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Large Deformation Dynamic Three-Dimensional Coupled
Finite Element Analysis of Soft Biological Tissues Treated

as Biphasic Porous Media

R.A. Regueiro1,2, B. Zhang2, S.L. Wozniak3

Abstract: The paper presents three-dimensional, large deformation, coupled fi-
nite element analysis (FEA) of dynamic loading on soft biological tissues treated as
biphasic (solid-fluid) porous media. An overview is presented of the biphasic solid-
fluid mixture theory at finite strain, including inertia terms. The solid skeleton is
modeled as an isotropic, compressible, hyperelastic material. FEA simulations in-
clude: (1) compressive uniaxial strain loading on a column of lung parenchyma
with either pore air or water fluid, (2) out-of-plane pressure loading on a thin slab
of lung parenchyma with either pore air or water fluid, and (3) pressure loading
on a 1/8th symmetry vertebral disc (nucleus and annulus) with pore water. For
the simulations, mixed formulation Q27P8 and stabilized Q8P8 finite elements are
compared (“Q” indicates the number of solid skeleton displacement nodes, and
“P” the number of pore fluid pressure nodes). The FEA results demonstrate the
interplay of dynamics (wave propagation through solid skeleton and pore fluid),
large deformations, effective stress and pore fluid pressure coupling, compressibil-
ity and viscosity of pore fluid, and three-dimensional effects for soft biological
tissues treated as biphasic porous media.

Keywords: soft biological tissues; biphasic mixture theory; dynamics; large de-
formations; coupled three-dimensional finite element analysis

1 Introduction

It is well-known that soft biological tissues are multiphase (oftentimes treated as
a biphasic mixture of solid and fluid phases (Holmes, 1986; Suh, Spilker, and

1 richard.regueiro@colorado.edu
2 Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boul-

der, Boulder, CO 80309
3 Bowhead Science and Technology, LLC., U.S. Army Research Laboratory, Aberdeen Proving

Ground, MD 21005



2 Copyright © 2014 Tech Science Press CMES, vol.98, no.1, pp.1-39, 2014

Holmes, 1991; Almeida and Spilker, 1998; Levenston, Frank, and Grodzinsky,
1998)) and can undergo large deformations. Few researchers have considered in-
ertia terms in the biphasic theory in studying wave propagation through soft bio-
logical tissues (Zhu and Suh, 2000, 2001). The flow of pore fluid relative to solid
skeleton deformation (such as squeezing a saturated sponge) must be handled prop-
erly within a finite strain context, as well as considering inertia terms for dynamic
loading when necessary, and implemented properly within a mixed Lagrangian fi-
nite element (FE) formulation, or other large deformation numerical method. For
typical physiological dynamic loading such as encountered during normal athlet-
ic activities (e.g., running, jumping), the relative acceleration of the fluid phase
aaaf with respect to solid phase aaas may be approximated as zero: ãaaf = aaaf− aaas ≈ 000.
At higher strain rates, however, such as encountered during shock loading and head
impact (e.g., leading to traumatic brain injury (TBI)), the relative acceleration of the
fluid phase with respect to solid phase may not be zero (ãaaf 6= 000), requiring reformu-
lation of the balance equations originally formulated for lower rate loading (such
as normal athletic activities). Such extension is discussed in the paper, but all FE
results currently assume ãaaf ≈ 000. The mixed FE formulation and three-dimensional
(3D) Q27P8 hexahedral FE implementation (27 solid skeleton displacement nodes,
8 pore fluid pressure nodes, Fig.4) leads to a stable finite element method even for
undrained loading conditions, such as those encountered at the initial transient of
dynamic loading. A stabilized mixed formulation (Brezzi and Pitkaranta, 1984;
Truty and Zimmermann, 2006; White and Borja, 2008; Sun, Ostien, and Salinger,
2013) Q8P8 hexahedral element is also implemented within the coupled dynamics
framework, and results are compared with the Q27P8 element. The formulation for
biphasic mixture theory at finite strain naturally calculates the build up of pore flu-
id pressure, and thus properly calculates, through the effective stress principle, the
change in solid skeleton stress (i.e., the “effective” stress) over time, when a bipha-
sic soft tissue is subjected to dynamic loading. Also, after the initial transient, the
variation of solid skeleton stresses will be naturally calculated as the fluid phase
pressure dissipates over time. This is important for developing physiologically-
relevant degradation/damage hyperelastic, anisotropic constitutive models for soft
biological tissues (Pena, 2011; Balzani, Brinkhues, and Holzapfel, 2012) within
the context of biphasic mixture theory. The 3D FE implementation is conducted
in Tahoe (tahoe.sourceforge.net), an opensource C++ FE code, with more de-
tails provided in Ebrahimi (2007); Regueiro and Ebrahimi (2010), and formulation
details in Li, Borja, and Regueiro (2004).

An outline of the remainder of the paper is as follows: Section 2 presents a brief
overview of the theory of biphasic solid-fluid mixtures at finite strain, including
kinematics, balance equations (linear momentum, and mass), and thermodynamics
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for constitutive equation forms. Section 3 also presents the stabilization term on the
balance of mass for stabilized Q8P8 implementation. Section 4 presents numerical
examples to test the performance of the Q27P8 versus Q8P8 elements, and also to
study the importance of including inertia terms for simulating dynamic loading of
soft biological tissues treated as porous media. Section 5 summarizes the results,
conclusions, and future work.

Index notation will be used wherever needed to clarify the presentation. Carte-
sian coordinates are assumed, so all indices are subscripts, and the partial spatial
derivative is the same as covariant spatial derivative (Eringen, 1962). Some sym-
bolic/direct notation is also given, such that (FFFT · FFF)IJ = FiIFiJ , where FFF is the
deformation gradient. Boldface denotes a tensor or vector. Subscript (•),i implies
a partial spatial derivative. Lowercase subscript i denotes a leg of the tensor in the
current configuration B, and capital subscript I(s) denotes a leg of the tensor in the

reference configuration Bs
0 of the solid skeleton. Superposed dot ˙(2) def

= Ds(2)/Dt
denotes material time derivative with respect to the solid skeleton motion. The
symbol def

= implies a definition.

2 Biphasic (solid-fluid) mixture theory at finite strain: overview of theory
and 3D FE implementation

The background for the theory of porous media at finite strain may be found pri-
marily in Bowen (1980, 1982); Coussy (2004); de Boer (2005), and originally in
Truesdell and Toupin (1960). For other details on nonlinear solid mechanics, refer
to Holzapfel (2000) and references therein. We follow the notation of Holzapfel
(2000); de Boer (2005), and to some extent also Bowen (1980, 1982).

2.1 Concept of volume fraction and mixture theory

The concept of volume fraction is illustrated in Fig.1 for the lung parenchyma (alve-
olar tissue for solid skeleton). The volume fractions nα for a biphasic mixture (solid
(s) and fluid (f)) relate “real” quantities with respect to the differential volume dvα

of constituent α in the current configuration, versus the smeared quantity over the
total differential volume dv, where nα = dvα/dv, or dvα = nαdv . For example, the
partial mass density of the α constituent is calculated as ρα = ραRnα (see Fig.1),
where ραR is the real mass density of constituent α . Similarly, mass of constituent
α , mα , over the total body B can be defined (see Fig.1).

