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A Solution Procedure for a Vibro-Impact Problem under
Fully Correlated Gaussian White Noises

H.T. Zhu1

Abstract: This study is concerned with a solution procedure to obtain the proba-
bility density function (PDF) of a vibro-impact Duffing oscillator under fully corre-
lated external and parametric Gaussian white noises. The proposed solution proce-
dure consists of three steps. In the first step, the Zhuravlev non-smooth coordinate
transformation is adopted to introduce an additional impulsive damping term, in
which the original vibro-impact oscillator is converted into a new oscillator with-
out any barrier. After that, the PDF of the new oscillator is obtained by solving the
Fokker-Planck equation with the exponential-polynomial closure method. Last, the
PDF of the original oscillator is formulated in terms of the methodology on seeking
the PDF of a function of random variables. A numerical analysis on four different
cases is conducted to examine the effectiveness of the proposed solution procedure.
Comparison with the simulated result shows that the proposed solution procedure
can provide a satisfactory PDF solution for the four cases. The tail region of the
PDF solution is also approximated well. The numerical analysis also shows that
the change of parametric excitation has a significant effect on the PDF distributions
of displacement and velocity.

Keywords: vibro-impact, random vibration, probability density function, corre-
lated white noises, Duffing oscillator.

1 Introduction

Random vibration of structural and mechanical systems widely exists in the field
of engineering, such as civil engineering, mechanical engineering, aerospace engi-
neering, and ocean engineering [Lutes and Sarkani (2004)]. In such a case, these
dynamical systems are excited by random forces which are modeled as stochastic
processes, and the associated dynamical response is evaluated using its statistical
moments or probability density functions (PDFs). In particular, the case of ran-
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dom forces being modeled by Gaussian white noises has been extensively inves-
tigated analytically and numerically in the past few decades. It is a conventional
way that the response of a system excited by Gaussian white noises can be mod-
eled by a Markov process. Consequently the PDF of the response is governed by
the Fokker-Planck (FP) equation. However, when the systems have a complicated
functional form, the corresponding FP equation is too complicated in its expression
to be solved. Only a few exact stationary PDF solutions were obtained in some
very restricted cases [Caughey and Ma (1982); Dimentberg (1982); Jing and Sheu
(1990); Wang and Zhang (2000); Zhu and Huang (2001)]. Therefore, approximate
or numerical methods have to be developed to solve the problem of random vibra-
tion by an approximate way in the past few decades [Dunne and Ghanbari (1997)],
such as finite element method [Langley (1985)], weighted residual methods [Soize
(1988)], path integration (cell mapping) [Sun and Hsu (1988)], finite difference
method [Roberts (1986)], variational method [Langley (1988)]. In particular, s-
tochastic averaging is a widely used approximate method to solve the PDF solution
[Roberts and Spanos (1986)]. The stochastic averaging method is suitable for the
case of lightly damping and weak wide band excitation, in which a Markovian ap-
proximation of the appropriate envelop of the oscillator response (e.g., the envelope
of the total energy) is easily formulated. Besides, another simple and versatile tech-
nique is Monte Carlo simulation in structural dynamics [Shinozuka (1972); Proppe,
Pradlwarter, and Schuëller (2003)]. The equation of motion of the systems is nu-
merically integrated over time in a straightforward manner to obtain the time series
of the response. After that, the statistical moments and the PDF solutions are eval-
uated in terms of these obtained time series. However, when either a large-scale
system or the tail region of the PDF solution is studied, the computational efforts
are dramatically increased.

Compared with the PDF solution, the statistical moments of the response are much
more accessible. Equivalent linearization (EQL) is a simple and versatile method
to fulfill this target [Caughey (1963); Spanos (1981); Roberts and Spanos (2003);
Elishakoff (2000); Socha (2005)]. The EQL method mainly relies on the two im-
portant assumptions. One assumption is that the obtained solutions are Gaussian.
However, this assumption cannot be satisfied by nonlinear systems in most cases.
The other assumption is that the original system can be adequately represented by
an equivalent one. This assumption can be fulfilled in the case that both system non-
linearity and excitation intensity are generally small. In a similar manner, Gaussian
closure method was also developed and restricted to the above assumption [Iyengar
and Dash (1978); Wu (1987)]. The Gaussian closure method is a special case of
cumulant-neglect closure technique by truncating the cumulant equations beyond
the second cumulant [Wu and Lin (1984); Sun and Hsu (1987)]. Furthermore, the
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cumulant-neglect closure technique is usually conducted up to the fourth order clo-
sure to evaluate the non-Gaussian behavior of nonlinear systems. The sixth-order
cumulant closure technique becomes much more tedious in its solution procedure.

