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A State Space Differential Reproducing Kernel Method for
the Buckling Analysis of Carbon Nanotube-Reinforced

Composite Circular Hollow Cylinders
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Abstract: A state space differential reproducing kernel (DRK) method is devel-
oped for the three-dimensional (3D) buckling analysis of simply-supported, carbon
nanotube-reinforced composite (CNTRC) circular hollow cylinders and laminat-
ed composite ones under axial compression. The single-walled carbon nanotubes
(CNTs) and polymer are used as the reinforcements and matrix, respectively, to
constitute the CNTRC cylinder. Three different distributions of CNTs varying in
the thickness direction are considered (i.e., the uniform distribution and function-
ally graded rhombus-, and X-type ones), and the through-thickness distributions of
effective material properties of the cylinder are determined using the rule of mix-
tures. The 3D linear buckling theory is used, in which a set of membrane stresses is
assumed to exist in the cylinder just before instability occurs, and this is regarded
as the initial stresses introduced in the formulation. The Euler-Lagrange equations
perturbed from the state of neutral equilibrium are derived using the Reissner mixed
variational theorem. The primary field variables, displacement and transverse stress
components, are expanded as the single Fourier series in the circumferential co-
ordinate, and then interpolated in the axial coordinate using DRK interpolation
functions. Finally, the state space equations of this problem are obtained, which
represent a system of ordinary differential equations in the thickness coordinate.
The state space DRK solutions of the critical load parameters of the cylinder can
thus be obtained by means of the transfer matrix method combined with the succes-
sive approximation one, and the convergence and accuracy of the state space DRK
solutions are validated by comparing these solutions with exact 3D ones available
in the literature and approximate 3D ones obtained using the ANSYS software.
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1 Introduction

The stability of functionally graded material (FGM) structures is an important sub-
ject in various engineering applications because it is the dominant failure occur-
ring in these structures, and has therefore attracted considerable attention in recen-
t decades. Unlike the conventional fiber-reinforced composite (FRC) structures,
such as the graphite/epoxy, boron/epoxy and glass/epoxy composite ones, the ma-
terial properties of which are layer-wise constant variations through the thickness
direction, those of FGM structures are designed to vary continuously and smoothly
through this, which results in a more complicated problem to be analyzed than that
involving FRC structures.

Carbon nanotubes (CNTs) have extraordinary mechanical properties, and have thus
started to be used as reinforcements, instead of conventionally continuous carbon
(graphite) fibers, that are randomly embedded in the polymer matrix to produce car-
bon nanotube-reinforced composite (CNTRC) structures [Coleman et al. (2006);
Esawi and Farag (2007); Chou et al. (2010)]. Various mechanical analyses of these
structures are thus needed to realize their static and dynamic characteristics, the re-
sults of which can be used to provide design standards to engineers, and enhance the
lifetimes of the related objects. Comprehensive surveys with regard to the relevant
theoretical methodologies and numerical models of FRC/CNTRC structures can be
found in the literature [Noor and Burton (1990a, b, 1996); Noor et al. (1991); Sar-
avanos and Heyliger (1999); Odegard et al. (2002); Carrera (2000a, b, 2003); Wu
et al. (2008); Carrera and Brischetto (2009); Hackett and Bennett (2012)]. Among
these articles, the current literature survey will focus on those ones dealing with the
buckling and postbuckling analyses of functionally graded (FG) CNTRC cylinders
and laminated FRC ones under thermo-mechanical loads.

Numerous two-dimensional (2D) buckling analyses of FG CNTRC cylinders and
laminated FRC ones subjected to thermo-mechanical loads have been presented.
Sallam and Simitses (1987) and Simitses and Chen (1988) studied the delamination
buckling of cylindrical shells with either fully simply-supported or clamped edges
and under external pressure and axial compression, in which Donnell-type kinemat-
ic nonlinearity [Donnell (1976)] and linearly elastic material behavior were used.
Based on higher-order shear deformation theory (HSDT), Anastasiadis and Sim-
itses (1993) presented the buckling analysis of pressure-loaded, laminated cylin-
drical shells, in which the buckling equations corresponding to the classical shell
theory (CST), first-order shear deformation theory (FSDT), and HSDT were de-
rived, and their results were compared with those of other work. Anastasiadis et
al. (1994) presented the instability behaviors of moderately thick, laminated cylin-
drical shells under combined axial compression and external pressure, in which a
parametric study with regard to the effects of those on the critical load parameter-
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s of the shells was carried out, such as the effects of shear deformation, stacking
sequence, and length-to-radius and radius-to-thickness ratios. Dumir et al. (2001,
2003, 2005) presented the axisymmetric static and dynamic buckling of laminated,
moderately thick truncated conical caps and annular spherical ones with combina-
tions of clamped and simply-supported edges and under transverse loads, in which
the Marguerre-type FSDT was formulated, and the dependence of the transverse
shear deformation effect on the thickness parameter for various boundary condi-
tions was investigated. Based on the HSDT combined with von Karman kinematic
nonlinearity, Shen and Chen (1991), Shen et al. (1991) and Shen (2001) undertook
the buckling and postbuckling analyses of stiffened and non-stiffened laminated
cylindrical shells under hygrothermal environments, and combined axial compres-
sion and external pressure. Shen (2011a, b, 2012) also presented the analyses of
CNTRC cylindrical shells under pure axial compression and pure external pres-
sure in thermal environments, in which the material properties were considered to
be temperature-dependent and assumed to be either uniformly distributed (UD) or
varying in functionally graded manner through the thickness coordinate. Lei et al.
(2013a, b) developed the element-free kp-Ritz method for the nonlinear bending
and linear buckling analyses of CNTRC plates under various in-plane mechanical
loads, the material properties of which were estimated using either the Eshelby-
Mori-Tanaka approach or the extended rule of mixtures. The results demonstrated
that the effects of the volume fraction of CNTs, different distributions of CNTs,
aspect ratio, length-to-thickness ratio and different loading conditions on critical
load parameters of the plate are significant.

While some exact and approximate three-dimensional (3D) buckling analyses of
laminated composite structures and FGM ones have also been presented, such anal-
yses are relatively few in comparison with the above-mentioned 2D ones, because
they require more mathematical manipulation. Kardomateas (1993, 1995) present-
ed the 3D buckling analysis of thick orthotropic circular hollow cylinders under
axial compression and external pressure, in which the bifurcation of equilibrium
of these cylinders was studied on the basis of 3D elasticity theory, and the criti-
cal loads over a wide range of the length-to-radius and thickness-to-radius ratios
were discussed. Based on the principle of virtual displacements (PVD), Soldatos
and Ye (1994) and Ye and Soldatos (1995) developed the state space method in
combination with the successive approximation (SA) one to study the 3D buckling
of homogeneous/laminated composite cylinders and cylindrical panels. Within the
framework of 3D elasticity theory, Wu and Chen (2001) presented asymptotic so-
lutions for the buckling of multilayered anisotropic conical shells under axial com-
pression, in which the 3D axially compressed buckling problem was separated into
a series of 2D buckling ones governing with the partially differential equations of
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the CST, and the differential quadrature (DQ) method was used to determine the
critical load parameter of each order problem, which can then be obtained order-
by-order in a consistent and hierarchical manner. This 3D asymptotic approach
was subsequently extended to the thermoelastic buckling and thermally induced
dynamic instability of laminated composite conical shells by Wu and Chiu (2001,
2002). Based on Carrera’s unified formulation (CUF) [Carrera (2003); Carrera and
Ciuffreda (2005)] combined with a variable kinematics model, Carrera and Soave
(2011) and D’Ottavio and Carrera (2010) carried out the linear buckling analy-
ses of FGM structures and laminated composite ones. It is noted that most of the
above-mentioned articles deal with the 3D buckling analysis of laminated FRC
plates/shells, and few examine FG CNTRC structures.

The state space method [Ye (2003)] has been successfully used for exact 3D
vibration, buckling and bending analyses of simply-supported, laminated FRC
plates/shells and FGM ones by Ye and Soldatos (1994a, b), Chen et al. (2001),
and Wu and Liu (2007). In recent years, this method has been used in combination
with other numerical modeling approaches to undertake the analyses of structures
with various boundary conditions. For example, Sheng and Ye (2002, 2003) devel-
oped a 3D state space finite element method (FEM) for the static analysis of lam-
inated composite plates and cylindrical shells, in which the traditional FEM was
used to approximate the in-surface variations of state variables, and a state space
formulation was then obtained to determine the through-thickness distributions of
assorted field variables. This state space FEM was also extended to investigate
the free-edge effect on the bending and extensional analyses of cross-ply laminated
hollow cylinders subjected to transverse and in-surface mechanical loads by Ye and
Sheng (2003) and Ye et al. (2004). Chen and Lü (2005) and Lü et al. (2008, 2009)
developed a state space DQ method for the approximate 3D bending analysis of
laminated composite plates and FGM ones with one pair of simply supported op-
posite edges, in which the DQ method, instead of the FEM, was used to interpolate
the primary variables.