2.2 Motion and kinematics, material time derivative

The kinematics of a biphasic solid-fluid mixture theory are shown in Fig.2. The
vector xxx is the spatial position vector, which is simultaneously occupied by all
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Figure 1: Concept of volume fraction for biphasic (solid(s)-fluid(f)) mixture theory,
showing solid skeleton composed of alveolar tissue, and definitions of mass and
density.
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constituent material points Xs,Xf of the mixture (homogenized, or smeared), such
that xxx = χχχ f(XXX f, t) = χχχs(XXX s, t), where the material point of the solid skeleton Xs is
mapped from the reference position XXX s to the current position xxx through mapping
χs (and similarly for the material point of pore fluid Xf which maps through χf,
Fig.2). We define the inverse map XXXα = χχχ−1

α (xxx, t) (XI(α) = χ
−1
I(α)(xxx, t)), assuming

smoothly differentiable fields. The deformation gradient and its inverse are written
for each phase α as,

FFFα =
∂ χχχα

∂XXXα

, FFF−1
α =

∂XXXα

∂xxx

FiI(α) =
∂ χi(α)

∂XI(α)
, F−1

Ii(α) =
∂XI(α)

∂xi

(1)

Likewise, the volumetric deformation of a solid-fluid mixture, that is smeared in the
current configuration at spatial position vector xxx, is shown in Fig.3. The differential
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Figure 3: Volumetric deformation of solid and fluid constituents in a biphasic mix-
ture (solid skeleton composed of alveolar tissue of the lung parenchyma).

Figure 2: Kinematics of a biphasic (solid-fluid) mixture theory, showing solid
skeleton composed of alveolar tissue. The continuum assumption of mixture theory
is evident in the assumption that solid (s) and fluid (f) constituents coexist at the
current position xxx, although their velocities vvvs and vvvf may be different; i.e., vvvf 6= vvvs,
in general.

volumes dVf and dVs in their respective reference configurations Bf
0 and Bs

0, both
map to the same differential volume dv in the current configuration B, through
their deformation gradients FFF f and FFFs.

The Jacobian of deformation for the two constituents is written as,

Js = detFFFs > 0 ; Jf = detFFF f > 0 (2)

dv = JsdVs = JfdVf (3)

dvα = nαdv = nαJαdVα (4)

dVf ⊂Bf
0 , dVs ⊂Bs

0 (5)

where we will typically drop the s superscripts and subscripts because the theory
of porous media assumes we follow the motion of the solid skeleton.
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We convert all material time derivatives with respect to the solid phase motion
( ˙(2) def

= Ds(2)/Dt), such that for phase α , the material time derivative is,

Dα(2)

Dt
=

Ds(2)

Dt
+

∂ (2)

∂xxx
· ṽvvα (6)

ṽvvα = vvvα − vvvs (7)
Ds(2)

Dt
=

∂ (2)

∂ t
+

∂ (2)

∂xxx
· vvvs (8)

where ṽvvα is the relative velocity vector of the α phase with respect to the solid (s)
phase motion. The material time derivative will be used in deriving the balance
equations in the following sections.

2.3 Balance of mass (spatial and material descriptions)

For the balance of mass of the mixture, we write separately the balance of mass of
each constituent, solid and fluid, expressing all material time derivatives in terms
of the solid skeleton motion, and then add the two equations together to obtain the
balance of mass of the mixture. The total mass of constituent α in B is written as
(cf. Fig.1)

mα =
∫

B
ρ

αdv =
∫

Bα
0

ρ
αJαdVα (9)
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Taking the material time derivative of this spatial field mα with respect to the motion
of constituent α , we can express the balance of mass of constituent α as

Dαmα

Dt
=
∫

B

(
Dαρα

Dt
+ρ

αdivvvvα

)
dv =

∫

B
γ

αdv (10)

where γα is the mass supply rate for constituent α . If we assume compressibility
of constituent α , assuming temperature is constant, we may write (Li, Borja, and
Regueiro, 2004)

1
ραR

DαραR

Dt
=

1
Kα

Dα pα

Dt
(11)

where pα is the mean Cauchy stress of constituent α , and Kα is the bulk modulus.
Then balance of mass for constituent α becomes:

Dαnα

Dt
+

nα

Kα

Dα pα

Dt
+nαdivvvvα =

γα

ραR (12)

We assume that the solid constituent is nearly incompressible, such that ns/Ks →
0, and also that there is no supply of solid mass, such that γs = 0. Using these
assumptions, we can solve for the volume fraction of the solid phase as ns = ns

0/Js
in closed form from the balance of mass equation for the solid phase by itself (Li,
Borja, and Regueiro, 2004). The volume fraction of fluid is then solved as nf =
1− ns. The simplified form of the balance of mass of the biphasic (solid-fluid)
mixture (to solve for Cauchy pore fluid pressure pf) then results as, when adding
Eq.(12) for α = f,s,

nf

Kf

Ds pf

Dt
+divvvvs +

1
Kf

∂ pf

∂xxx
· (nfṽvvf)+div(nfṽvvf) =

γ f

ρ fR (13)

We can map Eq.(13) back to the reference configuration of the solid phase Bs
0 to

obtain the following,

Jsnf

Kf

Ds pf

Dt
+

DsJs

Dt
+

Js

Kf

∂ pf

∂XXX s
·FFF−1

s · (nfṽvvf)+ Js

[
∂ (nfṽvvf)

∂XXX s

]
: FFF−T

s =
Jsγ

f

ρ fR (14)

For a Total Lagrangian FE implementation, this is the equation from which we
derive our variational equation for the weak form.
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2.4 Balance of linear momentum (material and spatial descriptions)

Here, the balance of linear momentum of the biphasic solid-fluid mixture is pre-
sented. Carrying out the material time derivative of the linear momentum with
respect to the α phase motion, applying the balance of mass of constituent α , and
using the divergence theorem on the traction term tttα , we can localize the integral
to obtain the balance of linear momentum for phase α in the current configuration
as,

divσσσ
α +ρ

αbbbα +hhhα = ρ
αaaaα + γ

αvvvα (15)

where σσσα is the partial Cauchy stress, such that the total Cauchy stress σσσ = σσσ s +
σσσ f, ρα is the partial mass density, such that total mass density ρ = ρs +ρ f, bbbα is
the body force per unit mass on constituent α (we will assume the same body force
per unit mass for each constituent, such as acceleration of gravity, bbbα = ggg), hhhα is
the interaction body force from all other constituents on constituent α , aaaα is the
acceleration vector, and γαvvvα is the mass supply momentum (usually negligible).
We note that the internal body forces due to drag between constituents sum to
zero (equal and opposite), and thus do not affect the mixture as a whole, such that
hhhs + hhhf = 000. The balance of angular momentum for non-polar constituents states
that the respective partial stresses (and, in turn, the total Cauchy stress, and effective
stress) are symmetric: σσσα = (σσσα)T .

It is now relevant to discuss a principle that allows us to distinguish stress acting on
the solid skeleton, and the pressure acting on the pore fluid (assuming the fluid is
nearly inviscid, such as water). We apply the effective stress principle, which can
be credited to Terzaghi (1943) (pg12) for saturated condition of soils, that states1

σσσ = σσσ
′− pf

(
1− Kskel

Ks

)
111 (16)

where the real pore fluid pressure pf =
1

3nf tr(σσσ f) is positive in compression, and the
mean effective stress is positive in tension p′ = 1

3 tr(σσσ ′), where σσσ ′ is the “effective”
Cauchy stress, or the stress acting on the solid skeleton, for which we will apply
our solid skeleton constitutive equations. B =

(
1− Kskel

Ks

)
is the Biot coefficient

(Coussy, 2004), and Kskel is the solid skeleton bulk modulus. For soils and soft
biological tissues, Kskel/Ks→ 0, whereas for rocks and bone Kskel/Ks is finite. We

1 The application of the effective stress principle to soft biological tissues has not been completely
tested to date, but it is applied here for theoretical and numerical convenience. This is a topic of
further research.
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assume a nearly inviscid (no shear stress) isotropic fluid (e.g., water), where then

σσσ
f =−pf111 =⇒ pf =

pf

nf (17)

and

σσσ
s = σσσ

′− pf
(

1
nf −1

)
111 (18)

Thus, we note that the partial solid stress σσσ s is not equal to the effective stress σσσ ′,
σσσ s 6= σσσ ′, unless the pore fluid pressure pf = 0. The effective stress principle is
useful for introducing constitutive equations for the solid skeleton separate from
the pore fluid.

