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Enrichment Procedures for Soft Clusters: A Statistical
Test and its Applications
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Abstract: Clusters, typically mined by modeling locality of attribute spaces, are
often evaluated for their ability to demonstrate ‘enrichment’ of categorical features.
A cluster enrichment procedure evaluates the membership of a cluster for signifi-
cant representation in predefined categories of interest. While classical enrichment
procedures assume a hard clustering definition, this paper introduces a new statis-
tical test that computes enrichments for soft clusters. Application of the new test to
several scientific datasets is given.
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1 Introduction

Clustering is an unsupervised process that models locality of data samples in at-
tribute space to identify groupings: samples within a group are closer to each other
than to samples from other groups. To assess whether the discovered clusters are
meaningful, a typical procedure is to see if the groupings capture other categor-
ical information not originally used during clustering. For instance, in microar-
ray bioinformatics, data samples correspond to genes and their expression vectors,
clusters capture locality in expression space, and they are evaluated to see if genes
within a cluster share common biological function/annotations. (Observe that the
functional annotations are not used during clustering). In text mining, data samples
correspond to documents and their text vectors, clusters capture locality in term
space, and are evaluated for their correspondence with a priori domain information
such as topics. In remote sensing, data samples correspond to pixels in an image,
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clusters capture locality of pixel intensities, and are evaluated for their correspon-
dence with land cover classifications.

All of the above applications are essentially determining whether locality in one
space preserves correspondence with information in another space, also referred
to as the cluster assumption [Chapelle, Schölkopf, and Zien (2006)]. While clus-
ter evaluation is typically conducted as a distinct post-processing stage after min-
ing, recently developed clustering formulations blur this boundary. For instance,
in Wagstaff, Cardie, Rogers, and Schrödl (2001), locality information is used a-
long with background knowledge to influence the clustering. Such background
knowledge takes the form of constraints, some of which dictate that certain sam-
ples should appear in the same cluster, while others specify that two samples should
be in different clusters. Similarly, in Tishby, Pereira, and Bialek (1999), clusters
are designed using an objective function that balances compression of the prima-
ry random variable against preservation of mutual information with an auxiliary
variable. With the advent of semisupervised clustering [Chapelle, Schölkopf, and
Zien (2006)], more ways to integrate labeled and unlabeled information are rapidly
being proposed.

The design of both classical and the newer clustering algorithms is predicated on
the ability to evaluate clusters for enrichment and using this information to drive
the refinement and subsequent discovery of clusters. However, classical statistical
enrichment procedures (e.g., using the hyper-geometric distribution [Ewens and
Grant (2001)]) assume a hard clustering formulation. The focus here is on soft
clusters where the groupings are defined by portions of individual samples. This
paper presents a new statistical test to enrich soft clusters and demonstrates its
application to several datasets.

2 Clustering

Clustering can be used to analyze and discover relationships in large datasets.
Strictly unsupervised clustering is used in the absence of information about target
clusters and variables of interest, however, clustering can be partially supervised or
guided when additional information regarding target clusters is available.

Clustering by itself does not correspond to classification, the process by which class
labels are assigned to individual data elements, but clustering can be a useful tool
in the classification of large datasets. When clusters are used to organize similar
elements in a dataset, class labels can be assigned to entire clusters, allowing indi-
vidual elements within a cluster to be assigned that class label. Because samples
or elements in a particular cluster are similar or “close,” they are assumed likely
to share a class label, which is known as the cluster assumption. Assigning labels
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to a modest number of clusters is less time intensive than assigning labels to many
individual samples, so if the cluster assumption holds, clustering is an efficient and
powerful tool in classification. Unfortunately, this cluster assumption does not hold
in all cases, as there is no rule that dictates that “close” samples must share a label.

Finally, the descriptions of clustering, semisupervised clustering, and cluster e-
valuation given above assume a specific type of clustering where clusters are col-
lections of individual elements, known as hard or crisp clustering. Alternatively,
clusters can be defined by portions of individual samples, known as soft clustering.
Soft cluster evaluation becomes less intuitive as clusters will no longer “contain”
individual samples, and clusters cannot be composed primarily from samples be-
longing to one class in the same sense. The following subsections define hard and
soft clustering and classification.

2.1 Hard Clustering

Hard clustering produces clusters that are a collection of individual samples. Let
the ith sample be denoted by x(i) ∈ ℜb where i = 1, . . ., n. A cluster is typically
represented by a prototype, such as the mean of the samples contained in the cluster,
and let the jth cluster prototype be U ( j) ∈ℜb where j = 1, . . ., K. All clusters taken
together form a partition of the data, defined by a partition matrix, w with wi j = 1
indicating that the ith sample belongs to the jth cluster, wi j = 0 otherwise, and
∑

K
j=1 wi j = 1 for all i. Each sample is a member of exactly one cluster.