A vibro-impact oscillator is a conventional nonlinear system in the field of science
and engineering [Babitsky (1998); Ibrahim (2009)]. It can be used to model many
physical phenomena such as vibration of beams or pipes with a stop, ship roll mo-
tion against icebergs, rotor-stator rubbing in rotating machinery, vibro-impact vi-
bration of heat exchanger tubes to aerodynamic excitation, etc. These vibro-impact
systems undergo vibration until they collide with barriers, during which velocity
jumps occur with energy losses. Consequently, the systems show a strongly nonlin-
ear behavior. Sometimes, these systems are driven by random excitations, such as
wind loadings, sea waves, and seismic loads. Therefore, the investigation of vibro-
impact systems under random excitations is a crucial issue in the scientific commu-
nity. Furthermore, the response of the vibro-impact systems may be not Gaussian
[Baratta (1990)]. As described above, the PDF solution of nonlinear systems un-
der Gaussian white noise is govern by the FP equation. Although extensive efforts
have been made on developing some analytical or approximate methods on solv-
ing the FP equation, the application of the analytical or approximate methods are
quite limited in the case of vibro-impact systems. Some exact PDF solutions were
obtained in some very special cases [Dimentberg and Iourtchenko (2004); Jing and
Sheu (1990); Jing and Young (1990, 1991)]. Most problems of vibro-impact ran-
dom vibration have to be solved by approximate methods. Stochastic averaging
methods are widely applied to the problems of vibro-impact systems under random
excitation. A stochastic averaging method is developed to solve the multi-degree-
of-freedom vibro-impact problems with a Hertzian contact model [Huang, Liu, and
Zhu (2004)]. The stochastic averaging method was also adopted to investigate the
vibro-impact oscillator with two-sided barriers using the classical impact model
with instantaneous velocity jumps [Sri Namachchivaya and Park (2005)]. In this
classical impact model, the relation between rebound velocity and impact velocity
is determined by the Newton’s law using a restitution factor. The restitution factor
is used to evaluate the degree of impact losses. This classical impact model can
be applicable to the cases of both purely elastic barriers and inelastic ones. Using
the similar classical impact model, the stochastic averaging method was proposed
to study the response of vibro-impact Duffing oscillators [Feng, Xu, and Wang
(2008)] and vibro-impact Duffing-Van der Pol oscillators [Feng, Xu, Rong, and
Wang (2009)]. In these researches, the Zhuravlev non-smooth coordinate transfor-
mation was conducted to convert a vibro-impact oscillator into an oscillator without
barriers such that the PDF solution of the converted system was easily handled by
the FP equation using the stochastic averaging method [Ibrahim (2009); Diment-
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berg and Iourtchenko (2004); Zhuravlev (1976)]. More recently, this technique was
extended to investigate the response probability density functions of a Duffing-Van
der Pol vibro-impact system under correlated Gaussian white noise excitations [Li,
Xu, Feng, and Wang (2013)]. In the case of the restitution factor being very close to
unity (i.e., lightly inelastic impacts), the stochastic averaging methods worked well
in the examined cases. Besides the stochastic averaging methods, a numerical path
integration method was also developed together with the Zhuravlev-Ivanov coordi-
nate transformation to examine the response PDF of stochastic vibro-impact sys-
tems with high energy losses at impacts [Dimentberg, Gaidai, and Naess (2009)].
Additionally, Monte Carlo simulation was also applied for analyzing the response
of vibro-impact systems in the cases of either a one-sided barrier or two-sided bar-
riers [Iourtchenko and Song (2006)]. Many computational efforts are spent on trac-
ing impacts during the simulation process. The response interval also needs to be
carefully selected to obtain an adequate PDF value.