Starting with Eq.(15), we can map the balance of linear momentum of phase α

back to the reference configuration of the solid phase Bs
0. The partial first Piola-

Kirchhoff stress α with respect to solid phase reference configuration is written
as,

PPPα
s = Jsσσσ

α ·FFF−T
s , Pα

iI(s) = Jsσ
α
i j F−1

I(s) j (19)

where subscript s denotes the reference configuration Bs
0 to which the j leg of σα

i j
is mapped. It is then possible to arrive at the balance of linear momentum in the
reference configuration of the solid phase (s) for phase α as,

DIVsPPPα
s +ρ

α

0(s)bbb
α + Jshhhα = ρ

α

0(s)aaaα + γ
α

0(s)vvvα (20)

Starting with Eq.(20), we can write each balance of linear momentum equation for
solid (s) and fluid (f) phases, and use the following information to derive the balance
of linear momentum of the solid-fluid mixture (s)+(f) in the reference configuration
of the solid phase Bs

0:

1. total Cauchy stress, and first Piola-Kirchhoff stress with respect to Bs
0:

σσσ = σσσ
s +σσσ

f , PPPs = PPPs
s +PPPf

s (21)

2. effective stress equation for Cauchy stress:

σσσ = σσσ
′− pf

(
1− Kskel

Ks

)
111 (22)



10 Copyright © 2014 Tech Science Press CMES, vol.98, no.1, pp.1-39, 2014

3. assume solid and fluid phase accelerations are nearly the same (for now):
aaaf ≈ aaas = aaa, which may be appropriate for longer period motions like earth-
quakes and athletic activities, but likely not appropriate for high impact events
experienced during car crash, or blast loading

4. assume all mass supplies are negligible: γα = 0

5. assume body forces per unit mass are only due to gravity: bbbα = ggg, where ggg
is the acceleration vector of gravity

The resulting balance of linear momentum of the solid-fluid mixture (s)+(f) in the
reference configuration of the solid phase Bs

0 is then written as,

DIVsPPPs +ρ0(s)ggg = ρ0(s)aaa (23)

PPPs = PPP′s− Js pfBFFF−T
s (24)

Eventually, for the Total Lagrangian finite element formulation, we will drop the
s designation because the reference configuration will always be that of the solid
skeleton (phase), such that,

DIVPPP+ρ0ggg = ρ0aaa (25)

PPP = PPP′− JpfBFFF−T (26)

Remark 1: balance of linear momentum (spatial description) for aaas 6= aaaf. Let
us revisit the balance of linear momentum for the solid-fluid mixture in the current
configuration B, assuming aaas 6= aaaf, such that,

divσσσ +ρggg = ρ
saaas +ρ

faaaf (27)

The question becomes how to handle aaaf. One way is to write the balance of linear
momentum specifically for the fluid phase as,

divσσσ
f +ρ

fbbbf +hhhf = ρ
faaaf (28)

where for an inviscid fluid phase, σσσ f =−nf pf111, we can express the interaction fluid
body force as,

hhhf = pf
∂nf

∂xxx
−
(

nf

k̂

)
(nfṽvvf) (29)
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where the superficial fluid velocity vector (nfṽvvf) (a.k.a., the Darcy velocity) is de-
fined constitutively in Eq.(41). Then, upon substituting Eq.(29) into Eq.(28), we
can write the balance of linear momentum for the fluid phase as,

ρ
faaaf +nf ∂ pf

∂xxx
+

(
nf

k̂

)
(nfṽvvf)−ρ

fggg = 000 (30)

Then, Eq.(30), upon mapping back to the solid skeleton reference configuration,
including Eqs.(14),(23), we have three coupled balance equations to solve for three
unknown fields: solid skeleton displacement uuus, fluid phase displacement uuuf, and
Cauchy pore fluid pressure pf. A similar procedure was followed for small strain
by Jeremic, Cheng, Taiebat, and Dafalias (2008). This is left for future work.

2.5 Thermodynamics (first and second laws, constitutive equation forms)

Before we introduce constitutive equations, we briefly present the thermodynamics
for a biphasic mixture. Using the first and second laws of thermodynamics, and
assuming the existence of a Helmholtz free energy per unit mass of the α phase
ψα , we derive the Clausius-Duhem inequality, which will be useful for defining
constitutive model forms.

Applying the material time derivative to the total internal energy of phase α , using
the balance of mass for α , divergence theorem on the traction term, and balance of
linear momentum on α , and localizing the integral, we can derive the balance of
energy of phase α in the current configuration B as,

ρ
α Dαeα

Dt︸ ︷︷ ︸
internalenergydensityrate

− `̀̀α : σσσ
α

︸ ︷︷ ︸
stresspower

+ divqqqα

︸ ︷︷ ︸
internalheatflux

− ρ
αrα

︸ ︷︷ ︸
internalheatsupplyrate

= γ
α

(
1
2

vvvα · vvvα − eα

)

︸ ︷︷ ︸
masssupplypower

− vvvα ·hhhα

︸ ︷︷ ︸
interphasepower

+ êα

︸︷︷︸
phaseα power

(31)

where eα is the internal energy per unit mass of α , qqqα is the heat flux vector, rα

is the heat input rate per unit mass, and êα is the power density supply to phase α

by other phases. The second law of thermodynamics for phase α is written in the
current configuration B as,

θ
α

γ
α

η
α +ρ

α Dαηα

Dt
θ

α −ρ
αrα − 1

θ α

∂θ α

∂xxx
·qqqα +divqqqα ≥ 0 (32)
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where ηα is the entropy per unit mass, and θ α is the temperature of phase α . To
obtain the Clausius-Duhem inequality in the current configuration for phase α , we
consider the existence of the Helmholtz free energy per unit mass for phase α in
the current configuration ψα as,

ψ
α = eα −θ

α
η

α (33)

Taking the material time derivative of Eq.(33), using the first law in Eq.(31), and
substituting into the second law in Eq.(32), we arrive at the Clausius-Duhem in-
equality for phase α as,

γ
α

(
θ

α
η

α +
1
2

vvvα · vvvα − eα

)

︸ ︷︷ ︸
masssupplypower

+ `̀̀α : σσσ
α

︸ ︷︷ ︸
stresspower

− vvvα ·hhhα

︸ ︷︷ ︸
interphasepower

+ êα

︸︷︷︸
phaseα power

− ρ
α Dαψα

Dt︸ ︷︷ ︸
Helmholtz freeenergydensityrate

− (ρα
η

α)
Dαθ α

Dt︸ ︷︷ ︸
temperatureratepower

− 1
θ α

∂θ α

∂xxx
·qqqα

︸ ︷︷ ︸
heatfluxpower

≥ 0 (34)

We assume the solid constituent is nearly incompressible (ρsR is constant) and the
fluid phase is compressible, such that the Helmholtz free energy per unit mass for
the solid skeleton (s) in Bs

0 and fluid phase (f) in B are written as,

ρ
s
0ψ

s(CCCs,θ
s) ; ρ

f
ψ

f(ρ fR,θ f) (35)

where CCCs = FFFT
s · FFFs is the right Cauchy-Green tensor for the solid skeleton de-

formation. We assume the fluid partial stress σσσ f consists only of a pressure term
(inviscid, such as water), such that σσσ f =−pf111, where the partial fluid pressure pf is
related to the Cauchy fluid pressure pf through pf = nf pf. Recall the total Cauchy
stress written in terms of the partial stresses and solid skeleton effective stress as,

σσσ = σσσ
s +σσσ

f = σσσ
′− pfB111 (36)