In recent decades, a new class of computational methods, so-called meshless meth-
ods, have been developed and applied to a variety of mechanical problems with
elastic solids, in which the construction of the shape functions of the unknown
function is based on a set of randomly distributed nodes without any predefined
mesh to provide connectivity of the nodes, unlike the conventional FEMs, in which
this is based on a predefined one. In these meshless methods, the unknown ap-
proximation and interpolation are constructed using the moving least squares, re-
producing kernel, and radial basis function schemes. Comprehensive surveys of
meshless methods have been undertaken by Belytschko et al. (1996), Atluri and
Shen (2002a, b), Atluri (2004), Li and Liu (2002, 2004), Liu and Gu (2005) and
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Liew et al. (2011). In this paper, the literature survey will focus on the mechanical
analysis of FGM structures using the meshless methods. Based on the Reissner-
Mindlin theory, Sladek et al. (2008a, b) presented the elasto-thermal analyses of
FGM plates and shallow shells under thermal loading and using the meshless local
Petrov-Galerkin (MLPG) method, which has also been used for the stress, dis-
placement and heat conduction analyses of 3D anisotropic FG solids [Sladek et al.
(2008, 2009)]. Based on the FSDT, Zhao et al. (2009a, b) and Zhao and Liew
(2011) developed an element-free kp-Ritz method for the thermo-elastic and free
vibration analyses of FG plates, cylindrical shells and conical ones. The mesh-
less methods not only provide a novel alternative for the mechanical analyses of
FG elastic and piezoelectric structures and laminated FRC ones, but also overcome
some drawbacks of FEM with regard to treating discontinuity, moving boundary
and large deformation problems.

The differential reproducing kernel (DRK) interpolation method and its Hermite
counterparts [Yang et al. (2010); Wang et al. (2010); Chen et al. (2011)] were
developed for the analysis of elastic solids, in which the determination of shape
functions of derivatives of RK interpolation functions were obtained using a set
of differential reproducing conditions without taking the differentiation from the
RK ones, which makes these DRK methods less time-consuming and more effi-
cient for the calculation of the derivatives of unknown functions. Based on the
above-mentioned benefits of the state space and DRK interpolation methods, Wu
and Jiang (2012) proposed a state space DRK method to investigate the 3D static
behaviors of sandwiched FGM/FRCM hollow circular cylinders with combination-
s of simply-supported and clamped edges and under transverse mechanical loads,
which were also studied by Wu and Li (2013) using the finite cylindrical prism
method based on the Reissner mixed variational theorem (RMVT) [Reissner (1984,
1986)], which is an extension of the finite cylindrical layer method developed by
Wu and Chang (2012) for the approximate 3D analysis of simply supported, FGM
sandwich cylinders.

After a close literature survey, we found that there are few articles dealing with the
3D axially compressed buckling analysis of multilayered FGM cylinders, very few
that deal with CNTRC ones, and that state space-based numerical models seem
to be an efficient tool for the analysis of functionally graded CNTRC structures
and laminated FRC ones. This article thus aims at applying the state space DRK
method, in which the DRK interpolation functions, proposed by Wang et al. (2010)
and Wu and Yang (2011a, b), is used to interpolate the primary field variables.
Based on 3D linear buckling theory, in which a set of membrane stresses is assumed
to exist in the cylinder just before instability occurs, and which are introduced as the
initial ones in the formulation, we derive the Euler-Lagrange equations perturbed
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from the state of neutral equilibrium using the RMVT, the advantages of which
have been stated by Wu and Tsai (2012) and Wu and Jiang (2011). The solution
process of this state space DRK method is described as follows: (a) the primary
field variables are first expanded as the single Fourier series in the circumferential
coordinate, and then the 3D problem can be reduced to a 2D one; (b) these variables
are further interpolated in the axial coordinate using DRK interpolation functions,
with which the corresponding boundary conditions are required to be satisfied; (c)
the state space equations of this 3D buckling problem are obtained, which represent
a system of ordinary differential equations in the thickness coordinate, and the state
space DRK solutions can then be obtained by means of the transfer matrix method
combined with the SA one. In the illustrative examples, the accuracy and conver-
gence of this method are examined by comparing these solutions with the exact 3D
ones of simply-supported, multilayered composite cylinders available in the liter-
ature as well as with the accurate solutions of those cylinders using the ANSYS
software. Moreover, a parametric study with regard to some geometric and mate-
rial parameter effects on the critical load parameters of FG CNTRC cylinders and
laminated FRC ones is carried out, such as the volume fraction of CNTs, different
distributions of CNTs, and radius-to-thickness and length-to-radius ratios.

2 Carbon nanotube-reinforced composite cylinders

In this article, we consider either a carbon nanotube-reinforced cylinder or a lami-
nated FRC one, as shown in Fig. 1, in which the edges of the cylinder are simply
supported, and L, R and h denote the length, mid-surface radius and thickness of
the cylinder, respectively. The global cylindrical coordinates (i.e., x, θ and r ones)
are located on the center of the cylinder, and the global and local thickness coor-
dinates (i.e., ζ and zm (m = 1−Nl) ones, in which Nl is the total number of the
layers constituting the cylinder) are located on the mid-surface of the cylinder and
that of each layer, respectively, in which, r = R+ζ , and ζ = [(ζm +ζm−1)/2]+ zm,
where ζm and ζm−1 are the thickness coordinates of the top and bottom surfaces
of the mth-layer. The thicknesses of each individual layer and the cylinder are

hm (m = 1, 2, · · · , Nl) and h, respectively, while
Nl

∑
m=1

hm = h.

There are three different distribution functions of carbon nanotubes varying in the
thickness direction considered in this article, which are the uniform distribution
(UD) function, and FG rhombus- (R-), and X-shaped ones. The rule of mixtures is
used to determine the through-thickness distributions of effective material proper-
ties of the CNTRC cylinder, which are written as follows:

E11 = η1VCNT (E11)CNT +(Vm Em) , (1a)
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Figure 1: The configuration and coordinates of an FG CNTRC cylinder and a lam-
inated composite one.

(η2/E22) =VCNT/ (E22)CNT +(Vm /Em) , (1b)

(η3/G12) =VCNT/ (G12)CNT +(Vm /Gm) , (1c)

in which (E11)CNT , (E22)CNT , and (G12)CNT denote the Young’s moduli and shear
modulus of CNTs; Em and Gm stand for those of the polymer; ηi (i = 1, 2, 3) are
the CNT efficiency parameters, and VCNT and Vm are the volume fractions of CNTs
and polymer, respectively, in which VCNT +Vm = 1.

The through-thickness distributions of the volume fraction of CNTs, VCNT , for the
above-mentioned three types of CNTRC cylinders are given as follows:

VCNT =V ∗CNT , (UD-type CNTRC cylinders), (2a)

VCNT (ζ ) = 2 [1− (2 |ζ |/h)] V ∗CNT (FG R-type CNTRC cylinders), (2b)

VCNT (ζ ) = 2 (2 |ζ |/h) V ∗CNT (FG X-type CNTRC cylinders), (2c)

in which

V ∗CNT =WCNT/ [WCNT +(ρCNT/ρm)− (ρCNT/ρm)WCNT ] ,

and WCNT denotes the mass fraction of CNTs in the CNTRC cylinder, and ρCNT

and ρm are the mass densities of the CNTs and polymer, respectively.
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Similarly, the Poisson’s ratio ν12 of the FG CNTRC layer is determined as follows:

ν12 =V ∗CNT (ν12)CNT +(Vm νm) , (3)

in which (ν12)CNT and νm are the Poisson’s ratios of the CNT reinforcements and
the polymer matrix, respectively, and ν12 is considered as a constant through the
thickness coordinate of the FG CNTRC layer.

Using Eqs. (1a-c), (2a-c) and (3), we can obtain the through-thickness distribu-
tions of effective properties of FG CNTRC cylinders, which will be applied to the
illustrative examples later in this article.

3 Pre-buckling state in a multilayered FGM cylinder

Without loss of generality, we will begin the derivation of a unified formulation
for the stability analysis of simply supported, multilayered FGM cylinders under
an axial compressive load (Px). The FG CNTRC cylinders and laminated FRC
ones considered in this article can be included as the special cases of multilayered
FGM cylinders, such that the former are single-layered FGM ones and the latter are
multilayered homogeneous ones.

According to the assumptions of the linear instability approach, a set of membrane
stresses exists in the cylinder just before instability occurs. In a symmetrically FG
orthotropic cylinder subjected to axial compression, the displacement components
of the mth-layer at the initial position are expected in the following form,

ū(m)
x = A0 x, ū(m)

θ
= 0, and ū(m)

r = A0 W̄ (m)
0 (ζ ) m = 1, 2, · · · , Nl, (4a-c)

where A0 denotes the assumed uniform axial strain, which is an arbitrary constan-
t, and can be determined later in this article by means of satisfying the force e-
quilibrium equation in the axial direction at edges. In addition, the pre-buckling
deformations in the cylinder are assumed to be axisymmetric and plane strain ones.