A classic example of a simple hard clustering method is the K-means clustering
algorithm that locates a local minimum point of the objective function

J(ρ) =
n

∑
i=1

K

∑
j=1

wi jρi j (1)

subject to
K

∑
j=1

wi j = 1, for i = 1, . . . ,n,

where ρi j = ‖x(i)−U ( j)‖2
2 [MacQueen (1974)]. In this case, ρi j is a measure of

dissimilarity or distance between the ith sample and the jth cluster. The K-means
clustering algorithm attempts to find the ideal partition that minimizes the sum of
squared distances between each sample and the prototype of the cluster to which the
sample belongs. The algorithm for K-means requires K initial cluster prototypes
and iteratively assigns each sample to the closest cluster using

wi j =

1, if j = argmin
1≤ j≤K

ρi j,

0, otherwise,
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for each i, followed by the cluster prototype (mean) recalculation

U ( j) =
n

∑
i=1

(wi jx(i))
/ n

∑
i=1

wi j

once w has been calculated. This process, guaranteed to terminate in a finite number
of iterations, continues until no further improvement is possible, terminating at a
local minimum point of (1).

In hard clusters, such as those produced by K-means, the collection of samples that
belong to a particular cluster can be evaluated to determine a cluster’s eligibility to
perform classification. The class memberships of the labeled samples in a particular
cluster can be modeled using discrete random variables generated from binomial,
multinomial, or hypergeometric distributions, for example. These random variables
form the basis of statistical tests used to evaluate clusters for classification. For ex-
ample, let Vic be a Bernoulli random variable where success (Vic = 1) indicates the
ith labeled sample is labeled with the cth class. The number of labeled samples
labeled with the cth class in a particular cluster would be a binomial random vari-
able Vc, j = ∑i∈I j Vic where I j is the index set of labeled samples belonging to the
jth cluster. This binomial random variable can be used as the basis for a statistical
hypothesis test to determine if the number of samples labeled with the cth class (as
opposed to all other classes) in the jth cluster is significant. In practice, the cth
class that would be tested would be the class that is most represented in the jth
cluster, or mathematically, c = argmax1≤c≤CVc, j for a particular j where C is the
number of classes.

2.2 Soft Clustering

Soft clusters are clusters that instead of containing a collection of individual sam-
ples, contain portions of individual samples. Another view of soft clustering is that
each sample has a probability of belonging to a particular cluster. Soft clustering
has advantages over hard clustering in that a sample is not simply assigned to the
closest cluster, but information is preserved about relationships to other clusters as
well. Furthermore, these continuous assignments are less constrained that discrete
assignments, resulting in a less constrained objective function. Like in hard clus-
tering, wi j indicates cluster membership, but instead of being either zero or one,
wi j ∈ (0,1), and like in hard clustering, ∑

K
j=1 wi j = 1 for all i. Some versions of

fuzzy clustering do not impose this requirement, but those nonprobabilistic meth-
ods will not be considered here.

An example of a soft clustering method analogous to K-means is fuzzy K-means



Enrichment Procedures for Soft Clusters 179

that locates a local minimum point of the objective function

J(ρ) =
n

∑
i=1

K

∑
j=1

wp
i jρi j (2)

subject to

K

∑
j=1

wi j = 1

where ρi j is still the squared Euclidean distance between x(i) and U ( j) and p > 1
[Bezdek (1980)]. The algorithm that minimizes this objective function is similar to
that of K-means in that it first calculates

wi j =
(1/ρi j)

1/(p−1)

K
∑

k=1
(1/ρik)1/p−1

for all i and j followed by calculating updated cluster prototypes

U ( j) =
n

∑
i=1

wp
i jx

(i)
/ n

∑
i=1

wp
i j.

The cluster prototype is a weighted average. This iteration (recalculation of the
weights followed by recalculation of cluster prototypes, following by recalculation
of the weights, etc.) is guaranteed to converge (with these definitions of ρi j, U ( j),
and wi j) for p > 1 [Bezdek (1980)].

3 Soft Cluster Evaluation

Evaluation of soft clusters requires taking cluster weights into account when ex-
amining class memberships of the labeled samples. Each labeled sample will have
some positive membership in each cluster, and a new type of evaluation will be
necessary to directly evaluate soft clusters. Soft cluster memberships could be con-
verted to hard cluster memberships for the purpose of cluster evaluation, but if soft
clustering is warranted, those soft clusters should be evaluated directly.