We write the Clausius-Duhem inequality for each phase (α =s,f) in Eq.(34), add
them together, account for the functional forms of the Helmholtz free energy func-
tions in their respective configurations in Eq.(35) (Bs

0 and B, respectively), and
then derive the Clausius-Duhem inequality for the solid-fluid mixture as (all terms
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pushed forward to the current configuration B, and localizing the integral),
[

1
2Js

SSS′s−
1
Js

∂ (ρs
0ψs)

∂CCCs

]
:

DsCCCs

Dt
+

[
pfB

nf

ρ fR −
∂ (ρ fψ f)

∂ρ fR

]
Dfρ fR

Dt

+

[
−∂ pf

∂xxx
−ρ

fR(aaaf−bbbf)

]
· (nfṽvvf)

−
[

1
Js

∂ (ρs
0ψs)

∂θ s +
1
Js
(ρs

0η
s)

]
Dsθ s

Dt
−
[

∂ (ρ fψ f)

∂θ f +(ρ f
η

f)

]
Dfθ f

Dt

− 1
θ s

∂θ s

∂xxx
·qqqs− 1

θ f
∂θ f

∂xxx
·qqqf ≥ 0 (37)

Applying the Coleman and Noll (1963) argument for independent rate processes
DsCCCs

Dt , Dfρ fR

Dt , Dsθ s

Dt , and Dfθ f

Dt , then for Eq.(37) to be satisfied (and hence, the 2nd
law), the following constitutive equations must hold:

SSS′s = 2
∂ (ρs

0ψs)

∂CCCs
, pf =

ρ fR

Bnf
∂ (ρ fψ f)

∂ρ fR (38)

ρ
s
0η

s =−∂ (ρs
0ψs)

∂θ s , ρ
f
η

f =−∂ (ρ fψ f)

∂θ f (39)

The remaining terms in Eq.(37) comprise the reduced dissipation inequality as,

−
[

∂ pf

∂xxx
+ρ

fR(aaaf−bbbf)

]
· (nfṽvvf)

− 1
θ s

∂θ s

∂xxx
·qqqs− 1

θ f
∂θ f

∂xxx
·qqqf ≥ 0 (40)

Furthermore, we assume thermodynamic conjugacy through proportionality pa-
rameters (permeability k̂, and thermal conductivities kθ s

and kθ f
), such that the

following constitutive forms hold for generalized Darcy’s law, and Fourier’s law
(assuming local thermal equilibrium such that mixture temperature θ = θ s = θ f):

generalized Darcy’s law:

nfṽvvf
def
= −k̂(nf)

[
∂ pf

∂xxx
+ρ

fR(aaaf−bbbf)

]
(41)

k̂(nf) =
κ δ (nf)

ηf δ (nf
0)

, δ (nf) =
(nf)3

1− (nf)2

where κ is the intrinsic permeability, ηf is the fluid viscosity, and δ (nf) is the
Cozeny-Karman relation for porosity dependence of k̂ (as a function of solid skele-
ton volume change Js as nf = 1− ns, ns = ns

0/Js), with nf
0 the initial porosity

(Coussy, 2004).
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Fourier’s law:

qqq = qqqs +qqqf def
= −kθ mix ∂θ

∂xxx
, kθ mix

= nskθ s
+nfkθ f

(42)

We now consider specific equations for the Helmholtz free energy functions:
Fluid: we assume the following form for the Helmholtz free energy function for
the fluid:

ρ
f
ψ

f(ρ fR,θ f) =
1
2

B(nfKf)(lnρ
fR)2 +gf(θ f) (43)

where gf(θ f) is a temperature-dependent term, if needed. We assume homogeneous
temperature, isothermal conditions for now. Using Eq.(38)2, we can derive the con-
stitutive equation for the real mass density of the fluid ρ fR in terms of the Cauchy
pore fluid pressure pf as,

ρ
fR = ρ

fR
0 exp

[
pf− pf0

Kf

]
(44)

Solid skeleton: we assume the following form for the Helmholtz free energy func-
tion for the solid skeleton (neo-Hookean compressible isotropic elasticity (Ogden,
1984)):

ρ
s
0ψ

s(CCCs,θ
s) =U(Js)+

1
2

µ(trCCCs−3)+gs
0(θ

s) , U(Js) =
1
2

λ (lnJs)
2−µ(lnJs) (45)

where gs
0(θ

s) is a temperature-dependent term. Using Eq.(38)1, we then derive the
constitutive equation for the effective Second Piola-Kirchhoff stress as,

SSS′s = [λ (lnJs)−µ]CCC−1
s +µ111 (46)

By assuming functional form ρs
0ψs(CCCs,θ

s) for the solid skeleton, we can later gen-
eralize for anisotropy (fiber directions) of soft tissues (Holzapfel and Gasser, 2000).

3 Stabilized Finite Element Implementation

The nonlinear finite element formulation and implementation (Newton-Raphson
nonlinear solution, Newmark time integration) is discussed in Li, Borja, and Regueiro
(2004); Ebrahimi (2007); Regueiro and Ebrahimi (2010), and thus details are not
presented. We will focus on the stabilized term to be added to the variational equa-
tion for the balance of mass of the solid-fluid biphasic mixture as discussed in the
references.
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3.1 Stabilized term

For stabilizing the tri-linear hexahedral Q8P8 element near the undrained condition
(upon transient loading, with low permeability, and assuming nearly incompress-
ible fluid phase Kf→∞), we follow the approach of Truty and Zimmermann (2006),
which is based on the method of Brezzi and Pitkaranta (1984). We attempted to ap-
ply the stabilization procedure of White and Borja (2008) for projecting pore fluid
pressure pf by integral-averaging over an element e, along with its weighting func-
tion value η , but based on our implementation, it was ineffective for our particular
applications of soft tissues at finite strain. Sun, Ostien, and Salinger (2013) appar-
ently were successful in extending the approach of White and Borja (2008) to finite
strain, and they combined it with an assumed enhanced strain approach for the sol-
id skeleton deformation gradient (for near incompressibility of the solid skeleton),
which is an additional step we did not take in the paper. For our purposes, the
Brezzi and Pitkaranta (1984) approach appears effective, and we will use it in the
numerical examples.

After applying the method of weighted residuals to Eq.(14) (Hughes, 1987), substi-
tuting Darcy’s law from Eq.(41), dropping the (•)s or (•)s designation, we obtain
the variational equation of the mixture balance of mass in the reference configura-
tion (of the solid skeleton) B0 as,

H = H INT
1 +H INT

2 +H INT
3 +H INT

4 +H stab−H EXT
1 = 0 (47)

H INT
1 =

∫

B0

η

(
Jnf

Kf
ṗf + J̇

)
dV

H INT
2 =

∫

B0

η
J
Kf

∂ pf

∂XI
F−1

Ii (nfṽi(f))dV

H INT
3 =

∫

B0

k̂
∂η

∂XI
F−1

Ii
∂ pf

∂XK
F−1

Ki JdV

H INT
4 =

∫

B0

∂η

∂XI
F−1

Ii k̂ρ
fR(ai−gi)JdV

H stab =
∫

B0

α
∂η

∂XI
F−1

Ii
∂ ṗf

∂XK
F−1

Ki J dV

H EXT
1 =

∫

Γ
q
0

ηQfdA

where α is the stabilization parameter, and Qf is the normal component of the pore
fluid flux (positive inward) across the boundary Γ

q
0. In Truty and Zimmermann

(2006), an analysis was conducted to determine estimates of α for 3D problems,
based on permeability, solid skeleton stiffness, pore fluid unit weight, time step, and
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finite element size, but since various assumptions were made on other factors, we
ended up estimating α by a trial-and-error approach. Further investigation may be
needed to more efficiently estimate α in the context of dynamic loading of biphasic
soft tissues at finite strain. We note that although we have implemented the H INT

2
term, it makes little difference in the results, and then may be left out of future
simulations.

