hookean material with W = λ0

2 (lnJ)2−
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µ0 lnJ + µ0
2 (I1−3) with Poisson’s ratio of 0.4. When scaled to the experiments,

shape of the force-displacement curve are quite similar. But, the effective Y-
oung’s modulus comes out to be 290 MPa using FEM and 493 MPa using meshfree
method. That is, the results from meshfree method show a softer response by a
factor of around 1.7. This may be due to two reasons. In FEM, tetrahedral elements
are used which usually give a stiffer response. Mesh refinement (both p- and h-
refinement) has been observed to affect the FEM results slightly [Gibbons (2008)].
Secondly, the method used to create the mesh in Gibbons et al. (2008) uses a Gaus-
sian shaped electron-like density of atomic coordinates. The chosen width of the
Gaussian density function affects the thickness of the generated mesh, and the re-
quirement of a good quality mesh means that it tends to overestimate the thickness
of the capsid resulting in a stiffer response.

5-fold

2-fold

3-fold

Figure 8: Indentation simulation of native CCMV: lines are results using mesh-
free and crosses are using FEM. Inset shows the meshfree domain with a truncated
icosahedron net overlay on it and a deformed shape of the capsid colored by dis-
placement.

To demonstrate the robustness of the present formulation, additional two virus cap-
sids – HK-97 and HBV are simulated under AFM indentation. Two configurations
are modeled for each capsid, Procapsid-II and mature Head-II for HK-97, and T=3
and T=4 for HBV virus. Capsids in all of the cases are modeled using the same
neo-Hookean material as that used for the CCMV case. The Young’s modulus is
chosen to be 200 MPa and the Poisson’s ratio ν = 0.4. For HK97, nodes are placed
at the center of every third residue, and for HBV at the center of every residue. The
resulting force-displacement curves are shown in Fig. 9.



Meshfree for proteins 91

The indentation response is significantly different for different capsids. The thick-
er and spherical HK-97 prohead II capsid undergoes a smooth displacement until
large deformations of the order of its radius. On the other hand, the thinner and
more faceted HK-97 head II has large drops in forces at some indentation associ-
ated with buckling events. Current formulation captures the buckling phenomenon
extremely well, and the different indentation behavior observed here is consistent
with previous thin-shell models of the virus capsids [Klug et al. (2006)] as well
as experiments [Roos et al. (2012)]. In case of HBV, the structure of capsid pos-
es challenges because of the sharp protrusion of the surface leading to bad quality
meshes. However, with the current framework, those limitations are overcome and
the indentation response is calculated robustly irrespective of the widely varying
mechanical properties of virus capsids.

HK-97 Prohead II HK-97 Head II

HBV T3 HBV T4

Buckling event

Figure 9: Indentation simulation of HK-97 (top) and HBV (bottom) virus capsids
in two different configurations each.

3.4 Conformation Change

The meshfree method presented here gives the flexibility of large deformation anal-
ysis using any energy potentials or constitutive law while having the degrees of
freedom correspond directly to the atomic structure. We demonstrate the utility of
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these features by analyzing the conformational change of protein assemblies. The
analysis presented in this section is not a solution of a governing equation, rather
a measure of kinematics. We start from atomic coordinates of a macromolecule in
two different states, which are determined experimentally using x-ray crystallogra-
phy. Then we derive meshfree nodes from those two states, determine the mapping
from one state to the other and calculate strains associated with the conformational
change.

Viruses, during their life cycle or maturation process, undergo various conforma-
tional changes. When subjected to an increase in the pH, CCMV goes from a native
state to swollen state. This transition has been found to be reversible and is sus-
pected to be related to the genome release mechanism. We analyze the deformation
of native to swollen state using the residue centers as nodes with native state as
the reference configuration. We calculate the deformation mapping to swollen state
using the present method and plot the deformation invariants (Fig. 10). It can be
seen that most of the deformation is concentrated at the interfaces of the pentamers
and hexamers, and at the quasi 3-fold symmetry sites of the truncated icosahedron
which open up in the swollen state.