According to the initial displacement model given in Eq. (4), it is assumed that in
the pre-buckling state the cylinder is free of initial shear stresses (i.e., τ̄

(m)
xr = τ̄

(m)
θ r =

τ̄
(m)
xθ

= 0, m = 1, 2, · · · , Nl), and the initial normal stresses in the mth-layer can be
expressed as

σ̄
(m)
x (ζ ) = A0 σ̄

(m)
x0 (ζ ) , σ̄

(m)
θ

(ζ ) = A0 σ̄
(m)
θ 0 (ζ ) , and σ̄

(m)
r (ζ ) = A0 σ̄

(m)
r 0 (ζ )

m = 1, 2, · · · , Nl,

(5a-c)

where

σ̄
(m)
x0 = Q(m)

11 +
(

Q(m)
12 /r

)
W̄ (m)

0 +Q(m)
13 σ̄

(m)
r 0 ,
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σ̄
(m)
θ 0 = Q(m)

12 +
(

Q(m)
22 /r

)
W̄ (m)

0 +Q(m)
23 σ̄

(m)
r 0 ,

σ̄
(m)
r 0 = c(m)

13 +
(

c(m)
23 /r

)
W̄ (m)

0 + c(m)
33

(
W̄ (m)

0 ,ζ

)
,

Q(m)
i j = c(m)

i j −
(

c(m)
i3 c(m)

j 3 /c(m)
33

)
(i, j = 1, 2 and 6), Q(m)

k 3 = c(m)
k 3 /c(m)

33 (k = 1 and 2),

and c(m)
i j denotes the material elastic coefficients of the mth-layer, which is a con-

stant for the multilayered composite cylinder and a function of the thickness co-
ordinate for the FG CNTRC one, while the comma denotes partial differentiation
with respect to the suffix variable.

According to the initial displacement model given in Eq. (4), the stress equilibrium
equations in the axial and circumferential directions are automatically satisfied, and
the one in the radial (or thickness) direction is given as follows:

σ̄
(m)
r 0 ,ζ =

[(
Q(m)

23 −1
)
/r
]

σ̄
(m)
r 0 +

(
Q(m)

22 /r2
)

W̄ (m)
0 +

(
Q(m)

12 /r
)
. (6)

Using Eqs. (5c) and (6), we can write the state space equations of the pre-buckling
state of the cylinder in the following form

d F̄(m)

d ζ
= K̄(m) F̄(m)+ K̄(m)

p , (7)

where

F̄(m) =

{
W̄ (m)

0 (ζ )

σ̄
(m)
r 0 (ζ )

}
, K̄(m) =

[
k̄(m)

11 k̄(m)
12

k̄(m)
21 k̄(m)

22

]
, K̄(m)

p =

{
−Q(m)

13(
Q(m)

12 /r
) } ,

k̄(m)
11 =−Q(m)

23 /r, k̄(m)
12 =

(
1/c(m)

33

)
, k̄(m)

21 =
(

Q(m)
22 /r2

)
and k̄(m)

22 =
(

Q(m)
23 −1

)
/r.

In the cases of pure axial compression, the traction conditions on the lateral surfaces
are

σ̄
(Nl)
r (ζ = h/2) = 0 and σ̄

(1)
r (ζ =−h/2) = 0. (8)

By means of Eq. (8), we can readily solve Eq. (7) for the functions of W̄ (m)
0 (ζ ) and

σ̄
(m)
r 0 (ζ ) using the transfer matrix method combined with the SA one, the solution

process of which can be found in Wu and Tsai (2011) and Wu and Jiang (2012), and
is thus not repeated here, and the initial membrane stresses can then be obtained as
follows:
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Taking a free body diagram at each edge, we can express the force equilibrium
equation in the axial direction in the following form,

∫ 2π

0

∫
ζNl

ζ0

σ̄x (ζ ) r dζ dθ =−Px. (9)

By satisfying Eq. (9), we subsequently obtain the expression of A0 as follows:

A0 =−Sx Px, (10)

in which

Sx =

{
2π R

Nl

∑
m=1

∫
ζm

ζm−1

[
Q(m)

11 +
(

Q(m)
12 /r

)
W̄ (m)

0 +Q(m)
13 σ̄

(m)
r 0

]
[1+(ζ/R)] dζ

}−1

.

As a result, the initial in-surface and transverse normal stresses can be obtained as
follows:

σ̄
(m)
x (ζ ) =− f (m)

x (ζ ) Px, σ̄
(m)
θ

(ζ ) =− f (m)
θ

(ζ ) Px,

and σ̄
(m)
r (ζ ) =− f (m)

r (ζ ) Px,
(11)

in which f (m)
x , f (m)

θ
and f (m)

r denote the influence functions of the initial in-
surface and transverse stresses for the mth-layer of the cylinder in the cases
of pure axial compression, and f (m)

x = Sx

[
Q(m)

11 +
(

Q(m)
12 /r

)
W̄ (m)

0 +Q(m)
13 σ̄

(m)
r 0

]
,

f (m)
θ

= Sx

[
Q(m)

12 +
(

Q(m)
22 /r

)
W̄ (m)

0 +Q(m)
23 σ̄

(m)
r 0

]
, and f (m)

r = Sx σ̄
(m)
r 0 . It is well

known that the influence of transverse normal stress on the critical load parameters
of multilayered FGM cylinders under axial compression is relatively minor, less
than 0.1% in most general cases, and this effect is thus neglected in this analysis
for brevity.

4 Perturbed state in a multilayered FGM cylinder

4.1 Reissner’s mixed variational theorem

As mentioned above, a set of membrane stresses exists in the cylinder just before
instability occurs, and this is introduced in the Reissner energy functional of a
multilayered FGM cylinder, in which the incremental stresses associated with the
small incremental displacements perturbed from the state of neutral equilibrium
will be considered.
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The incremental stress-strain relations valid for the nature of the symmetry class of
elastic materials are given by



σ
(m)
x

σ
(m)
θ

σ
(m)
r

τ
(m)
θ r

τ
(m)
xr

τ
(m)
xθ


=



c(m)
11 c(m)

12 c(m)
13 0 0 0

c(m)
12 c(m)

22 c(m)
23 0 0 0

c(m)
13 c(m)

23 c(m)
33 0 0 0

0 0 0 c(m)
44 0 0

0 0 0 0 c(m)
55 0

0 0 0 0 0 c(m)
66





ε
(m)
x

ε
(m)
θ

ε
(m)
r

γ
(m)
θ r

γ
(m)
xr

γ
(m)
xθ


, (12)

where σ
(m)
x , σ

(m)
θ

, · · · , τ
(m)
xθ

and ε
(m)
x , ε

(m)
θ

, · · · , γ
(m)
xθ

are the incremental stress
and strain components of a certain material point in the mth-layer, respectively.
c(m)

i j (i, j=1_6) are the elastic coefficients which are constants through the thickness
coordinate in the homogeneous elastic layers, and are variable through the thickness
coordinate in the FGM layers (i.e., c(m)

i j (ζ ) or c(m)
i j (zm)).

The kinematic relations between the incremental strainsand the incremental dis-
placements are given by



ε
(m)
x

ε
(m)
θ

ε
(m)
r

γ
(m)
θ r

γ
(m)
xr

γ
(m)
xθ


=



∂x 0 0
0 (1/r) ∂θ (1/r)
0 0 ∂r

0 (−1/r)+∂r (1/r) ∂θ

∂r 0 ∂x

(1/r) ∂θ ∂x 0




u(m)
x

u(m)
θ

u(m)
r

 , (13)

where u(m)
x , u(m)

θ
and u(m)

r denote the incremental elastic displacement components,
∂k = ∂/∂k (k = x, θ and r).

The Reissner energy functional of the FGM cylinder under axial compression while
in equilibrium in a displaced buckling mode is written in the form of
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ΠR =
Nl

∑
m=1

∫ hm/2

−hm/2

∫
Ω

[
σ
(m)
x ε

(m)
x +σ

(m)
θ

ε
(m)
θ

+σ
(m)
r ε

(m)
r + τ

(m)
xr γ

(m)
xr

+ τ
(m)
θ r γ

(m)
θ r + τ

(m)
xθ

γ
(m)
xθ
−B(σ (m)

i j )
]

r dxdθ dzm

−
Nl

∑
m=1

∫ hm/2

−hm/2

∫
Ω

(Px)
(

f (m)
x ε̂

(m)
x + f (m)

θ
ε̂
(m)
θ

)
r dxdθ dzm

−
Nl

∑
m=1

∫ hm/2

−hm/2

∫
Γσ

T̄ (m)
i u(m)

i dΓdzm

−
Nl

∑
m=1

∫ hm/2

−hm/2

∫
Γu

T (m)
i (u(m)

i − ū(m)
i )dΓdzm

(14)

where Ω denotes the cylinder domain on the x−θ surface; Γσ and Γu denote the
portions of the edge boundary, where the surface tractions T̄ (m)

i (i = x, θ and r)
and surface displacements ū(m)

i (i = x, θ and r) perturbed from the state of neu-
tral equilibrium are prescribed, respectively; B(σ (m)

i j ) is the complementary energy

density function; ε̂
(m)
x and ε̂

(m)
θ

denote the second-order term of the Green-Lagrange
in-surface normal strains, and are given by

ε̂
(m)
x =

[(
u(m)

x ,x

)2
+
(

u(m)
θ

,x

)2
+
(

u(m)
r ,x

)2
]
/2, (15)

ε̂
(m)
θ

=

[(
u(m)

θ
,θ +u(m)

r

)2
+
(

u(m)
r ,θ −u(m)

θ

)2
+
(

u(m)
x ,θ

)2
]
/
(
2r2) . (16)

In this formulation, we take the incremental elastic displacement and incremen-
tal transverse stress components as the primary variables subject to variation, and
the incremental in- and out-of-surface strain components and the incremental in-
surface stress ones are the dependent variables, which can be expressed in terms of
the primary variables using Eqs. (12)and (13) as follows:

ε
(m)
x = ∂B/∂σ

(m)
x = u(m)

x ,x , (17)

ε
(m)
θ

= ∂B/∂σ
(m)
θ

= (1/r) u(m)
θ

,θ +(1/r) u(m)
r , (18)

ε
(m)
r = ∂B /∂σ

(m)
r =−Q(m)

13 u(m)
x ,x−

(
Q(m)

23 /r
)

u(m)
θ

,θ −
(

Q(m)
23 /r

)
u(m)

r

+
(

1/c(m)
33

)
σ
(m)
r ,

(19)
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γ
(m)
xr = ∂B/∂τ

(m)
xr =

(
1/c(m)

55

)
τ
(m)
xr , (20)

γ
(m)
θ r = ∂B/∂τ

(m)
θ r =

(
1/c(m)

44

)
τ
(m)
θ r , (21)

γ
(m)
xθ

= ∂B/∂τ
(m)
xθ

= (1/r) u(m)
x ,θ +u(m)

θ
,x . (22)

σσσ
(m)
p = Q(m)

p B1 u(m)+Q(m)
p B2 u(m)

r +Q(m)
r σ

(m)
r (23)

where σσσ
(m)
p =

{
σ
(m)
x σ

(m)
θ

τ
(m)
xθ

}T
, u(m) =

{
u(m)

x u(m)
θ

}T
, Q(m)

p = Q(m)
11 Q(m)

12 0
Q(m)

12 Q(m)
22 0

0 0 Q(m)
66

, B1 =

 ∂x 0
0 r−1∂θ

r−1∂θ ∂x

,

B2 =

 0
r−1

0

 ,Q(m)
r =

 Q(m)
13

Q(m)
23
0

 .
4.2 Euler-Lagrange equations

Substituting Eqs. (17)_(23) into Eq. (14) and imposing the stationary principle of
the Reissner energy functional perturbed from the state of neutral equilibrium (i.e.,
δ ΠR = 0) yields

δΠR =
Nl

∑
m=1

∫ hm/2
−hm/2

∫
Ω

{
rσ

(m)
x δu(m)

x ,x +σ
(m)
θ

(
δu(m)

θ
,θ +δu(m)

r

)
+τ

(m)
xθ

(δu(m)
x ,θ + rδu(m)

θ
,x)+ rσ

(m)
r δu(m)

r ,r

+τ
(m)
θr (δu(m)

r ,θ + rδu(m)
θ

,r−δu(m)
θ

)+ rτ
(m)
xr (δu(m)

r ,x +δu(m)
x ,r)

+
[
ru(m)

r ,r + rQ(m)
13 u(m)

x ,x +Q(m)
23

(
u(m)

θ
,θ +u(m)

r

)
−
(

rσ
(m)
r /c(m)

33

)]
δσ

(m)
r

+
[(

r2u(m)
θ

,r− ru(m)
θ

+ ru(m)
r ,θ − rτ

(m)
θr /c(m)

44

)]
δτ

(m)
θr

+
(

ru(m)
x ,r + ru(m)

r ,x− rτ
(m)
xr /c(m)

55

)
δτ

(m)
xr

}
dxdθdzm

−
Nl

∑
m=1

∫ hm/2
−hm/2

∫
Ω
(Px)

{(
r f (m)

x

)[(
u(m)

x ,x

)(
δu(m)

x ,x

)
+
(

u(m)
θ

,x

)(
δu(m)

θ
,x

)
+
(

u(m)
r ,x

)(
δu(m)

r ,x

)]
+
(

f (m)
θ

/r
)[(

u(m)
θ

,θ +u(m)
r

)(
δu(m)

θ
,θ +δu(m)

r

)
+
(

u(m)
r ,θ −u(m)

θ

)(
δu(m)

r ,θ −δu(m)
θ

)
+
(

u(m)
x ,θ

)(
δu(m)

x ,θ

)]}
dxdθdzm

−
Nl

∑
m=1

∫ hm/2
−hm/2

∫
Γσ

T̄ (m)
i δu(m)

i dΓdzm−
Nl

∑
m=1

∫ hm/2
−hm/2

∫
Γu

δT (m)
i (u(m)

i − ū(m)
i )dΓdzm

= 0
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(24)

where the derivatives of the suffix variables with respect to r are identical to those
with respect to zm (i.e., dr = dzm).

Performing the integration by parts and using Green’s theorem, we obtain the
Euler_Lagrange equations of 3D elasticity related to the buckling problem of an
axially compressed FGM cylinder from the domain integral terms and the admis-
sible boundary conditions from the boundary integral terms, which are written as
follows:

The Euler_Lagrange equations are

δu(m)
x : τ

(m)
xr ,zm =−σ

(m)
x ,x−

(
τ
(m)
xθ

,θ /r
)
−
(

τ
(m)
xr /r

)
−Px

(
f (m)
x

)(
u(m)

x ,xx

)
−Px

(
f (m)
θ

)(
u(m)

x ,θθ /r2
)
,

(25)

δu(m)
θ

: τ
(m)
θr ,zm =− τ

(m)
xθ

,x−
(

σ
(m)
θ

,θ /r
)
−2
(

τ
(m)
θr /r

)
−Px

(
f (m)
x

)(
u(m)

θ
,xx

)
−Px

(
f (m)
θ

)(
u(m)

θ
,θθ −u(m)

θ
+2u(m)

r ,θ

)
/r2,

(26)

δu(m)
r : σ

(m)
r ,zm =− τ

(m)
xr ,x−

(
τ
(m)
θr ,θ /r

)
−
(

σ
(m)
r /r

)
+
(

σ
(m)
θ

/r
)

−Px

(
f (m)
x

)(
u(m)

r ,xx

)
−Px

(
f (m)
θ

)(
−2u(m)

θ
,θ +u(m)

r ,θθ −u(m)
r

)
/r2,

(27)

δτ
(m)
xr : u(m)

x ,zm =−u(m)
r ,x+

(
τ
(m)
xr /c(m)

55

)
, (28)

δτ
(m)
θr : u(m)

θ
,zm =

(
u(m)

θ
/r
)
−
(

u(m)
r ,θ /r

)
+
(

τ
(m)
θr /c(m)

44

)
, (29)

δσ
(m)
r : u(m)

r ,zm =−
(

c(m)
13 /c(m)

33

)
u(m)

x ,x−
(

c(m)
23 /c(m)

33

)(
u(m)

θ
,θ /r

)
−
(

c(m)
23 /c(m)

33

)(
u(m)

r /r
)
+
(

σ
(m)
r /c(m)

33

)
,

(30)

where m = 1, 2, · · · ,Nl .

The lateral boundary conditions are[
τ
(Nl)
xr τ

(Nl)
θr σ

(Nl)
r

]
=
[

0 0 0
]

on zNl = hNl/2 (or ζ = h/2), (31a)
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τ
(1)
xr τ

(1)
θr σ

(1)
r

]
=
[

0 0 0
]

on z1 =−h1/2 (or ζ =−h/2); (31b)

The edge boundary conditions are

σ
(m)
x n1 + τ

(m)
xθ

n2 = T̄ (m)
x or u(m)

x = ū(m)
x , (32a)

τ
(m)
xθ

n1 +σ
(m)
θ

n2 = T̄ (m)
θ

or u(m)
θ

= ū(m)
θ

, (32b)

τ
(m)
xr n1 + τ

(m)
θr n2 = T̄ (m)

r or u(m)
r = ū(m)

r , (32c)

where m = 1, 2, · · · ,Nl , and n1 and n2 stand for components of the unit normal
vectors on the edges.

The set of Euler_Lagrange Equations (i.e., Eqs. (25)_(30)) associated with a set of
appropriate boundary conditions (Eqs. (32a, b, c)) constitutes a well-posed bound-
ary value problem, which is the so-called strong formulation of this problem. A
state space DRK method will be developed for the buckling analysis of a simply-
supported, multilayered FGM cylinder under axial compression later in this article
on the basis of the strong formulation, in which the DRK interpolation functions
[Wang et al. (2010)] will be used to construct the shape functions of each primary
variable.

5 The state space DRK method

5.1 The single Fourier series expansion method

The single Fourier series expansion method is first applied to reduce this 3D prob-
lem to a 2D one. We thus express the primary variables of each individual layer in
the following form

u(m)
x (x,θ ,ζ ) =

∞

∑
n̂=0

u(m)
1n̂ (x,zm)cos n̂θ , (33)

u(m)
θ

(x,θ ,ζ ) =
∞

∑
n̂=0

u(m)
2n̂ (x,zm)sin n̂θ , (34)

u(m)
r (x,θ ,ζ ) =

∞

∑
n̂=0

u(m)
3n̂ (x,zm)cos n̂θ , (35)

τ
(m)
xr (x,θ ,ζ ) =

∞

∑
n̂=0

τ
(m)
13n̂ (x,zm)cos n̂θ , (36)

τ
(m)
θr (x,θ ,ζ ) =

∞

∑
n̂=0

τ
(m)
23n̂ (x,zm)sin n̂θ , (37)
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σ
(m)
r (x,θ ,ζ ) =

∞

∑
n̂=0

σ
(m)
3n̂ (x,zm)cos n̂θ , (38)

where m = 1,2, · · · ,Nl; n̂ denotes the wave number along the θ coordinate, and is
a positive integer or zero.