Hard cluster evaluation (for classification) is based on the composition of the clus-
ter, or what type of samples are making up the cluster. The question of whether a
cluster should be used for classification can be answered when some of the sam-
ples within the cluster have labels and there are a sufficient number of samples to
draw statistical conclusions. Because soft clusters no longer “contain” samples,
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the more important question is whether the relative magnitudes of memberships
between samples of a particular class and the cluster are significantly different. In
other words, if the magnitude of cluster memberships for samples of a particular
class appear to be significantly higher than memberships for other classes, then the
cluster is demonstrating characteristics of that class. With hard clusters, a cluster is
pure if only one class is contained in the cluster; no samples labeled with another
class are present in the cluster. This is impossible in soft clustering as all types
of samples will have positive memberships in all clusters, and in practice, these
memberships, although possibly small, will be nonnegligible.

Just as hard clusters that are ideal for classification contain only one class, soft clus-
ters that are ideal for classification will be representative of just one class. The goal
in using soft clustering for classification is to assign a class label to an entire cluster
(the same goal for hard clusters), but just as each sample has a soft membership in
a particular cluster, each sample will have soft membership in a class. The samples
demonstrate characteristics of multiple classes, justifying soft classification, but the
clusters (logical grouping of similar data) should not contain or represent multiple
classes. The goal of this work is to associate a soft cluster to one particular class
if that class is clearly dominant within the cluster. Probability will determine how
clearly a particular cluster is composed of one class, and if this probability passes
a predetermined threshold test, the cluster will be associated with a class.

3.1 Hypothesis Test

The statistical tests used to evaluate clusters in this paper are statistical hypothesis
tests, where a null hypothesis is proposed. If observed evidence strongly indicates
the null hypothesis should be rejected, the alternate hypothesis will be accepted. In
the absence of compelling evidence to the contrary, the null hypothesis cannot be
rejected.

The first hypothesis test is based on the average cluster weights in the cluster of
interest, the jth cluster. In order to associate the jth cluster to the cth class, the
average cluster weight for the cth class

w̄c, j =
1
nc

∑
i∈Jc

wi j,

where nc is the number of samples labeled with the cth class and Jc is the index
set of samples labeled with the cth class, should be statistically significantly higher
than other cluster weights for the jth cluster. If the weights for samples labeled
with the cth class are higher in general than samples from arbitrary classes, the
cluster is demonstrating a tendency to the cth class, and can be used to discriminate
the cth class from other classes.
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The null hypothesis is that the average cluster weights for samples from the cth
class in the jth cluster is not significantly different from the average cluster weight
for samples from all classes in the jth cluster. The alternate hypothesis is that the
average weight for samples from the cth class in the jth cluster is significantly
different (higher) than the average cluster weight for all samples. Note that in
practice, only the class with the highest average cluster weight for the jth cluster
would be considered. Suppose that a test statistic derived for this test is normally
distributed, and is in fact a standard normal random variable Z. Then if the observed
value is ẑ, if P(Z ≥ ẑ) ≤ α for 0 < α < 1, the null hypothesis is rejected. The
following sections derive appropriate test statistics to use in this hypothesis test.

3.2 Test Statistic 1

Suppose a dataset x contains n samples x(i) ∈ℜB, i = 1, . . . , n. For K fixed cluster
centers U (k) ∈ ℜB, k = 1, . . ., K, the assigned weight of the ith pixel to the jth
cluster is

wi j =
1/‖x(i)−U ( j)‖2

2
K
∑

k=1
1/‖x(i)−U (k)‖2

2

which is the inverse of the distance squared over the sum of the inverse squared
distances. (Such inverse distance weights are widely used, e.g., by Shepard’s al-
gorithm for sparse data interpolation.) Note this is the specific case in the soft
clustering algorithm described above when p = 2. In many practical applications
where a dataset is to be clustered (such as the clustering of a remotely sensed im-
age), it is reasonable to assume that x(i), i = 1, . . ., n are generated from a finite
number of multivariate normal distributions. The act of clustering assumes that the
data are generated from a finite number of distributions. The following theorem
from Phillips, Watson, Wynne, and Ramakrishnan (2009a) demonstrates that under
these assumptions (samples are generated from a finite number of normal distribu-
tions), the Lindeberg condition is satisfied and therefore the central limit theorem
applies to the sum of a sequence of cluster weight random variables ∑

n
i=1Wi j. Let

q = ψ(i) denote the distribution from which the random vector X (i) was sampled.