Similarly, the transition of HK-97 virus from its prohead state (PH-II) to expansion
intermediate II is analyzed where the hexons change from a skewed shape to a sym-
metric shape. It is observed that when the prohead state is taken as the reference
state, the strains do not show the expected patterns of shear banding. However,
when the expansion intermediate state is taken as the reference state, we can clear-
ly see those shear lines along the skew directions at the center of each hexamer
(Fig. 10). For the most part this transformation is volume conserving except at the
vertices of the pentamers and hexamers. It is also found that some points (less than
5%) in this deformation have a negative Jacobian. These points are the sites where
conformational motions exhibit sliding of atomistic substructures, thus showing up
as inversion of local volumes in the continuum description.

4 Discussion

4.1 Importance of Coarse-Graining Methods

Mechanical analysis of protein assemblies present particular challenges due to the
complexity of atomic interactions and large number of particles involved. Based
upon the assumption that the coarse scale properties are not dependent upon the
detailed molecular interactions, but only on the gross geometric features, the prob-
lem can be simplified in many different ways. This has been achieved by various
coarse-graining methods each of which possess specific advantages. The applica-
tion of these methods has provided important insights into many different properties
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Figure 10: Distribution of the (a1, b1) first invariant I1 = tr(C), (a2, b2) second
invariant I2 = 1

2

[
tr2(C)− tr(C2)

]
and (a3, b3) third invariants J = det(F) for (a)

native to swollen CCMV deformation and (b) HK-97 Prohead II to Expansion In-
termediate II deformation.

of protein assemblies and helped formalizing generalized principles, which would
have been very difficult using models with full atomic details. Two distinct classes
of coarse-grained methods are particle-based and continuum-based. The primary
aim of the present work was to formulate a method that derives advantages from
both classes and bridges the two domains.

4.2 Contribution of the Present Framework

Results calculated using the meshfree framework presented here compare extreme-
ly well with other established methods. The thermal fluctuations for T4-lysozyme
and G-actin match very well with the elastic network model and converge nicely as
the model is refined from one node per residue, to one node per carbon atom and
to one node per atom. This is also evident from the correlations between differ-
ent methods and the cross-correlation contour plots, all of which provide excellent
agreement with the RTB-NMA.
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Results from AFM indentation show a good agreement between the present for-
mulation and FEM method previously applied. At the same time, it solves many
of the problems associated with FEM application. The mesh generation is a time
consuming step in finite element analysis, and it becomes even more challenging
for complicated structures like that of HBV capsid. Meshfree method presented
here solves that problem in a very straightforward way. It provides great robustness
while simulating the AFM indentation which, on many occasions, involves sharp
buckling phenomenon as seen for the HK97 mature capsid. These indentation re-
sults for HK97 match very well with the thin shell model proposed before [Klug
et al. (2006)]. Such buckling phenomenon are usually extremely hard to capture
numerically, however the present formulation handles them in a very robust way.
This is especially important since the model for HK97 was a coarse one with only
one node per three residues.

In addition to saving the time and effort in meshing, the current method also pro-
vides a direct link between the atomic degrees of freedom and the continuum de-
grees of freedom. This can be considered as a hybrid between the atomic descrip-
tion and continuum description, and is the first such attempt to the authors’ knowl-
edge. This presents many advantages: the refinement procedure becomes highly
straightforward, where the nodes can be placed at atoms or their subsets. This also
can be varied spatially in cases where more details and accuracy are needed in one
part of the structure. Furthermore, the information flow between atomic and con-
tinuum models becomes easy. This was demonstrated by calculating strains related
to conformational changes in two viral capsids (Fig. 10). Such results provide im-
portant insight into the geometric changes during maturation and how they affect
the infectivity. In both cases, the strains are localized to the interfaces between dif-
ferent proteins. The calculated strains associated with the conformational changes
can be used in further analysis. Such future possibilities are discussed next.