Similarly, the in-surface stresses can be expressed in terms of the primary variables
as follows:

σ
(m)
x (x,θ ,ζ ) =

∞

∑
n̂=0

σ
(m)
1n̂ (x, zm)cos n̂θ , (39)

σ
(m)
θ

(x,θ ,ζ ) =
∞

∑
n̂=0

σ
(m)
2n̂ (x, zm)cos n̂θ , (40)

τ
(m)
xθ

(x,θ ,ζ ) =
∞

∑
n̂=0

τ
(m)
12n̂ (x, zm)sin n̂θ , (41)

where σσσ
(m)
pn̂ = Q(m)

p B1n̂u(m)
n̂ + Q(m)

p B2u(m)
3n̂ + Q(m)

r σ
(m)
3n̂ in which σσσ

(m)
pn̂ ={

σ
(m)
1n̂ σ

(m)
2n̂ τ

(m)
12n̂

}T
, u(m)

n̂ =
{

u(m)
1n̂ u(m)

2n̂

}T
, B1n̂ =

 ∂x 0
0 (n̂/r)

−(n̂/r) ∂x

.

For brevity, the symbols of summation are omitted in the following derivation.

Substituting Eqs. (33)_(38) in the set of Euler-Lagrange equations given in Eqs.
(25)_(30), we can obtain a series sets of state space equations governing the buck-
ling of the FGM cylinder for various buckling modes, and they are given as follows:

For the buckling mode (n̂),

u(m)
1n̂ ,zm = d(m)

14 τ
(m)
13n̂ −u(m)

3n̂ ,x , (42)

u(m)
2n̂ ,zm = d(m)

22 u(m)
2n̂ +d(m)

25 τ
(m)
23n̂ +d(m)

26 u(m)
3n̂ , (43)

σ
(m)
3n̂ ,zm =d(m)

31 u(m)
1n̂ ,x+d(m)

32 u(m)
2n̂ +d(m)

33 σ
(m)
3n̂ − τ

(m)
13n̂ ,x−d(m)

26 τ
(m)
23n̂ +d(m)

36 u(m)
3n̂

−Px

(
d(m)

1 f (m)
θ

u(m)
2n̂ + f (m)

x u(m)
3n̂ ,xx+d(m)

2 f (m)
θ

u(m)
3n̂

) , (44)

τ
(m)
13n̂ ,zm =d̄(m)

41 u(m)
1n̂ ,xx+d(m)

41 u(m)
1n̂ +d(m)

42 u(m)
2n̂ ,x+d(m)

43 σ
(m)
3n̂ ,x+d(m)

44 τ
(m)
13n̂

+d(m)
46 u(m)

3n̂ ,x−Px

(
f (m)
x u(m)

1n̂ ,xx+d(m)
3 f (m)

θ
u(m)

1n̂

) , (45)

τ
(m)
23n̂ ,zm =−d(m)

42 u(m)
1n̂ ,x+d̄(m)

52 u(m)
2n̂ ,xx+d(m)

52 u(m)
2n̂ +d(m)

53 σ
(m)
3n̂ +d(m)

55 τ
(m)
23n̂

+d(m)
56 u(m)

3n̂ −Px

(
f (m)
x u(m)

2n̂ ,xx+d(m)
2 f (m)

θ
u(m)

2n̂ +d(m)
1 f (m)

θ
u(m)

3n̂

), (46)
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u(m)
3n̂ ,zm = d(m)

43 u(m)
1n̂ ,x−d(m)

53 u(m)
2n̂ +d(m)

63 σ
(m)
3n̂ +d(m)

66 u(m)
3n̂ , (47)

where

d(m)
14 = 1/c(m)

55 , d(m)
22 = 1/r, d(m)

25 = 1/c(m)
44 , d(m)

26 = n̂r−1, d(m)
31 = Q(m)

12 /r,

d(m)
32 = n̂Q(m)

22 /r2, d(m)
33 =

(
Q(m)

23 −1
)
/r, d(m)

36 = Q(m)
22 /r2, d̄(m)

41 =−Q(m)
11 ,

d(m)
41 = n̂2Q(m)

66 /r2, d(m)
42 =−n̂(Q(m)

12 +Q(m)
66 )/r, d(m)

43 =−Q(m)
13 , d(m)

44 =−1/r,

d(m)
46 =−Q(m)

12 /r, d̄(m)
52 =−Q(m)

66 , d(m)
52 = n̂2Q(m)

22 /r2, d(m)
53 = n̂Q(m)

23 /r,

d(m)
55 =−2/r, d(m)

56 = n̂Q(m)
22 /r2, d(m)

63 = 1/c(m)
33 , d(m)

66 =−Q(m)
23 /r,

d(m)
1 =−2n̂/r2, d(m)

2 =−
(
n̂2 +1

)
/r2, d(m)

3 =−n̂2/r2.

The edge boundary conditions of the cylinders are considered as fully simply-
supported and are written as follows:

u(m)
2n̂ = u(m)

3n̂ = σ
(m)
1n̂ = 0 at x = 0 and L, (48)

where m = 1,2, · · · ,Nl .

5.2 The DRK interpolation

In this article, the DRK interpolation functions (Wang et al., 2010) are used to
construct the shape functions of the primary field variables of this problem, and the
DRK interpolation functions and their relevant derivatives are briefly described, as
follows.

It is assumed that there are np discrete nodes randomly selected and located at
x = x1, x2, · · · , xnp , respectively, in the x direction of the mth-layer, in which a
function F(x, zm) is interpolated as Fa (x, zm) and defined as

Fa(x, zm) =
np

∑
l=1

ψl(x)Fl (zm)

=
np

∑
l=1

[
φ̄l (x)+ φ̂l (x)

]
Fl (zm)

, (49)

where φ̄l (x) (l=1, 2,. . . ,np) denote the enrichment functions, which are determined
by imposing the nth-order reproducing conditions and are given by φ̄l(x) = wa(x−
xl) PT (x− xl) b̄(x), in which PT (x−xl) =

[
1 (x− xl) (x− xl)

2 · · · (x− xl)
n
]
, n

is the highest order of the basis functions, b̄(x) is the undetermined function vector,
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and wa(x− xl) is the weight function centered at the node, x = xl , with a support
size a; φ̂l (x) (l=1, 2,. . . , np) denote the primitive functions, which are used to
introduce the Kronecker delta properties; ψl (x) is the shape function of Fa (x, zm)
at the sampling node, x = xl; and Fl (zm) is the nodal function of Fa(x, zm) at x = xl .

By selecting the complete nth-order polynomials as the basis functions to be repro-
duced, we obtain a set of reproducing conditions to determine the undetermined
functions of b̄i(x) (i = 1,2, · · · ,n+1) in Eq. (49). These conditions are given as

np

∑
l=1

[
φ̄l (x)+ φ̂l (x)

]
xr

l = xr r ≤ n. (50)

Equation (50) represents (n+1) reproducing conditions, and the matrix form of
these is given as

np

∑
l=1

P(x− xl) φ̄l (x) =
np

∑
l=1

P(x− xl)wa (x− xl)PT (x− xl)b̄(x)

= P(0)−
np

∑
l=1

P(x− xl) φ̂l (x)
, (51)

where P(0) =
[

1 0 0 · · · 0
]T .

According to these conditions, we may obtain the undetermined function vector
b̄(x) in the following form

b̄(x) = A−1(x)

[
P(0)−

np

∑
l=1

P(x− xl)φ̂l (x)

]
, (52)

where A(x) =
np

∑
l=1

P(x− xl)wa (x− xl)PT (x− xl).

Substituting Eq. (52) into Eq. (49) yields the shape functions of Fa (x,zm) in the
form of

ψl (x) = φ̄l (x)+ φ̂l (x) (i = 1, 2, · · · , np) , (53)

where φ̄l(x) = wa(x− xl)PT (x− xl)A−1(x)
[

P(0)−
np

∑
l=1

P(x− xl) φ̂ (x)
]

.

It is noted that if we select a set of primitive functions satisfying the Kronecker delta
properties (i.e., φ̂l (xk) = δlk); a priori, then a set of the shape functions with these
properties will be obtained (i.e., ψl(xk) = δlk), due to the fact that the enrichment
functions vanish at all the nodes (i.e., φ̄l (xk) = 0). In this article, a quartic spline
function with its support size not covering any neighboring nodes, as suggested
by Wang et al. (2010), is assigned to be the primitive function for each sampling
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node. Moreover, the derivatives of these DRK interpolation functions are given in
Appendix A.

In implementing the present scheme, the weight and primitive functions (i.e., w(s)
and φ̂ (s)) must be selected in advance. Following Wang et al. (2010), the normal-
ized Gaussian function is selected as the weight function at each sampling node,
and this is given as

w(s) =

{
e−(s/α)2−e−(1/α)2

1−e−(1/α)2
for s≤ 1

0 for s > 1
, (54)

where wa(x− xl) = w(s), s = |x− xl|/a, and a denotes the radius of the influence
zone. The literature [Wang et al. (2010)] suggests an optimal value 0.3 for α for
the analysis of elastic solids, and this is also used in this article.