As mentioned above, the stochastic response of vibro-impact systems is investi-
gated mostly by stochastic averaging methods. Furthermore, the problem of the
systems with corrected random excitations is less addressed in previous studies,
either. In attempt to solve these limitations, an alternative solution procedure is
developed in this paper for the PDF solution of a vibro-impact Duffing oscillator
excited by fully corrected Gaussian white noises. The oscillator is restrained by
a one-sided barrier locating at its equilibrium. The colliding between the oscilla-
tor and the barrier is modeled using the classical model with instantaneous lightly
inelastic impacts. In the proposed solution procedure, the Zhuravlev non-smooth
coordinate transformation is first is adopted to convert the original vibro-impact
oscillator into a new oscillator without any barrier, but with an additional impulsive
damping term. After that, the PDF of the new oscillator is handled by solving the F-
P equation with the exponential-polynomial closure (EPC) method [Er (1998); Zhu,
Er, Iu, and Kou (2010, 2012)]. Last, the PDF of the original oscillator is obtained
using the methodology on seeking the PDF of a function of random variables. A
numerical analysis on four different cases is conducted to show the effectiveness
of the proposed solution procedure. The effects of the nonlinearity in displacement
and the parametric excitation are further investigated on the PDF distributions of
the vibro-impact oscillators. Comparison with the simulated result shows that the
proposed solution procedure can provide a satisfactory approximate PDF solution,
especially for the tail region of the PDFs.

2 Problem formulation

Equations 1 and 2 represent the equations of motion for a vibro-impact Duffing
oscillator excited by fully correlated Gaussian white noises with a unilateral zero-
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offset barrier

ÿ+ cẏ+ ky+µy3 = ξ (t)+ εyξ (t), y > 0 (1)

ẏ+ =−rẏ−, y = 0, 0 < r ≤ 1 (2)

where ÿ, ẏ, y are the acceleration, velocity and displacement of the oscillator, re-
spectively; c is the damping coefficient; k is the linear stiffness coefficient; µ is the
nonlinearity coefficient of displacement; ξ (t) is a zero-mean Gaussian white noise.
ε is the parametric excitation factor; r is the restitution factor; ẏ− and ẏ+ are impact
velocities before and after a impact, respectively.

The mean and correlation function of ξ (t)are formulated below

E [ξ (t)] = 0 (3)

E [ξ (t)ξ (t + τ)] = 2πKδ (τ) (4)

where E[•] is the expectation; 2πK is the excitation intensity of ξ (t) and δ (•) is
the Dirac delta function

It is difficult to directly substitute Eqs. 1 and 2 into the FP equation for obtaining
the PDF of the vibro-impact oscillator. Therefore, the Zhuravlev non-smooth co-
ordinate transformation is adopted leading the above vibro-impact oscillator to be
converted into an oscillator without barriers [Dimentberg and Iourtchenko (2004);
Ibrahim (2009)]. The transformation procedure is as follows

y = |z| , ẏ = żsgn(z), ÿ = z̈sgn(z) (5)

where z̈, ż, z are the acceleration, velocity and displacement of the converted oscil-
lator, respectively and sgn(•) is the sign function. Equation 5 is formulated due to
the fact: y = |z| is equivalent toy = zsgn(z); z[d(sgn(z))/dt] = 0 because sgn(z) is
only taken as -1, 0, or 1.

Equation 2 gives the impact condition for each impact. In the following trans-
formation procedure, the restitution factor r is assumed to be close to unity. In
such a case, the response of the nonlinear oscillator may have much less significant
discontinuities in its time derivative. That is, the response can be approximately
treated as a continuous process. This assumption allows the vibro-impact problem
to be solved by conventional approximate methods [Baratta (1990); Feng, Xu, and
Wang (2008)], e.g., the stochastic averaging method and the FP equation method.

According to Eq. 5, Eq. 2 is converted to

ż+ = rż− at z = 0 (6)
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where ż− and ż+ are the impact velocities before and after a impact for the converted
oscillator, respectively.