3.2 Element

For the mixed formulation, we use a Q27P8 hexahedral element as shown in Fig.4
(Regueiro and Ebrahimi, 2010). The stabilized Q8P8 hexahedral element just uses
the vertex nodes 1-8.

4 Copyright © 2014 Tech Science Press CMES, vol.1, no.1, pp.1-1, 2014

1

2
21

displacement node

pore pressure node

3

4

9

1110

12

2

1

9

17

5

13

6

8

16

5
8

16

5

17

25

20

4

12

1

23
18

2

18

26

20

4

11

3

19
24

7

14

6

13

15

22

10

ξ η

ζ
η =−1

ζ =−1

ξ =−1

node 27 at ξ = η = ζ = 0

Figure 4: Q27P8: 27 nodes for tri-quadratic interpolation of solid skeleton dis-
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, and 8 nodes for tri-linear interpolation of pore fluid pressure ph
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, and 8
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Figure 4: Q27P8: 27 nodes for tri-quadratic interpolation of solid skeleton dis-
placement uuuhe

, and 8 nodes for tri-linear interpolation of pore fluid pressure phe

f .
Q8P8: 8 nodes for tri-linear interpolation of solid skeleton displacement uuuhe

, and 8
nodes for tri-linear interpolation of pore fluid pressure phe

f .
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4 Numerical examples

Three numerical examples are presented to demonstrate the Q27P8 and Q8P8 el-
ements (no stabilization, and stabilized). The stable Q27P8 formulation is imple-
mented in the FSSolidFluidMixT class in Tahoe, and the stabilized Q8P8 ele-
ment is implemented in the FSSolidFluidMixQ8P8T class in Tahoe (stabilization
is turned off by setting α = 0).

4.1 Uniaxial strain compression using 3D FE

We start with a uniaxial strain in compression example, with undrained boundaries
at all sides except the top boundary (see Fig.5). The meshes are composed of ten
Q27P8 and ten Q8P8 elements. The parameters used are shown in Table 1.

Table 1: Parameters for lung parenchyma examples.
source parameter units value

Lande and Mitzner (2006) (air through parenchyma) k̂a m3.s/kg 1×10−5

Lande and Mitzner (2006) nf
0 . 0.99

Lande and Mitzner (2006) (alveolar) ρsR kg/m3 1000
Lande and Mitzner (2006) ν . 0.3

Levental, Georges, and Janmey (2006) (guinea pig) E Pa 5000
this paper tσ Pa 80, 1000, 10,000

To calculate the hydraulic conductivity k̂w for water, we consider the intrinsic per-
meability calculated from the hydraulic conductivity for air (Lande and Mitzner,
2006) κ = k̂aηa = (1×10−5 m2/Pa.s)(1.83×10−5 Pa.s) = 1.83×10−10 m2. Then,
we use the viscosity of water to calculate k̂w = κ/ηw = 1.83×10−10 m2/1×10−3

Pa.s = 1.83×10−7 m2/Pa.s. The bulk moduli of air and water are Ka = 1×105 Pa
and Kw = 2.2×109 Pa, respectively, at 20◦C.

Referring to Fig.5, we will consider three types of loadings and solutions: (1)
drained (quasi-static, pore fluid pressure pf = 0, tσ = 1,000Pa), (2) consolidat-
ing (coupled pore fluid flow and solid skeleton deformation, tσ = 1,000Pa), and
(3) dynamic impulse loading (coupled pore fluid flow and solid skeleton deforma-
tion with inertia terms, tσ = 10,000Pa). For each loading case, we keep the solid
skeleton parameters the same for the lung tissue, and then assume the saturating
fluid is either (a) air, or (b) water, with parameters given in Table 1.

For pore air, the solid skeleton vertical displacement upon traction loading is shown
in Fig.6(a). It can be seen that given the low viscosity of the pore air, the drained
and consolidating solutions are nearly the same, meaning the pore air pressure dis-
sipates as the column is loaded over 0.1s, as illustrated in Fig.6(b). Nodes 8 and 91
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Figure 5: Ten hexahedral element column mesh for the three analysis cases: (a)
drained, (b) consolidating, (c) dynamic impulse.
Figure 5: Ten hexahedral element column mesh for the three analysis cases: (a)
drained, (b) consolidating, (c) dynamic impulse.

are the locations where the solutions are plotted in Fig.5. In Fig.6(b), in addition to
the pore fluid pressure pf being plotted with time, the mean effective Cauchy stress
p′, and effective vertical stress σ ′zz are plotted. Recall that σ ′zz and p′ are positive in
tension, and pf is positive in compression. Gravity is ignored, and the problem is
uniaxial strain, so σ ′xx and σ ′yy are not zero, and thus p′ 6= σ ′zz.

Next, we conduct the same simulations, but switch out the pore fluid from air to wa-
ter properties (viscosity, compressibility). The solid skeleton vertical displacement
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Figure 6: (a) Vertical displacement, and (b) Stress for drained and consolidating
solutions with pore air flow.
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Figure 7: (a) Vertical displacement, and (b) Stress for drained and consolidating
solutions with pore water flow.

upon traction loading is shown in Fig.7(a). It can be seen that given the higher vis-
cosity of the pore water, the drained and consolidating solutions are now different,
as it takes longer for the pore water pressure to dissipate with time, as illustrated in
Fig.7(b).

Now, to investigate the significance of inertia effects, a traction load of tσ = 10,000
Pa is applied over 0.1s and then released over the next 0.1s for the pore air case
(Fig.5), and loaded over 0.01s and unloaded over 0.01s for the pore water case. The
effect of pore fluid (air and water) is investigated. We also study the effect of global-
ly undrained BC as compared to the ends of the column being drained. In Fig.8(a),
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we plot the vertical displacement versus time for nodes 8 and 91 for drained and
undrained BCs for the coupled dynamic simulations with pore air. Recall that the
bulk modulus of air at ambient temperature is relatively low (Ka = 1×105Pa), thus
in Fig.8(a) there is compressive vertical displacement even for the undrained BC
case (as opposed to when there is pore water, which is nearly incompressible, and
thus the displacement will be zero for the undrained BC case in Fig.9(a)). Also, in
Fig.8(a), note that for the case with drained BC, there is compressibility of pore air
and also relative flow of pore air, reaching a displacement near 0.06m, which for an
initial column length of 0.1m, is nominally = 0.06/0.1 = 60% axial strain, which
is clearly a large strain (see Fig.8(c) for actual deformed mesh and pf contour). In
Fig.8(b), we see that for the undrained BC case, the pore fluid pressure pf spikes
up to nearly 10,000Pa as expected (the applied traction load), while because of the
compressibility of air and relative fluid flow even during globally undrained BCs,
there is a small buildup of effective stress.
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Figure 8: (a) Vertical displacement, and (b) Stress for impulse loading solution with
pore air flow. (c) Actual deformed mesh for impulse loading with pore air flow, with
drained BCs. Displacement magnification 1×. Note the large deformation. Note
the original aspect ratio in Fig.5 for comparison.

Next, we run the simulation for pore water with 10,000Pa traction over 0.01s, with
displacement results for drained and undrained BCs shown in Fig.9(a). We note
now what we expect for undrained BC, that the displacement of the solid skeleton
is zero because the pore water is nearly incompressible and the boundaries are im-
permeable. For the drained BC, we observe oscillation of the solid skeleton vertical
displacement at nodes 8 and 91, which eventually damps out due to the relative flu-
id flow effect. Likewise, in Fig.9(b), we observe similar expected behavior, where
for the undrained BC, the traction is completely taken up by the pore fluid pressure
pf (tσ = 10,000Pa), while the effective stress is zero. For the drained BC, pore
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Figure 9: (a) Vertical displacement, and (b) Stress for impulse loading solution with
pore water flow.

fluid pressure pf builds up and oscillates, until it damps out to near zero at about
0.2sec.