The quartic spline function is selected as the primitive function at each sampling
node, and given as

φ̂(s) =
{
−3s4 +8s3−6s2 +1 for s≤ 1
0 for s > 1

, (55)

5.3 The meshless collocation method

Substituting Eqs. (49), (A.1) and (A.6) in the strong formulation of this 3D buck-
ling problem, which consists of the Euler-Lagrange Eqs. (42)_(47) associated with
the appropriate boundary conditions in Eqs. (48), we obtain the following sets of
ordinary differential equations:

Satisfying the edge conditions given in Eq. (48) yields

(
u(m)

2n̂

)
1
=
(

u(m)
3n̂

)
1
= 0, and

(
σ
(m)
3n̂

)
1
=−

(
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11 /Q(m)
13
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[
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](
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,

(56a)

(
u(m)
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)
np
=
(

u(m)
3n̂

)
np
= 0, and
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)
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13

) np
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[
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.

(56b)

Using Eqs. (56a) and (56b), we rewrite the Euler-Lagrange equations as follows:

(
u(m)

1n̂

)
i
,zm = d(m)

14
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)
i
−
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](
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(62)

where δkl is the Dirac delta function, in which δkl=0 when k 6= l, and δkl=1 when
k = l.

Equations (57)_(62) represent the system of space state equations for the mth-layer
for the buckling analysis of simply-supported, multilayered FGM circular hollow
cylinders, in which the system consists of (6np−6) simultaneously linear ordinary
differential equations in terms of (6np−6) primary variables. These state space
equations are rewritten in the matrix form as follows:

dF(m)

dzm
= K(m) F(m) m = 1,2, · · · ,Nl, (63)

in which F(m) and K(m) denote the state space variables and the corresponding
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coefficient matrix of the mth-layer of the cylinder, respectively, and
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)
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5.4 Theories of homogeneous linear systems

The general solution of Eq. (63) is

F(m) (zm) = ΩΩΩ
(m) (zm)L(m), (64)

where L(m) is a (6np−6)x1 matrix of arbitrary constants; ΩΩΩ
(m) is the fundamental

matrix of Eq. (63), and is formed by linearly independent solutions in the form
of ΩΩΩ

(m) =
[
ΩΩΩ

(m)
1 , ΩΩΩ

(m)
2 , · · · , ΩΩΩ

(m)
(6np−6)

]
, ΩΩΩ

(m)
i = ΛΛΛieλizm (i = 1, 2, · · · ,(6np−6))

in which λi and Λi are the eigenvalues and their corresponding eigenvectors of the
coefficient matrix K(m) in Eq. (63), respectively.

If the coefficient matrix K(m) has a complex eigenvalue λ1 (i.e., λ1 = Re(λ1) +
iIm(λ1)), then its complex conjugate λ2 (i.e., λ2 = Re(λ1)− iIm(λ1)) is also an
eigenvalue of K(m) due to the fact that all of the coefficients of K(m) are real. In ad-
dition, ΛΛΛ1,2=Re(ΛΛΛ1)± iIm(ΛΛΛ1) are the corresponding eigenvectors of the complex
conjugate pair λ1,2. In order to achieve more efficient computational performance,
we replace the complex-valued solutions with another two linearly independent
real-valued solutions using Euler’s formula, and they are given by

ΩΩΩ
(m)
1 = eRe(λλλ 1)zm [Re(ΛΛΛ1) cos(Im(λ1)zm)− Im(ΛΛΛ1) sin(Im(λ1)zm)] , (65a)

ΩΩΩ
(m)
2 = eRe(λλλ 1)zm [Re(ΛΛΛ1) sin(Im(λ1)zm)+ Im(ΛΛΛ1) cos(Im(λ1)zm)] . (65b)

On the basis of the previous set of linearly independent real-valued solutions, a
transfer matrix method combined with an SA one can be developed for the analysis
of FGM circular hollow cylinders, where each FGM layer of the sandwich cylinder
is artificially divided into a finite number of individual layers with an equal and
small thickness for each layer, compared with the mid-surface radius, as well as
with constant material properties, determined in an average thickness sense. The
exact solutions of the assorted field variables induced in the FGM cylinder with
various edge conditions can thus be gradually approached by increasing the number
of individual layers. It is noted that this solution process can be performed layer-
by-layer, and the computational performance is independent of the total number
of individual layers. Consequently, the implementation of the present approach is
much less time-consuming than usual.
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5.5 The transfer matrix method

A transfer matrix method for the 3D analysis of simply-supported, multilayered
FGM cylinders is developed as follows, in which the FGM cylinder is artificially di-
vided into an Nl-layered cylinder with an equal and small thickness compared with
the mid-surface radius of the cylinder. According to Eq. (64), we may obtain the
general solution for the state space equations of the mth-layer (m = 1, 2, · · · , Nl).

When zm =−hm/2, we thus obtain

L(m) =
[
ΩΩΩ

(m) (−hm/2)
]−1

F(m−1), (66)

where F(m−1) denotes the vector of state space variables at the interface between
the (m-1)th- and mth-layers, and F(m−1) = F(m) (zm =−hm/2).

Using Eqs. (64) and (66), we obtain

F(m) = R(m) F(m−1), (67)

where R(m) = ΩΩΩ
(m) (zm)

[
ΩΩΩ

(m) (−hm/2)
]−1

.

By analogy, the vectors of state space variables between the top and bottom surfaces
of the cylinder (i.e., F(Nl) and F(0)) are linked by

F(Nl) = R(Nl) F(Nl−1)

=

(
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∏
m=1

R(m)

)
F(0).

(68)

where
Nl
Π

m=1
R(m) = R(Nl)R(Nl−1) · · ·R(2) R(1).

Equation (68) represents the sets of (6np− 6) simultaneous algebraic equations.
Imposing the traction free conditions on the lateral surfaces, we may rewrite it as[

uu
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]
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][
ub
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]
, (69)

where uu and ub denote the nodal displacement components on the upper and bot-
tom surfaces, respectively, σσσu and σσσb the nodal transverse stress components on
the upper and bottom surfaces, respectively and they are given as follows:
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Imposing the traction free conditions on the lateral surfaces, which are σσσu = 0 and
σσσb = 0, and using the least square method to form a system of algebraic equations
with a square coefficient matrix, we obtain

AT Auu = 0, (70)

where A = RII I (RI I)
−1,

A nontrivial solution of Eq. (69) exists if the determinant of the coefficient matrix
(AT A) vanishes. Hence, the critical load can be obtained by∣∣AT A

∣∣= 0. (71)

Because Eq. (71) yields an implicit, rather than explicit, function of (Px)cr, a bi-
section method is used to determine the roots of Eq. (71) with a fixed value of
n̂.

6 Illustrative Examples

6.1 Laminated FRC cylinders

Based on the theory 3D elasticity, Noor and Peters (1989) and Ye and Soldatos
(1995) presented the exact 3D solutions for the critical loads of simply-supported,
[0◦/90◦]20 laminated circular hollow cylinders under axial compression, and these
benchmark solutions are used to validate the accuracy and convergence of the ones
obtained using the state space DRK method in Table 1, in which the fibers of the
different layers alternate between the circumferential and longitudinal directions,
with the fibers of the top and bottom layers running in the circumferential and
longitudinal directions, respectively; the geometric parameters of the cylinders are
L/R = 5 and h/R =0.2; the material properties of the cylinders are given as

EL/ET = 15, GLT/ET = 0.5, GT T/ET = 0.35 and υLL = υLT = 0.3, (72a-d)



A State Space Differential Reproducing Kernel Method 263

where the subscripts of L and T denote the directions parallel and transverse to the
fiber directions, respectively.

Table 1: Convergence studies for the state space DRK solutions of the critical load
parameters of simply-supported, laminated [0◦/90◦]20 cylinders under axial com-
pression ((P̄x)cr = (Px)crR2/(2πRET h3)).

n a Theories np n̂ = 1 n̂ = 2 n̂ = 3
3 3.1∆x Present 19 5.5123 5.0301 6.7959

21 5.5123 5.0317 6.8572
25 5.5123 5.0365 7.0068
29 5.5123 5.0365 7.1230

3 3.6∆x Present 19 5.5203 4.9481 6.1100
21 5.5203 4.9823 6.2325
25 5.5203 4.9863 6.5174
29 5.5203 4.9887 6.6925

4 4.1∆x Present 19 5.5115 5.0349 6.9201
21 5.5115 5.0277 6.9774
25 5.5115 5.0293 6.9169
29 5.5115 5.0293 7.0187

4 4.6∆x Present 19 5.5147 5.0094 6.7967
21 5.5147 5.0309 6.8644
25 5.5147 5.0352 6.9917
29 5.5147 5.0352 6.9232

ED2 (D’Ottavio and Carrera, 2010)
ED4 (D’Ottavio and Carrera, 2010)
EMZ4 (D’Ottavio and Carrera, 2010)
LM4 (D’Ottavio and Carrera, 2010)
3D elasticity (Noor and Peters, 1989)
3D elasticity (Ye and Soldatos, 1995)
Modified Pagano (Wu and Tsai, 2012)

5.512
5.511
5.511
5.511
5.511
5.520
5.512

5.187
5.073
5.056
5.052
5.052
5.051
5.042

NA
NA
NA
NA
NA
NA
7.129

For comparison purposes, the critical load parameter, (P̄x)cr, is defined as

(P̄x)cr = (Px)cr R2/
(
2πRET h3) . (73)