In terms of Eq. 6, the reduction of the converted velocity jump is evaluated by an
amount proportional to (1− r). The Dirac delta-function is used to introduce this
velocity jump into the equation of motion as an additional impulsive damping term
[Dimentberg and Iourtchenko (2004); Ibrahim (2009)]. By this way, the equation
of motion and the impact condition are integrated into one equation. The additional
damping term due to impacts is approximately expressed as

(ż+− ż−)δ (t− ti) = (1− r)żδ (t− ti) given that |ż+|< |ż|< |ż−| (7)

Because the response of the vibro-impact oscillator can be approximately treated as
a continuous process, the following mathematical manipulation can be performed
in the vicinity of each impact z(t) = z(ti)+ ż(ti)(t− ti). Herein, z(ti) is the displace-
ment at the time instant of impacts ti and z(ti) = 0. Therefore, (t− ti) = z(t)/ż(ti).
In a small interval of the vicinity of each impact, the Dirac delta function is ap-
plied as δ (t− ti) = δ (z(t)/ż(ti)). According to the fact that δ (t − ti) = |ż|δ (z),
Equation 7 is further formulated as

(1− r)żδ (t− ti) = (1− r)ż |ż|δ (z) (8)

By introducing the additional impulsive damping term of Eq. 8, Equations 1 and 2
finally are integrated into one equation as follows

z̈+ cż+ kz+µz3 +(1− r)ż |ż|δ (z) = sgn(z)ξ (t)+ εzξ (t) (9)

Letting x1 = z, x2 = ż, Equation 9 can be reformulated in a set of first-order differ-
ential equations{

ẋ1 = x2

ẋ2 =−cx2− kx1−µx3
1− (1− r)x2 |x2|δ (x1)+ sgn(x1)ξ (t)+ εx1ξ (t)

(10)

Because the restitution factor r is assumed to be close to unity in the present trans-
formation procedure, (1− r) can be treated as a small parameter. The response
{x1,x2}T is approximately treated as a Markov process and its PDF is governed by
the following FP equation

∂ p
∂ t

=− x2
∂ p
∂x1

+
∂

∂x2

[{
cx2 + kx1 +µx3

1 +(1− r)x2 |x2|δ (x1)
}

p
]

+
1
2
·2πK · {sgn(x1)+ εx1}2 ∂ 2 p

∂x2
2

(11)
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In this paper, the stationary PDF solution is considered and the term on the left side
of Eq. 11 is zero. Therefore, Equation 11 is reduced as follows

− x2
∂ p
∂x1

+{c+(1− r) |x2|δ (x1)+(1− r)x2sgn(x2)δ (x1)} p

+
{

cx2 + kx1 +µx3
1 +(1− r)x2 |x2|δ (x1)

} ∂ p
∂x2

+πK{1+2εx1sgn(x1)+ ε
2x2

1}
∂ 2 p
∂x2

2
= 0

(12)

Considering |x2|= x2sgn(x2), Equation 12 is finally given as

− x2
∂ p
∂x1

+{c+2(1− r) |x2|δ (x1)} p

+
{

cx2 + kx1 +µx3
1 +(1− r)x2 |x2|δ (x1)

} ∂ p
∂x2

+πK{1+2εx1sgn(x1)+ ε
2x2

1}
∂ 2 p
∂x2

2
= 0

(13)

It is too difficult to solve Eq. 13 exactly. The EPC method is employed herein.
Considering the following properties for a conventional stationary PDF solution

p(x1,x2)≥ 0, (x1,x2) ∈ R2

lim
xi→±∞

p(x1,x2) = 0, i = 1,2∫ +∞

−∞

∫ +∞

−∞

p(x1,x2)dx1dx2 = 1

(14)

An approximate PDF p̃(x1,x2;a) solution to Eq. 14 is formulated as an exponential-
polynomial function as follows

p̃(x1,x2;a) =CeQn(x1,x2;a) (15)

where C is a normalization constant the polynomial Qn(x1,x2;a) is expressed as

Qn (x1,x2;a) =
n

∑
i=1

i

∑
j=0

ai jx
i− j
1 x j

2 (16)

which is a complete nth-degree polynomial in x1 and x2. To satisfy the requirements
of Eq. 14, it is also assumed that

lim
xi→±∞

Qn (x1,x2;a) =−∞, i = 1, 2 (17)
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Because p̃(x1,x2;a) is only an approximation solution of Eq. 13 and the number
of unknown parameters Np is always limited in practice, substituting p̃(x1,x2;a)
usually leads to the following residual error