4.3 Limitations and Future Directions

The strains calculated for conformational changes in virus capsids are a first step
in a novel analysis using this hybrid atomic-continuum meshfree method. Such
capability opens up many frontiers of future work. These calculated strains can be
used in analyzing their effect on the shape change during maturation. In our previ-
ous work [Aggarwal et al. (2012)], we constructed an elasticity theory for changes
like those of HK97, however the pre-strains were manually estimated from the im-
ages in a very coarse way. The detailed strain field calculated here will facilitate
that kind of analysis. Also, the analysis presented here was purely kinematic. For
CCMV, since the swelling transition is reversible, we can construct an energy po-
tential which has two minima, one at the native state and the other at the swollen
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state. For example, Π =
∫

Ω
W (F · F−1

native)W (F · F−1
swollen)dΩ can be constructed

and used to determine the least energy pathway between the two states. Such an
analysis will allow insight into the conformational changes and transition behavior.
These possibilities will be explored in detail in the future.

By virtue of the ease of information flow between continuum and atomic descrip-
tion, coupled approaches can be developed. Such approaches, where the informa-
tion from atomic model is used in the continuum model and vice-versa, are called
multi-scale methods. The present framework is an ideal place to start such an analy-
sis and obtain more detailed insight into protein mechanics. In addition, the present
method gives a direct way of tuning the geometric details in continuum model by
varying the level of coarse-graining. For example, some nodes in CCMV swelling
and HK97 maturation show negative Jacobian indicating a breakdown in the con-
tinuum approximation locally. However, with further coarse-graining of atomic
motions, the local “internal motions” of the atomic substructure, which produced
negative Jacobians, are averaged out, and the negative Jacobians values disappear.
This allows for calculating the minimum amount of geometric details needed for
certain types of analyses, and answering the overarching question of why continu-
um mechanics proves to be successful for structures which are obviously discrete.

The accuracy of the present method would need further analysis. The constant k-
ernel improves the performance over the generally used cubic kernel, however the
frequencies calculated for elastic cube show small errors. The error here can be
tolerated given the other assumptions made about protein assemblies and coarse
nature of experimental results. The additional stabilization observed by using con-
stant kernel is an unexpected result because smoother approximation functions,
in general, give smaller error. The speculated reason is that in SCNI/SNNI, the
derivatives of the shape functions are not calculated exactly, and, thus, this method
becomes similar to assumed strain method. It is seen that in one dimension, cu-
bic kernel remains more accurate, however, in three dimensions the constant kernel
provides less error. Basic numerical studies performed here demonstrate the bet-
ter performance of constant kernel compared to that of the cubic kernel in three
dimensions. The difference in performance could be because of the difference in
type of equations being solved, the dimension of the problem (which determines
the domain to boundary size ratio), or a combination. To thoroughly understand
and prove the convergence properties of this phenomenon, more detailed analysis
is required which will be carried out in the future.

4.4 Summary

We presented a framework to apply an RKPM based meshfree method to protein
mechanics. The results for small proteins were validated against the elastic net-
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work model. It was shown to resolve some of the issues with other coarse-graining
techniques, e.g., meshing difficulties in FEM and restriction to small deformation in
ENM. At the same time, the direct correspondence between the atoms and nodes al-
lowed us to calculate the strains associated with the conformational change of virus
capsid. This method allowed us to quantitatively describe the strains in structures
determined to atomic resolution and, also, opens up numerous other possibilities.
For example, hierarchical multi-scale homogenization can be done to calculate the
spatial variation of the elastic properties of proteins, concurrent multi-scale homog-
enization can be done using forces from molecular dynamics, anisotropic modeling
can be done using stiffer material modulus along the backbone of protein structure
etc. Such modeling techniques would make important tools for answering various
questions about proteins and their assemblies.
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