Theorem: Let X (i) , i = 1, 2, . . ., be B-dimensional random vectors having one of Q
distinct multivariate normal distributions. For i = 1, 2, . . . and j = 1, . . ., K define
the random variables

Wi j =Wj(X (i)) =
1/‖X (i)−U ( j)‖2

2

∑
K
k=1 1/‖X (i)−U (k)‖2

2
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Figure 1: Distribution of sums of weights in one soft cluster out of two.

where K is the number of clusters and U (k) ∈ ℜB is the kth cluster center (and is
considered fixed for weight calculation). Then for any j = 1, . . ., K,

P

{
1

Bn j

n

∑
i=1

(Wi j−ai j)< x

}
→ 1√

2π

∫ x

−∞

e−
z2
2 dz

as n→ ∞, where ai j = E[Wi j], b2
i j = Var[Wi j], and B2

n j = ∑
n
i=1 b2

i j.

Remark: The assumption that the X (i), i = 1, 2, . . ., are generated from a finite
number of normal distributions is stronger than necessary. The proof in Phillips,
Watson, Wynne, and Ramakrishnan (2009a) holds if X (i), i= 1, 2, . . ., are generated
from a finite number of arbitrary distributions.

Experimental clustering results using a dataset described in Section 4 of this paper
match this theoretical result, as illustrated by one experiment in Fig. 1. This illus-
tration shows the distribution of sums of cluster weights for one particular cluster
(when K = 2).

Starting with the normal approximation for the sum of the cluster weights, the
standard normal test statistic would be

ẑ =
∑

i∈Jc

(wi j−E[Wi j])√
∑

i∈Jc

Var[Wi j]
,
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where E[Wi j] is the expected value of Wi j and Var[Wi j] is the variance of Wi j for the
jth cluster. E[Wi j] and Var[Wi j] are unknown, but can be reasonably approximated
using the sample mean

w̄ j =
1
n

n

∑
i=1

wi j

and sample standard deviation

Sw̄ j =

√
1

n−1

n

∑
i=1

(wi j− w̄ j)2.

The Wald statistic is then

ẑ =
√

nc(w̄c, j− w̄ j)

Sw̄ j

,

where

w̄c, j =
1
nc

∑
i∈Jc

wi j.

Since ẑ is generated (approximately) by the standard normal distribution, this test
statistic can be used in the proposed hypothesis test.

3.3 Test Statistic 2

One potential issue with the above statistic is that the sample mean and standard
deviation calculations assume the sample is identically distributed, which is specif-
ically not the assumption in this case (clustering assumes that the data are gen-
erated from a number of distributions, where the true number of clusters is equal
to the number of distributions, which is unknown apriori). A better statistic ac-
knowledges that the data are not identically distributed, but are generated from a
finite number of distributions. Since the number of distributions and the distribu-
tions are unknown, the number of classes and the individual class labels, which
are assumed to correspond to inherent structure of the data, are used to approxi-
mate the true mean and variance of multiple clusters. Precisely, assume that all
labeled sample indices i with distribution index ψ(i) = q correspond to the same
class label φ(i) = c. If i ∈ ψ−1(q), then i ∈ φ−1(c), but i ∈ φ−1(c) does not
imply i ∈ ψ−1(q) (more than one distribution can correspond to one class), and
Jc = φ−1(c) = {i | φ(i) = c,1 ≤ i ≤ n}. The above statistic requires modification
to use class information. In the previous statistic,

∑
i∈Jc

wi j =
n

∑
i=1

wi jδphi(i),c,
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ẑ =

n
∑

i=1
(wi jδphi(i),c−E[Wi jδφ(i),c]√

n
∑

i=1
Var[Wi jδφ(i),c

,

n

∑
i=1

(wi jδφ(i),c−E[Wi jδφ(i),c])

=
n

∑
i=1

(wi jδφ(i),c−ai jδφ(i),c)

=
n

∑
i=1

(wi jδφ(i),c−aq jδφ(i),c),

recalling that E[Wi j] = ai j = αq j for i ∈ Iq. Assume when φ(i) = c, and distribution
index q = ψ(i) corresponds to c = φ(i), then αq j can be approximated by γc j, the
mean of class c = φ(i). Ideally αq j should be approximated directly, but there is
no way to know ψ−1(q), so essentially ψ−1(q)⊂ φ−1(c) is being approximated by
φ−1(c). Unfortunately, using the sample mean of the cth class and the jth cluster
to approximate γc j and therefore αq j breaks down because the sample mean of the
cth class and the jth cluster is both the random variable on the left side and the
approximation of the expected value on the right side of the minus sign. This is
illustrated below. Approximating γc j (and αq j) with the sample mean for the cth
class,