Lastly, we compare the impulse solution as if the material were completely solid
(no relative fluid flow; locally drained), with results shown in Fig.10. Since the real
mass densities of solid and fluid (water) are the same for the lung alveolar tissue
(ρsR = ρ fR = 1000kg/m3), the initial total mass density is also ρ0 = 1000kg/m3.
We can compare the axial wave speed estimated from the curve in Fig.10(a) to the
small strain theoretical solution as follows:

(curve) vaxial ≈
2(0.1m)

0.085sec
= 2.4m/sec (48)

(theory) vaxial =

√
λ +2µ

ρ
=

√
(2885Pa)+2(1923Pa)

1000kg/m3 = 2.6m/sec (49)

Figure 10(b) demonstrates the stress solution versus time, showing that for the sol-
id dynamic solution (no pore fluid coupling), we get the expected oscillatory re-
sponse, with little algorithmic damping for the Newmark time integration method
used, with integration parameters β = 0.3025, γ = 0.6, unconditionally stable, with
high frequency dissipation (pg534 of Hughes (1987)). Note that there is a clear dif-
ference between solid deformation analysis (locally drained material points, black
curves) and coupled pore fluid flow with solid skeleton deformation analysis, for
both undrained BC (red curves) and drained BC (blue curves). The drained BC
(blue curve) would be closest to the actual experimental condition in the lab, where-
as the undrained BC (red curves) could be replicated if the lung parenchyma tis-
sue were completely sealed along its boundaries with an impermeable membrane.
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Clearly, the solid analysis (black curves) is not a reasonable assumption for the tran-
sient behavior of a soft biological tissue treated as a biphasic (solid-fluid) mixture
at finite strain.
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Figure 10: (a) Vertical displacement, and (b) Stress for impulse loading solution
with pore water flow, compared to solid (locally drained) case.

4.2 Uniaxial strain compression, with stabilization

We now re-run the simulations for pore water consolidation and impulse loading,
but decrease the permeability to k̂ = 1×10−10 m2/Pa.s to test the stabilization term
in Eq.(47) for α = 1× 10−6 m3s2/kg. Results are presented in Fig.11 for pore
fluid pressure contours, and Fig.12 for pore fluid pressure and vertical displacement
versus time. We see in the contour plots the stable solution for Q27P8 element, with
near uniform pore fluid pressure of 1000Pa in the middle of the mesh in Fig.11(a),
and the unstable solution with the Q8P8 element, showing oscillatory pore fluid
pressure along the depth of the mesh in Fig.11(b). In Fig.11(c), the solution is
stabilized. The instability is evident in Fig.12 too, showing apparent consolidation,
when the near undrained condition caused by low permeability should show slow
decrease in pore fluid pressure pf and displacement dz, as is the case for the Q27P8
element and the stabilized Q8P8 element.

4.3 Pressure impulse loading of slab of lung parenchyma

The second numerical example considers a Neo-Hookean isotropic poroelastic slab
loaded with a pressure pulse to observe transient response of effective stress and
pore fluid pressure (Fig.13). The slab is initially assumed to be saturated with water.
The top face of the slab is assumed drained, and the other faces are impermeable.
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(a) (b) (c)

Figure 11: Contours of pore fluid pressure pf for the 3 cases, at second time step t =
0.1sec: (a) Q27P8 element showing stable, smooth pf contour; (b) Q8P8 element
solution showing unstable, oscillatory pf contour, for non-stabilized solution; (c)
Q8P8 element solution with stabilization term.

The dynamic loading of the slab as biphasic soft tissue is shown in Fig.13. The
load-time schedule functions for drained, consolidating (same as load and hold for
dynamic simulation), and dynamic load and release (impulse) are also illustrated in
Fig.13. For constitutive parameters, we use the same as in Table 1. For the Q27P8
element, 50 and 200 element meshes are considered. For the Q8P8 element, a 1350
element mesh is considered.

First, consider the drained and consolidating deformed meshes in Fig.14. This
gives a general deformation pattern for the deformed meshes. Note nearly the same
deformation is obtained with the 3 meshes. Next, consider the deformed meshes
for dynamic simulation for hold and impulse loadings in Fig.15 for pore water, for
the 50 Q27P8 element mesh. The hold loading generates more deformation and
also higher peak pore fluid pressure than the impulse loading, as shown in Fig.16.
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Figure 12: (a) Pore water pressure pf versus time at middle section of the mesh,
comparing result of Q27P8 mesh (stable, blue lines) and Q8P8 meshes (non-
stabilized (red) and stabilized (green)). (b) Displacement in z direction dz versus
time at top and middle sections of the mesh, comparing result of Q27P8 mesh (sta-
ble) and Q8P8 meshes (non-stabilized and stabilized).

In Fig.16, we compare the pore fluid pressure pf at the corner node for the various
analysis types. We see that for the dynamic hold loading, pf is much larger than for
dynamic impulse loading. For all drained solutions, pf = 0, and for the consolidat-
ing solution, there is a small negative pf before immediate consolidation (the solid
skeleton at the bottom impermeable face is in tension). The 200 Q27P8 element
mesh gives almost the exact same result as in Fig.16(a) (and is thus not shown),
and the non-stabilized 1350 Q8P8 element mesh gives nearly the same result as in
Fig.16(a), with result shown in Fig.16(b). Thus, for some soft biological tissues
with higher permeability (such as the lung parenchyma, not the case for the low
permeability vertebral disc), stable results can be achieved with the non-stabilized
Q8P8 element implementation. In Fig.17, we compare displacement dy at the cor-
ner node for the various analyses, plotting over 0.1sec and 1sec. We see that the
excited displacement frequencies are different for the dynamic hold and impulse
simulations, the hold one having a higher frequency partly due to stiffening by en-
abling geometric nonlinearity. We see in Fig.17(c), the 1350 Q8P8 element mesh
result is nearly the same as the 50 Q27P8 element mesh result in Fig.17(a). Given
the small pore pressure pf generated during impulse loading (red curves in Fig.16),
there is no noticeable difference between “dynamic impulse” and “dynamic im-
pulse drained” displacement time histories in Fig.17, whereas for “dynamic hold”
and “dynamic hold drained,” there is a small difference in displacement amplitude.
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Figure 6: (top) Schematic of pressure loading of cantilevered poroelastic slab. (bot-
tom) Various load schedule functions applied.Figure 13: (top) Schematic of pressure loading of cantilevered poroelastic slab.

(bottom) Various load schedule functions applied.

(a) (b) (c)
Figure 14: The deformed mesh for drained loading, and end of consolidation (no
inertia terms) for pore water. Displacement units in meters, with displacement
magnification 1×. (a) 50 Q27P8 elements, (b) 200 Q27P8 elements, (c) 1350 Q8P8
elements.
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(a) (b)
Figure 15: The deformed meshes for dynamic simulation with pore water for hold
(a) and impulse (b) loadings (with inertia terms). pf units in Pa.
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(a) (b) (c)

Figure 14. The deformed mesh for drained loading, and end of consolidation (no inertia terms)
for pore water. Displacement units in meters, with displacement magnification 1×. (a) 50 Q27P8
elements, (b) 200 Q27P8 elements, (c) 1350 Q8P8 elements.

(a) (b)

Figure 15. The deformed meshes for dynamic simulation with pore water for hold (a) and impulse
(b) loadings (with inertia terms). pf units in Pa.
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Figure 16. Plot of pore water pressure pf versus time for the various analyses. (a) 50 Q27P8
element mesh results, (b) 1350 Q8P8 element mesh results without stabilization.