∆(x1,x2;a) =−x2
∂ p̃
∂x1

+[c+2(1− r) |x2|δ (x1)] p̃

+
[
cx2 + kx1 +µx3

1 +(1− r)x2 |x2|δ (x1)
] ∂ p̃

∂x2

+πK{1+2εx1sgn(x1)+ ε
2x2

1}
∂ 2 p̃
∂x2

2

=

{
−x2

∂Qn

∂x1
+ c+2(1− r) |x2|δ (x1)

+{cx2 + kx1 +µx3
1 +(1− r)x2 |x2|δ (x1)}

∂Qn

∂x2

+πK{1+2εx1sgn(x1)+ ε
2x2

1}

[(
∂Qn

∂x2

)2

+
∂ 2Qn

∂x2
2

]}
p̃(x1,x2;a)

= F(x1,x2;a)p̃(x1,x2;a)

(18)

Due to the fact that p̃(x1,x2;a) is a non-zero exponential function, the only possibil-
ity of the residual error being zero is that F(x1,x2;a) = 0. However, F(x1,x2;a) is
not zero in most cases. Therefore, a special weighted residual procedure is adopted
by introducing another set of mutually independent functions Hs(x1,x2) spanning
space RNp to make the projection of F(x1,x2;a) on RNpvanish.

∫+∞
−∞ ∫+∞

−∞ F(x1,x2; a)Hs(x1,x2)dx1dx2 = 0, s = 1,2, ...,Np (19)

where

Hs (x1,x2) = xl−m
1 xm

2 f1(x1) f2(x2) (20)

where l = 1,2, . . . ,n; m = 0,1,2, . . . , l. That is to say, Equation 13 is satisfied by
the approximate PDF solution p̃(x1,x2;a) in weak sense. Numerical experience
shows that f1 (x1) and f2 (x2) can be adopted using the results given by equivalent
linearization methods.

f1 (x1) =
1√

2πσ1
exp
{
− x2

1

2σ2
1

}
(21)

f2 (x2) =
1√

2πσ2
exp
{
− x2

2

2σ2
2

}
(22)
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Finally, nonlinear algebraic equations are formulated for the unknown parameter
a. The conventional Newton-Raphson method can be used to solve the nonlin-
ear algebraic equations. The initial solution can be used with the result given by
a standard EQL method. It is also noted that the conventional Newton-Raphson
method sometimes suffers from an inadequate guess initial solution. Therefore, the
scalar homotopy methods are recommended as a viable alternative to the classical
Newton-Raphson method. [Dai, Paik and Atluri (2011a, 2011b); Dai, Schnoor and
Atluri (2012); Liu, Yeih, Kuo and Atluri (2009)]. Although the scalar homotopy
methods cannot match the Newton-Raphson method in terms of computing speed,
they have a merit that they do not involve with inverting the Jacobian matrix of
nonlinear algebraic equations. Moreover, they are robust to the initial guesses.

Once p̃(x1,x2;a) is solved for p̃(z, ż) of the converted oscillator, the PDFs of the
original oscillator, namely p̃Y (y) and p̃Ẏ (ẏ), can be also accessed in terms of Eq.
5. The methodology for seeking the PDF distribution of a function of random
variables is adopted following the approach introduced in Ref. [Lutes and Sarkani
(2004)].

For seeking the PDF of y, namely p̃Y (y), yis a function of z with the relationship
given in Eq. 5. The relationship between y and zcan be simply expressed as y =
|z|= g(z) and g(z) is a general function. Therefore,

p̃Y (y) = ∑
j

p̃Z

[
g−1

j (y)
]

∣∣∣dg(u)
du

∣∣∣
u=g−1

j (y)

(23)

with the summation being over all inverse points z = g−1
j (y)that map from z to

y. p̃Z(z) =
∫ +∞

−∞
p̃(z, ż)dż; g−1(•) is the inverse function of g(•); g j(•) is the jth

piecewise function of g(•) is given as

y = |z|= g(z) =


z, z > 0
0, z = 0
−z, z < 0

(24)

In terms of Eqs. 23 and 24,

p̃Y (y) = p̃+Z (y)+ p̃−Z (−y) , y > 0 (25)

where p̃+Z (•) and p̃−Z (•) are the PDFs locating at the positive domain and the neg-
ative domain of z, respectively. Furthermore, it is defined that p̃Y (0) = 2 p̃Z(0)
because Eq. 23 is null for z = 0