Table 1 shows the convergence studies for the state space DRK solutions of the
critical load parameters of simply-supported, [0◦/90◦]20 laminated cylinders under
axial compression for different buckling modes, n̂ = 1− 3, in which the highest
order of base functions (n) is taken to be n=3 and 4, the uniform distribution of
nodes (np) is np=19, 21, 25 and 29, and the radius of the influence zone for each
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sampling node (a) is a = 3.1∆x and 3.6∆x when n=3, and a = 4.1∆x and 4.6∆x
when n=4, while ∆x = L/(np− 1). It can be seen from Table 1 that the solutions
are slightly affected by changing the radius of the influence zone, and the solu-
tions converge at np=19, 25 and 29 for the buckling modes of n̂ = 1, 2 and 3,
respectively. The convergent solutions are obtained when both n=3, a = 3.1∆x and
n=4, a = 4.1∆x are used, and these are in excellent agreement with the 3D elastic-
ity solutions [Noor and Peters (1989); Ye and Soldatos (1995)] and the ones ob-
tained using the modified Pagano method. These convergent solutions of the state
space DRK method are also compared with the solutions obtained using the equiv-
alent single-layered theories with second- and fourth-order displacement models
(i.e., ED2 and ED4), those using with fourth-order mixed models combined with a
zig-zag function (EMZ4), and those using layerwise theories with the fourth-order
mixed models (LM4), and these are shown to be closely agree with the solutions
obtained using LM4 and EMZ4. In addition, results show that the performance
among the above-mentioned 2D and approximate 3D theories available in the liter-
ature is LM4>EMZ4>ED4>ED2, in which the symbol “>” means more accurate
and a faster convergence rate.

Table 2 shows the state space DRK solutions for the critical load parameters of
axially loaded, [0◦/90◦]s and [0◦/90◦/0◦/90◦]s laminated cylinders with fully sim-
ply supported edges, in which the material properties, geometrical parameters, and
critical load parameters are the same as those in Table 1, and n=3, a = 3.1∆x and
np=25 are adopted based on the conclusions of the convergence studies shown in
Table 1. It can be seen in Table 2 that the state space DRK solutions converge when
the total number of artificially divided layers (Nl) is taken to be Nl=16, and these
sixteen-layer solutions are in excellent agreement with the modified Pagano solu-
tions [Wu and Tsai (2012)] and LM4 ones [D’Ottavio and Carrera (2010)]. The
state space DRK solutions are also compared with the solutions obtained using the
refined and advanced 2D theories by D’Ottavio and Carrera (2010), such as ED2,
ED4, EMZ4 and LM4, the modified Pagano solutions, and the ANSYS commercial
software using 3D brick element with (4x12x16), (8x25x16) and (16x50x16) mesh-
es in the (x, θ , ζ ) axes. Again, the performance of these 2D refined and advanced
theories is shown to be LM4>EMZ4>ED4>ED2. The relative errors between the
modified Pagano solutions and sixteen-layer state space DRK ones are less than
0.5%, while those between the modified Pagano solutions and ANSYS ones us-
ing a mesh (16x50x16) for [0◦/90◦]s laminated cylinders and a mesh (16x50x32)
for [0◦/90◦/0◦/90◦]s laminated ones are below 3%. In addition, the critical load
parameters increase when the value of orthotropic ratio (EL/ET ) becomes greater,
which implies that the gross stiffness of the cylinder becomes greater.
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Figure 2: The through-thickness distributions of Young’s and shear moduli for an
FG CNTRC cylinder with V ∗CNT = 0.17 (a) E11 (b) E22 (c) G12

6.2 CNTRC hollow cylinders

In this section, the buckling analysis of simply-supported, single-layered CNTRC
circular hollow cylinders under axial compression is carried out, in which PmPV
[Han and Elliott (2007)] is used as the matrix, the material properties of which
are νm=0.34 and Em=2.1 GPa at room temperature (300K), and armchair (10,
10) single-walled CNTs are used as the reinforcements, the material properties of
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Figure 3: Variations of the critical load parameters of axially loaded and simply-
supported, FG CNTRC cylinders with the length-to-radius ratio for n̂ = 1− 4,
R/h = 10 and V ∗CNT = 0.11 (a) UD, (b) FG R-type, (c) FG X-type.

which are (E11)CNT =5646.6GPa, (E22)CNT = (E33)CNT =7080.0 GPa, (G12)CNT =
(G13)CNT = (G23)CNT =1944.5 GPa and (ν12)CNT = (ν13)CNT = (ν23)CNT =0.175
(Zhang and Shen, 2006). In addition, the CNT efficiency parameters ηk (k=1-3)
given in Eqs. (1a-c) are taken to be η1=0.149 and η2 = η3=0.934 in the case of
V ∗CNT =0.11, η1=0.150 and η2 = η3=0.941 in the case of V ∗CNT =0.14, and η1=0.149
and η2 = η3=1.381 in the case of V ∗CNT =0.17, and these were determined by e-
qualizing the elastic properties of CNTRC plates obtained using the rule of mix-
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Figure 4: Variations of the critical load parameters of axially loaded and simply-
supported, FG CNTRC cylinders with the length-to-radius ratio for n̂ = 1− 4,
R/h = 10 and V ∗CNT = 0.17 (a) UD, (b) FG R-type, (c) FG X-type.

tures and molecular dynamics simulation (Han and Elliott, 2007). The variations
of the Young’s moduli, E11 and E22, and shear modulus, G12, with the thickness
coordinate of the CNTRC cylinder for different CNT distributions, UD and FG R-
and X-type distributions, in the case of V ∗CNT =0.17, are shown in Fig. 2, and note
that the integrations of these moduli through the thickness coordinate are identical
to one another. Moreover, the dimensionless critical load parameter is defined as
(P̄x)cr = (Px)cr R2/

(
2πREmh3

)
.
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Table 3: Convergence studies for the state space DRK solutions of the critical load
parameters of simply-supported, FG CNTRC cylinders under axial compression
(n=3,a=3.1∆x , np = 15 , L/R=5, R/h=10, and (P̄x)cr = (Px)crR2/(2πREmh3)).

V ∗CNT n̂ Theories
CNT distributions

UD-type FG R-type FG X-type
0.11 1 Present (Nl = 5 ) 19.2832 18.4827 20.3559

Present (Nl = 10 ) 19.2840 19.0302 19.6978
Present (Nl = 20 ) 19.2848 19.0214 19.7113
Present (Nl = 40 ) 19.2848 19.0198 19.7153

Modified Pagano (Wu and Tsai, 2012) 19.3162 18.9896 19.7674
2 Present (Nl = 5 ) 10.2098 9.4045 11.1130

Present (Nl = 10 ) 10.2114 9.6241 10.8114
Present (Nl = 20 ) 10.2122 9.6066 10.8305
Present (Nl = 40 ) 10.2122 9.6034 10.8353

Modified Pagano (Wu and Tsai, 2012) 10.2307 9.6187 10.9164
3 Present (Nl = 5 ) 12.0886 9.8883 14.4194

Present (Nl = 10 ) 12.0894 9.9663 14.1600
Present (Nl = 20 ) 12.0902 9.9018 14.2269
Present (Nl = 40 ) 12.0902 9.8891 14.2428

Modified Pagano (Wu and Tsai, 2012) 12.3189 10.1867 14.2538
0.14 1 Present (Nl = 5 ) 20.3241 19.5323 21.5727

Present (Nl = 10 ) 20.3257 20.0647 20.9018
Present (Nl = 20 ) 20.3257 20.0559 20.9209
Present (Nl = 40 ) 20.3257 20.0543 20.9257

Modified Pagano (Wu and Tsai, 2012) 20.3695 19.5656 20.9843
2 Present (Nl = 5 ) 10.9706 10.0705 12.0815

Present (Nl = 10 ) 10.9721 10.2798 11.7735
Present (Nl = 20 ) 10.9729 10.2567 11.7997
Present (Nl = 40 ) 10.9729 10.2528 11.8061

Modified Pagano (Wu and Tsai, 2012) 11.0159 10.2553 11.9105
3 Present (Nl = 5 ) 13.5528 10.8480 16.3961

Present (Nl = 10 ) 13.5544 10.8735 16.1399
Present (Nl = 20 ) 13.5552 10.7899 16.2227
Present (Nl = 40 ) 13.5552 10.7716 16.2434

Modified Pagano (Wu and Tsai, 2012) 13.6900 11.0757 16.0276
0.17 1 Present (Nl = 5 ) 30.5164 29.6394 32.4039

Present (Nl = 10 ) 30.5180 30.3763 31.4148
Present (Nl = 20 ) 30.5188 30.3723 31.4450
Present (Nl = 40 ) 30.5188 30.3715 31.4530

Modified Pagano (Wu and Tsai, 2012) 30.5658 28.4854 31.5316
2 Present (Nl = 5 ) 16.0977 14.9025 17.7203

Present (Nl = 10 ) 16.1001 15.1905 17.2882
Present (Nl = 20 ) 16.1001 15.1643 17.3272
Present (Nl = 40 ) 16.1009 15.1603 17.3367

Modified Pagano (Wu and Tsai, 2012) 16.1271 15.1820 17.4399
3 Present (Nl = 5 ) 18.9299 15.4587 22.7281

Present (Nl = 10 ) 18.9323 15.5327 22.3509
Present (Nl = 20 ) 18.9331 15.4309 22.4599
Present (Nl = 40 ) 18.9331 15.4118 22.4878

Modified Pagano (Wu and Tsai, 2012) 19.3126 15.8701 22.6490
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Table 4: The state space DRK solutions of the critical load parameters of simply-
supported, CNTRC cylinders under axial compression (n=3,a=3.1∆x , np = 15 ,
L/R=5, V ∗CNT = 0.11 , and (P̄x)cr = (Px)crR2/(2πREmh3)).