Figure 16: Plot of pore water pressure pf versus time for the various analyses.
(a) 50 Q27P8 element mesh results, (b) 1350 Q8P8 element mesh results without
stabilization.
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Figure 17. Plot of displacement dy versus time for the various analyses ((a) up to 0.1sec, (b) up
to 1sec for 50 Q27P8 element mesh) for pore water. (c) 1350 Q8P8 element mesh results without
stabilization.

Figure 17: Plot of displacement dy versus time for the various analyses ((a) up to
0.1sec, (b) up to 1sec for 50 Q27P8 element mesh) for pore water. (c) 1350 Q8P8
element mesh results without stabilization.

Next, we consider the deformed meshes for dynamic simulation for impulse and
hold loadings in Fig.18 for pore air. In this case for pore air, the peak pore air pres-
sures are not noticeably different between dynamic hold and impulse loadings, as
also shown in Fig.19(a) for pf versus time. In Fig.19(b), we compare displacemen-
t dy at the corner node, plotting over 0.1sec for pore air. We see that the dynamic
hold and impulse simulations have nearly the same frequency, while there is a small
poromechanical effect noticeable for the dynamic impulse simulation (difference in
curves after 0.05sec). For the Q8P8 element mesh, the results are similar as shown
in Fig.20.
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(a) (b)
Figure 18: The deformed meshes for dynamic simulation with pore air for hold (a)
and impulse (b) loadings (with inertia terms). pf units in Pa.
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Next, we consider the deformed meshes for dynamic simulation for impulse and hold

loadings in Fig.18 for pore air. In this case for pore air, the peak pore air pressures are not
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impulse simulation (difference in curves after 0.05sec). For the Q8P8 element mesh, the
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(a) (b)

Figure 18. The deformed meshes for dynamic simulation with pore air for hold (a) and impulse
(b) loadings (with inertia terms). pf units in Pa.

(a) (b)

Figure 19. 50 Q27P8 element mesh results: (a) Plot of pore air pressure pf versus time for the
various analyses. (b) Plot of displacement dy versus time for the various analyses.

Figure 19: 50 Q27P8 element mesh results: (a) Plot of pore air pressure pf versus
time for the various analyses. (b) Plot of displacement dy versus time for the various
analyses.
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Figure 20: Non-stabilized 1350 Q8P8 element mesh results: (a) Plot of pore air
pressure pf versus time for the various analyses. (b) Plot of displacement dy versus
time for the various analyses.
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In summary, for longer duration loadings (in this case, up to 0.1 sec), the pore water
pressure can build up and thus affect the solid skeleton deformation, and in turn the
effective stresses. When the pore water is substituted with pore air, differences in
results are observed between the two pore fluids. For pore water (higher mixture
mass density), different loadings (dynamic impulse, dynamic hold) trigger different
modes of vibration at different frequencies. On the other hand, for pore air (lower
mixture mass density), different loadings (dynamic impulse, dynamic hold) trigger
the same mode of vibration (with slightly different frequencies due to geometric
nonlinearities). For pore air, the overall mixture is less dense, thus the frequency
of free or forced vibration is higher than when saturated with pore water; the per-
meability is 55× higher than for pore water, thus there is little build up of pore air
pressure during dynamic loading of the thin slab.

Also, it was noted that there is no distinguishable difference between a 50 element
and 200 element mesh for Q27P8 implementation, and likewise for a 1350 element
Q8P8 mesh without stabilization. Because of the higher permeability of the lung
parenchyma, the stabilizing term H stab is not needed. We will see in the next
example for the vertebral disc that has a much smaller permeability, the stabilizing
term is needed to obtain meaningful, stable results.

4.4 Vertebral disc compression loading

Vertebral disc compression using the Q27P8 element, and Q8P8 element with and
without stabilization, is simulated with parameters in Table 2 (taken from Tables 1
and 2 of Williams, Natarajan, and Andersson (2007)) and coarsest mesh in Fig.21;
two finer Q8P8 meshes are shown in Fig.22. The geometry of the lumbar spine
disc was simplified for the simulations. The annulus fibrosus was modeled as an
ellipse with a major axis of 0.02646 m and a minor axis of 0.02016m with a height
of 0.00945 m (minus the nucleus volume). The nucleus pulposus was modeled as
an ellipse with a major axis of 0.02016 m and a minor axis of 0.01386 m with a
height of 0.00945 m. The permeabilities k̂ are averaged from the values reported
in different directions in Williams, Natarajan, and Andersson (2007), assuming
anisotropy in that paper; we assume isotropic permeability in this paper, which can
be generalized for anisotropy in the future. A downward traction load of 0.5 MPa
(Ferguson, Ito, and Nolte, 2004) is applied, with similar time histories as shown
in Fig.5 for drained, consolidating, and dynamic impulse. We do not verify that
the material properties in Williams, Natarajan, and Andersson (2007) for annulus
and nucleus of the disc, nor the compressive loading of 0.5MPa by Ferguson, Ito,
and Nolte (2004) are physiologically correct or not. The purpose of the paper is
to investigate the difference in results in assuming a drained versus consolidating
versus dynamic (with inertia terms) coupled poromechanical analysis. All analyses



30 Copyright © 2014 Tech Science Press CMES, vol.98, no.1, pp.1-39, 2014

use stabilization parameter α = 1×10−6 m3s2/kg.

Table 2: Parameters for vertebral disc compression (Williams, Natarajan, and An-
dersson, 2007).

tissue parameter units value
nucleus k̂ m3.s/kg 1.8×10−15

nucleus nf
0 . 0.83

nucleus ρsR kg/m3 1000
nucleus λ Pa 3.1×106

nucleus µ Pa 0.345×106

annulus k̂ m3.s/kg 1.7×10−15

annulus nf
0 . 0.78

annulus ρsR kg/m3 1060
annulus λ Pa 3.6×106

annulus µ Pa 0.893×106
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′
= 0, pf = 0

Case 2: un = 0, Sw = 0

Figure 21. Coarsest mesh (432 elements) used in analyzing vertebral disc compression, showing

applied effective traction tσ
′
and drained pf = 0 boundary at top, and Cases 1 and 2 BCs on

the curved surface of the annulus. The nucleus (blue) and annulus (red) sections are modeled as
distinct materials. The symmetry planes are impermeable with fixed normal displacements.
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Figure 22. Two finer Q8P8 meshes used in the disc compression analysis, showing nodes where
analysis results are compared. Left mesh has 3,465 elements, and the right mesh has 16,875
elements.

Figure 21: Coarsest mesh (432 elements) used in analyzing vertebral disc compres-
sion, showing applied effective traction tσ ′ and drained pf = 0 boundary at top, and
Cases 1 and 2 BCs on the curved surface of the annulus. The nucleus (blue) and
annulus (red) sections are modeled as distinct materials. The symmetry planes are
impermeable with fixed normal displacements.
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4.4.1 Vertebral disc compression loading with lateral expansion and drainage -
Case 1