For seeking the PDF of ẏ, namely p̃Ẏ (ẏ), ẏ is a function of multiple random vari-
ables with the relationship in Eq. 5. In a similar way, it is defined that ẏ= żsgn(z) =
h(z, ż) and h(•) is also a general function.
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p̃Ẏ (ẏ) can be obtained in terms of its cumulative distribution function FẎ (ẏ)

FẎ (ẏ) =
∫ ∫

h(z,ż)≤ẏ
p̃(z, ż)dzdż (26)

The cumulative distribution function can be further formulated in a piecewise inte-
gral form

FẎ (ẏ) =
∫ +∞

0
dz
∫ ẏ

−∞

p̃(z, ż)dż+
∫ 0

−∞

dz
∫ +∞

−ẏ
p̃(z, ż)dż (27)

Taking the derivative with respect to ẏ on Eq. 27 gives the formulation of p̃Ẏ (ẏ) as

p̃Ẏ (ẏ) =
∫ +∞

0
p̃(z, ẏ)dz+

∫ 0

−∞

p̃(z,−ẏ)dz (28)

3 Numerical analysis

In this paper, a numerical analysis is further studied to show the effectiveness of
the proposed solution procedure. According to Eqs. 1 and 2, the parameter values
are given as c = 0.1, k = 1, 2πK = 1 and r = 0.95 in the following cases. Differ-
ent values of the nonlinearity coefficient µ and the parametric excitation factor ε

are used to investigate their effects on the PDF distributions of displacement and
velocity, which is listed in Tab. 1. Either weak nonlinearity or strong nonlinearity
in displacement is considered in each case. The sign of parametric excitation fac-
tor is also taken to be positive or negative respectively to show the effects of the
parametric excitation. In addition, Monte Carlo simulation with 1× 107 samples
is conducted to provide an adequate PDF for comparison for each case The Monte
Carlo simulation is conducted according to Eqs. 1 and 2. The simulation procedure
follows the methodology introduced in Ref. [Iourtchenko and Song (2006)].

Item µ ε Remarks
Case 1 0.1 0.1 Weak nonlinearity + positive parametric excitation factor
Case 2 0.1 -0.1 Weak nonlinearity + negative parametric excitation factor
Case 3 1 0.1 Strong nonlinearity + positive parametric excitation factor
Case 4 1 -0.1 Strong nonlinearity + negative parametric excitation factor

3.1 Case 1: Weak nonlinearity + a positive parametric excitation factor

First, the case of weak nonlinearity (µ = 0.1) is considered with a positive para-
metric excitation factor (ε = 0.1). Figure 1 provides the comparison on the PDFs
obtained with each method.
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              (a) PDFs of displacement                      (b) Logarithmic PDFs of displacement 

 

                     (c) PDFs of velocity                            (d) Logarithmic PDFs of velocity 

 Figure 1: Comparison on the PDFs in Case 1

The results show that when a complete second order polynomial is used in the EPC
method, the result (i.e., EPC n = 2) is the same as that obtained with a standard
equivalent linearization method. Because the result of the equivalent linearization
method is Gaussian, EPC (n = 2) denotes a PDF obtained with a Gaussian PDF.
Therefore, it is reasonable to define EPC (n = 2) as a special Gaussian PDF in the
case of vibro-impact problems. Figures 1(a) and 1(b) show the PDFs of displace-
ment. The maximum value of PDF is located at the barrier (i.e., y = 0) and the PDF
becomes smaller when approaching the positive infinite boundary. EPC (n = 2) d-
iffers significantly from the simulated results (MCS). This difference is much more
significant in the tail region as shown in Fig. 1(b). When a complete fourth order
polynomial is used, the result (i.e., EPC n = 4) agrees well with MCS, even in the
tail region. For velocity in Figs. 1(c) and 1(d), both EPC (n = 2) and EPC (n = 4)
are close to MCS and EPC (n = 4) gives an improved PDF. The PDF of velocity
has a slightly non-symmetric shape in Fig. 1(d)
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3.2 Case 2: Weak nonlinearity + a negative parametric excitation factor

Figure 2 shows the effect of parametric excitation by changing ε from 0.1 to -0.1

 

                (a) PDFs of displacement                     (b) Logarithmic PDFs of displacement 

 

                   (c) PDFs of velocity                               (d) Logarithmic PDFs of velocity 

 Figure 2: Comparison on the PDFs in Case 2

The similar conclusion to Case 1 can be made. The PDF of displacement differs far
from being Gaussian as shown in Figs. 2(a) and 2(b) because EPC (n = 2) denotes
the result obtained with a Gaussian PDF. EPC (n = 4) agrees very well with the
simulated result. For the case of velocity in Figs. 2(c) and 2(d), both EPC (n = 2)
and EPC (n = 4) are close to MCS and EPC (n = 4) gives an improved PDF.