R/h n̂ Theories
CNT distributions

UD-type FG R-type FG X-type
5 1 Present (Nl = 5 ) 5.3215 4.9247 5.7671

Present (Nl = 10 ) 5.3226 5.0441 5.6000
Present (Nl = 20 ) 5.3226 5.0338 5.6091
Present (Nl = 40 ) 5.3226 5.0316 5.6113

Modified Pagano (Wu and Tsai, 2012) 5.3322 5.0453 5.6189
2 Present (Nl = 5 ) 4.6701 4.0846 5.2783

Present (Nl = 10 ) 4.6712 4.1619 5.1498
Present (Nl = 20 ) 4.6723 4.1483 5.1646
Present (Nl = 40 ) 4.6723 4.1460 5.1691

Modified Pagano (Wu and Tsai, 2012) 4.6747 4.1606 5.1673
3 Present (Nl = 5 ) 7.4689 6.3696 7.9532

Present (Nl = 10 ) 7.1688 5.9797 7.7872
Present (Nl = 20 ) 7.2631 5.9342 7.7940
Present (Nl = 40 ) 7.2188 5.9137 7.8111

Modified Pagano (Wu and Tsai, 2012) 7.2442 5.9498 7.9220
20 1 Present (Nl = 5 ) 58.8646 45.9594 68.4366

Present (Nl = 10 ) 58.8600 44.6543 67.8455
Present (Nl = 20 ) 58.8600 43.9268 67.9364
Present (Nl = 40 ) 58.8555 43.7449 67.9819

Modified Pagano (Wu and Tsai, 2012) 58.5862 45.6923 66.4633
2 Present (Nl = 5 ) 31.5491 30.1258 33.3771

Present (Nl = 10 ) 31.5491 30.9716 32.3767
Present (Nl = 20 ) 31.5491 30.9579 32.3994
Present (Nl = 40 ) 31.5491 30.9579 32.4085

Modified Pagano (Wu and Tsai, 2012) 31.5171 30.9681 32.3614
3 Present (Nl = 5 ) 23.6732 22.0134 26.7198

Present (Nl = 10 ) 23.6732 22.0634 26.0650
Present (Nl = 20 ) 23.6732 21.8906 26.1423
Present (Nl = 40 ) 23.6732 21.8542 26.1605

Modified Pagano (Wu and Tsai, 2012) 23.8796 21.3099 26.5538

Tables 3 and 4 show the convergence studies of the state space DRK solutions
when varying the number of individual layers (Nl) for the critical load parameters
of axially loaded and simply-supported FG CNTRC cylinders with different CNT
distributions, volume fractions of CNTs, wave number in the circumferential coor-
dinate, and the radius-to-thickness ratio, in which n=3, a = 3.1∆x, np=15, L/R=5,
R/h=5, 10 and 20, and V ∗CNT =0.11, 0.14 and 0.17. It can be seen that the conver-
gent solutions are obtained at Nl=20, and these are in excellent agreement with the
3D elasticity solutions obtained using the modified Pagano method (Wu and Tsai,
2012). The critical load of a CNTRC cylinder increases when the volume fraction
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of CNTs becomes larger and the radius-to-thickness ratio smaller, which implies
that the cylinder becomes stiffer, and these values for the cases of UD and FG R-
and X-type CNT distributions are FG X-type > UD >FG R-type, in which “>”
means larger, which reflects the fact that CNT reinforcements distributed close to
the top and bottom surfaces are more efficient than those distributed near the mid-
surface with regard to enhancing the stiffness of the CNTRC cylinders, and this is
also found in Lei et al. (2013). Moreover, the lowest critical load parameter occurs
at the second wave number in the circumferential coordinate (n̂ = 2) in the case of
R/h=10, and thus will not be affected by changing the values of V ∗CNT .

Figures 3 and 4 show variations of the critical load parameters of axially-loaded
and simply-supported, FG CNTRC cylinders with the length-to-radius ratio for
V ∗CNT =0.11 and 0.17, respectively, in which n̂=1-4 and R/h=10, and the CNT distri-
butions are UD, R-type and X-type ones. Referring to the figures, the magnitude of
the lowest critical load parameters and their corresponding wave numbers (n̂) for a
wide range of length-to-radius ratios (L/R=2-20) are shown using a solid dark line.
It can be seen that most of the lowest critical load parameters occur at n̂=2, and that
the critical load parameters for the cases of different CNT distributions are FG X-
type> UD > FG R-type. The critical load parameters of the cylinder increase when
the volume fraction of CNTs becomes greater, which means the cylinder becomes
stiffer, while their corresponding wave numbers and the variation patterns between
the lowest critical load parameter and length-to-radius ratio will not be affected.

7 Conclusions

On the basis of the RMVT, in this article we have developed the state space DRK
method for the 3D buckling analysis of simply-supported, FG CNTRC circular hol-
low cylinders and laminated composite ones subjected to axial compression. In the
illustrative examples, it is shown that these state space DRK solutions of critical
load parameters converge rapidly, and are in excellent agreement with the exact
3D solutions and accurate ones obtained using higher-order layerwise theories and
ANASYS software for simply-supported laminated composite cylinders available
in the literature. When using this method, it is suggested that the highest order of
the basis functions (n) should be set at n ≥3, the number of uniformly-distributed
nodes (Np) be Np= 29, and that the radius of the influence zone (a) to be 3.1 times
the spacing between the adjacent nodes (i.e., a = 3.1∆zm) when n=3 is used. It is
also seen in the illustrative examples that the critical load parameters of the cylin-
ders for the cases of different CNT distributions are FG X-type> UD > FG R-type,
which reflects the fact that CNT reinforcements that are distributed close to the top
and bottom surfaces are more efficient than those distributed near the mid-surface
with regard to enhancing the stiffness of the CNTRC cylinders. The critical load
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parameters increase when the volume fraction of CNTs becomes greater, while
their corresponding wave numbers and the variation between the lowest critical
load parameter and length-to-radius ratio will not be affected.
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Lü, C. F.; Chen, W. Q.; Shao, J. W. (2008): Semi-analytical three-dimensional e-
lasticity solutions for generally laminated composite plates. Eur. J. Mech. A/Solids,
vol. 27, pp. 899-917.
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Appendix A Derivatives of the DRK interpolation function

Because the DRK interpolation function in the present scheme, Fa(x,zm), is given
in Eq. (49), its first-order derivative with respect to x is thus expressed as

dFa(x,zm)

dx
=

np

∑
l=1

ψ
(1)
l (x)Fl =

np

∑
l=1

(
φ̄
(1)
l (x)+

dφ̂l(x)
dx

)
Fl, (A.1)

where ψ
(1)
l (x) (l=1,2,. . . , np) denote the shape functions of the first-order derivative

of Fa(x,zm) with respect to x, and φ̄
(1)
l (x) = wa(x− xl) PT (x− xl) b̄1 (x).

The differential reproducing conditions for a set of complete nth-order polynomials
are given as

np

∑
l=1

[
φ
(1)
l (x)+

dφ̂l(x)
dx

]
xr

l = rxr−1 r ≤ n. (A.2)

Equation (A.2) represents (n+1) differential reproducing conditions, and the matrix
form of these is given as

np

∑
l=1

P(x− xl) φ̄
(1)
l (x) =

np

∑
l=1

P(x− xl)wa(x− xl)PT (x− xl)b̄1(x)

=−P(1)(0)−
np

∑
l=1

P(x− xl)
dφ̂l (x)

dx
,

(A.3)

where (−1)
[
P(1)(0)

]
=− dP(x−xl)

dx

∣∣∣
x=xl

=
[

0 −1 0 · · · 0
]T .
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The undetermined function vector b̄1(x) can then be obtained, and this is given by

b̄1(x) = A−1(x)

[
−P(1)(0)−

np

∑
l=1

P(x− xl)
dφ̂l (x)

dx

]
. (A.4)

Substituting Eq. (A.4) into Eq. (A.1) yields the shape functions of the first-order
derivative of the reproducing kernel interpolation function with respect to x in the
form of

ψ
(1)
l (x) = φ̄

(1)
l (x)+

dφ̂l(x)
dx

, (A.5)

where φ̄
(1)
l (x) = wa (x− xl)PT (x− xl)A−1 (x)

[
−P(1) (0)−

np

∑
l=1

P(x− xl)
dφ̂l(x)

dx

]
.

Carrying out a similar derivation for the higher-order derivatives of Fa (x,zm) leads
to

dkFa(x)
dxk =

np

∑
l=1

ψ
(k)
l (x)Fl, (A.6)

where ψ
(k)
l (x) = φ̄

(k)
l (x)+ dkφ̂l(x)

dxk ,

φ̄
(k)
l (x) = wa (x− xl)PT (x− xl)A−1 (x)

[
(−1)k P(k) (0)−

np

∑
l=1

P(x− xl)
dkφ̂l (x)

dxk

]
,

P(k)(0) =
dkP(x− xl)

dxk

∣∣∣∣
x=xl

.