For the Case 1 BCs (tσ ′ = 0, pf = 0 on curved annulus surface) shown in Fig.21,
we present the time histories of displacement dz (vertical, in direction of traction
loading) and dx (lateral, along long axis), and pore fluid pressure pf, in Fig.25 for
the three nodes shown in Fig.23. The time histories in Fig.25 provide a comparison
between drained, consolidating, and dynamic impulse results, as well as various
meshes (Q27P8 and Q8P8 element types). Unless otherwise indicated, it is as-
sumed the result is that of the coarsest mesh (432 elements) with Q27P8 element
type. In Fig.24, we see contour plots of pf with deformed meshes for the consol-
idating analysis. Note from Fig.25, that upon end of traction loading at 0.1s, the
displacements dz and dx and pore fluid pressure pf remain nearly constant, where
in fact there is a slow consolidation process ongoing (note the small permeabil-
ity values in Table 2 for nucleus and annulus). Another observation is that the
Q27P8 mesh provides a higher pf, yet with nearly the same displacement as the
stabilized Q8P8 meshes (see Fig.25). It is likely that in the stabilized Q8P8 mesh
results, there is added diffusion of pore fluid leading to lower pf values as observed
in Fig.24. Mesh refinement on the Q27P8 mesh is required for further study, but
given the expense of this element type, and the lack of parallel execution for the
Q27P8 currently, we do not present finer mesh results for the Q27P8 element. The
Q8P8 element can be executed in parallel computation. For the dynamic impulse
analysis, given the three-dimensional nature of loading and pore fluid flow, the disc
essentially damps out the impulse wave completely, with small oscillation after re-
lease of the impulse at 0.02s, as shown in Fig.25(a),(b) displacements. The drained
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Figure 21. Coarsest mesh (432 elements) used in analyzing vertebral disc compression, showing

applied effective traction tσ
′
and drained pf = 0 boundary at top, and Cases 1 and 2 BCs on

the curved surface of the annulus. The nucleus (blue) and annulus (red) sections are modeled as
distinct materials. The symmetry planes are impermeable with fixed normal displacements.
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Figure 22. Two finer Q8P8 meshes used in the disc compression analysis, showing nodes where
analysis results are compared. Left mesh has 3,465 elements, and the right mesh has 16,875
elements.

Figure 22: Two finer Q8P8 meshes used in the disc compression analysis, showing
nodes where analysis results are compared. Left mesh has 3,465 elements, and the
right mesh has 16,875 elements.
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results (no consolidation, and no inertia terms) are provided as a benchmark for
deformation comparison.
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2744

600

4307

Figure 23. Q27P8 deformed mesh for drained analysis of Case 1 BC (tσ
′
= 0, pf = 0). Observe

the undeformed mesh for comparison. Displacement magnification 1×.

(a) (b) (c)

Figure 24. Deformed meshes (displacement magnification 1×), with contour of pore fluid pressure
pf , for the following meshes: (a) coarse Q27P8 mesh (432 elements), (b) stabilized coarse Q8P8
mesh (432 elements), (c) stabilized fine Q8P8 mesh (3465 elements).

Figure 23: Q27P8 deformed mesh for drained analysis of Case 1 BC (tσ ′ = 0, pf =
0). Observe the undeformed mesh for comparison. Displacement magnification
1×.

(a) (b) (c)
Figure 24: Deformed meshes (displacement magnification 1×), with contour of
pore fluid pressure pf, for the following meshes: (a) coarse Q27P8 mesh (432 el-
ements), (b) stabilized coarse Q8P8 mesh (432 elements), (c) stabilized fine Q8P8
mesh (3465 elements).
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Figure 25: (a) Vertical displacement dz. (b) Lateral displacement dx along long
axis. (c) Pore fluid pressure pf. (d) Pore fluid pressure pf without Q27P8 result.

Figure 26: Q27P8 deformed mesh for drained analysis of Case 2 BC (un = 0, Sw =
0). Observe the undeformed mesh for comparison. Displacement magnification
1×.
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(a) (b)

(c) (d)
Figure 27: Deformed meshes (displacement magnification 1×), with contour of
pore fluid pressure pf, for the following meshes: (a) coarse Q27P8 mesh (432 ele-
ments), (b) non-stabilized coarse Q8P8 mesh (432 elements), (c) stabilized coarse
Q8P8 mesh (432 elements), (d) stabilized fine Q8P8 mesh (3465 elements).
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(c)
Figure 28: (a) Vertical displacement dz. (b) Pore fluid pressure pf. (c) Pore fluid
pressure pf without Q27P8 result.

4.4.2 Vertebral disc compression loading in uniaxial strain - Case 2

For the Case 2 BCs (un = 0, Sw = 0 on curved annulus surface) shown in Fig.21,
we present the time histories of displacement dz and dx, and pore fluid pressure
pf, in Fig.28 for the same three nodes shown in Fig.23, with drained deformed
mesh solution shown in Fig.26. Here, the higher pore fluid pressure pf generated
in the Q27P8 element mesh indicates a near locking behavior because of the low
permeability, that stiffens the overall compressibility of the disc such that dz is less
for the Q27P8 mesh versus the Q8P8 meshes with stabilization (see Fig.28(a)). The
two stabilized Q8P8 meshes compare well with each other as seen in Fig.28(a),(c).
Also note for non-stabilized Q8P8 coarse mesh, the classical oscillating pore fluid
pressure is observed in Fig.27(b), which the stabilized term alleviates in Fig.27(c).

Similar to Case 1, there is only a small oscillation in solid skeleton displacement
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upon release of the impulse traction, implying that the forced solid skeleton com-
pression and driven pore fluid flow almost completely damps out the impulse load.

5 Conclusions

The paper presented finite strain three-dimensional finite element analysis (FEA)
of coupled pore fluid flow and solid skeleton deformation of soft biological tissues
at finite strain, including wave propagation (i.e., inertia terms). Compressibility of
the pore fluid is considered, as well as porosity dependent permeability. The FEA
results of a full mixed formulation Q27P8 (triquadratic in displacement, trilinear in
pore fluid pressure) hexahedral element is compared to an equal order interpolation
mixed formulation Q8P8 (trilinear in displacement, trilinear in pore fluid pressure)
hexahedral element with stabilization. It was shown that the stabilization method of
Brezzi and Pitkaranta (1984) is effective for finite strain coupled FEA of biphasic
mixtures of soft tissues with small permeability (such as the vertebral disc), and
is not needed for higher permeability tissues (such as the lung parenchyma). It is
useful to have the Q27P8 element implementation (even though computationally
expensive), as a benchmark for comparison to the Q8P8 element implementation
(non-stabilized, and stabilized).

Two soft biological tissues are considered: (1) lung parenchyma, and (2) vertebral
disc. For (1), it was observed that switching out the pore fluid between water and
air leads to different dynamical results, where the less viscous and lighter (but more
compressible) pore air can nearly damp out any applied impulse wave, but also lead
to different excited mode shapes as a result of the lower mass density. For the pore
water case, some waves can be observed after application of an impulse traction
load, but they are damped quickly due to the dissipation associated with relative
pore fluid flow and solid skeleton deformation. For (2), given the low permeability
of the disc, and assuming saturation by pore water, application of traction dynamic
impulse load leading to large compressive solid skeleton deformation (and corre-
sponding relative pore fluid flow) does not allow any significant waves to propagate
in time, providing a near fully damped response, but with observable change in pore
fluid pressure.

It is clear that there is an interplay of solid skeleton deformation (and, in turn, solid
skeleton effective stress) and build-up of pore fluid pressure over time, that would
not be properly accounted for by a more simple finite strain viscoelastic constitutive
model, without treating the soft tissue as a biphasic mixture. The effective stress
governs the constitutive response of the solid skeleton, which is influenced by the
changing pore fluid pressure with time. Thus, if appropriate anisotropic, damage
constitutive models are to be considered for soft biological tissues loaded dynami-
cally (such as during impact or blast loading), the biphasic nature of the soft tissue



Soft Biological Tissues Treated as Biphasic Porous Media 37

should be taken into account. With that said, the paper provides a glimpse into how
such biphasic dynamic (with inertia terms) analyses may be conducted, benchmark-
ing against drained and consolidating FEA results, with further research needed: (i)
consider physiological BCs and tissue geometries for in-vivo conditions; (ii) more
study of the stabilization parameter α and how to select it for various tissue elastic
moduli, geometries, etc.; (iii) anisotropic permeability and solid skeleton consti-
tutive models appropriate for fibrous soft biological tissues; (iv) inclusion of pore
fluid acceleration vector different than solid skeleton acceleration (i.e., aaaf 6= aaas) and
modification of the coupled governing equation solution algorithm (see Remark 1
in Sect.2.4); and (v) extension to dynamic explicit analysis capability for high rate
dynamic loading.
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