Compared with Case 1, the PDF distributions of displacement and velocity are
significantly affected by the sign change of the parametric excitation factor. Both
the maximum PDF and the tail region of displacement are changed as shown in
Figs. 1(a), 1(b), 2(a) and 2(b) correspondingly. In the case of velocity, the PDF of
velocity in Case 1 is a little non-symmetric and softening in tail region. In contrast,
the PDF of velocity in this case shows a hardening behavior in tail region. This
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difference is formulated due to the fact that the oscillator is excited by different
correlated Gaussian white noises.

3.3 Case 3: Strong nonlinearity + a positive parametric excitation factor

In the third case, the nonlinearity in displacement becomes strong by increasing µ

from 0.1 to 1.0. The comparison on the obtained PDFs is shown in Fig. 3.

 

                 (a) PDFs of displacement                    (b) Logarithmic PDFs of displacement 

 

                    (c) PDFs of velocity                             (d) Logarithmic PDFs of velocity 

 Figure 3: Comparison on the PDFs in Case 3

It is well known that the problem of strong nonlinearity has been a challenging
topic in stochastic mechanics. As shown in Figs. 3(a) and 3(b), EPC (n = 2)
differs significantly from MCS, showing that the PDF of displacement is highly
non-Gaussian. In such a case, EPC (n = 4) can present a satisfactory approximate
PDF with the simulated result, even in the tail region as shown in Fig. 3(b). In the
case of velocity, Figs. 3(c) and 3(d) show a difference can be observed in the origin
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region and the tail region. However, both EPC (n = 2) and EPC (n = 4) are still
close to MCS, showing the PDF of velocity is still nearly Gaussian.

3.4 Case 4: Strong nonlinearity + a negative parametric excitation factor

In the last case, the effect of parametric excitation is investigated in the case of
strong nonlinearity by changing ε from 0.1 to -0.1. Figure 4 shows the comparison
on the PDFs obtained with each method. As shown in Figs. 4(a) and 4(b), EPC
(n = 4) agrees with the simulated result very well whereas EPC (n = 2) differs a
lot from MCS. As shown in Figs. 4(c) and 4(d), the PDFs of velocity obtained
with each method are close to each other and EPC (n = 4) can provide an improved
result compared with EPC (n = 2).

 

                (a) PDFs of displacement                     (b) Logarithmic PDFs of displacement 

 

                    (c) PDFs of velocity                              (d) Logarithmic PDFs of velocity 

 Figure 4: Comparison on the PDFs in Case 4

Comparison with Case 3 shows that the effect of parametric excitation is still sig-
nificant although strong nonlinearity in displacement exists in the oscillator. The
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sign change of the parametric excitation factor leads to the significant changes on
the PDF distribution of displacement and velocity in between Fig. 3 and Fig. 4.
The change is significant in the tail region of the PDF of displacement comparing
Fig. 3(b) with Fig. 4(b). The behavior of the tail region of velocity is also changed
from being softening to being hardening as shown in Figs. 3(d) and 4(d).

4 Conclusions

This paper proposes a solution procedure to obtain the PDF solution of a vibro-
impact Duffing oscillator under fully correlated external and parametric Gaussian
white noises. The proposed solution procedure consists of three steps including the
Zhuravlev non-smooth coordinate transformation, the EPC method and the method-
ology on seeking the PDF of a function of random variables. The study further
investigates four different cases with different values of the nonlinearity coefficient
and parametric excitation factor. Comparison with the simulated result shows that
the proposed solution procedure is effective to obtain a satisfactory PDF solution.
The tail region of the PDFs is also approximated well. The numerical analysis also
shows that the change of parametric excitation has a significant effect on the PDF
distributions of displacement and velocity.
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