γc j ≈ w̄c, j

n
∑

k=1
wk jδφ(k),c

n
∑

k=1
δφ(k),c

the numerator of the test statistic ẑ becomes
n

∑
i=1

(wi jδφ(i),c− w̄c, jδφ(i),c)

=
n

∑
i=1

wi jδφ(i),c−

n
∑

i=1
wk jδφ(k),c

n
∑

k=1
δφ(k),c

n

∑
i=1

δφ(i),c

=
n

∑
i=1

wi jδφ(i),c−
n

∑
k=1

wk jδφ(k),c = 0.

Thus this test statistic does not work because the value being tested is the same as
the estimated mean for the cth class.
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In order to make use of class information to estimate distribution statistics (mean
and variance), it is necessary to modify the random variable to model class labels
as well as cluster memberships. Consider each labeled sample’s membership in a
particular class, say the cth class, to be a Bernoulli trial Vic, where Vic = 1 indicates
the ith sample is labeled with the cth class, and Wi j is defined above. Define

Yc, j =V1cW1 j +V2cW2 j + · · ·+VncWn j,

where n is the total number of labeled samples as the random variable for the sum of
weights for samples in the cth class to the jth cluster. The Central Limit Theorem
applies to this sum of bounded random variables with finite mean and variance (see
Theorem 1), and Yc, j is approximately normal.

Consider now the test statistic

ẑ =
yc, j−E[Yc, j]√

Var[Yc, j]
.

Fixing j and c, assuming Wi j and Vic are independent, and defining mq = |Iq|, the
number of indices i for which X (i) has the qth distribution,

E[Yc, j] = E

[
n

∑
i=1

Wi jVic

]
=

n

∑
i=1

E[Wi jVic]

=
n

∑
i=1

E[Wi j]E[Vic] =
Q

∑
q=1

mqαq j pc = pc

Q

∑
q=1

mqαq j,

where pc is the probability that Vic = 1. Assuming all the samples are independent
and recalling that Var[Wi j] = b2

i j = β 2
q j where i ∈ Iq,

Var[Yc, j] = Var

[
n

∑
i=1

Wi jVic

]
=

n

∑
i=1

Var[Wi jVic]

=
n

∑
i=1

(E[W 2
i jV

2
ic]−E[Wi jVic]

2)

=
n

∑
i=1

(pcE[W 2
i j]− p2

ca2
i j)

=
n

∑
i=1

(pc(b2
i j +a2

i j)− p2
ca2

i j)

=
Q

∑
q=1

mq(pc(β
2
q j +α

2
q j)− p2

cα
2
q j)

= pc

Q

∑
q=1

mq(β
2
q j +(1− pc)α

2
q j).
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In the above formula, pc would be approximated by its maximum likelihood es-
timate nc/n = |Jc|/n. In order to estimate αq j, assume that the qth distribution
corresponds to the cth class, ψ−1(q)⊂ φ−1(c), and

αq j ≈ w̄c, j =
1
nc

∑
i∈Jc

wi j, c = 1, . . . ,C,

where C is the number of classes. Then

E[Yc, j] = pc

Q

∑
q=1

mqαq j ≈ pc

C

∑
d=1

nd ·
1
nd

∑
i∈Jd

wi j

=
nc

n

n

∑
i=1

wi j = ncw̄ j,

and

Var[Yc, j] = pc

Q

∑
q=1

mq(β
2
q j +(1− pc)α

2
q j)

≈ pc

C

∑
d=1

nd(S2
w̄d, j

+(1− pc)w̄2
d, j),

where

S2
w̄d, j

=
1

nd−1 ∑
i∈Jd

(wi j− w̄d, j)
2

Using these expressions for the mean and variance of Yc, j, the Wald statistic for the
cth class and jth cluster is

ẑ =
yc, j−ncw̄ j√

pc
C
∑

d=1
nd(S2

w̄d, j
+(1− pc)w̄2

d, j)

and the null hypothesis is rejected if P(Z ≥ ẑ)≤ α .

4 Experimental Results

This section presents experimental results to demonstrate the functioning of the new
statistical test. It is important to distinguish the nature of enrichments identified
by the new test from the quality of clusters mined by a specific algorithm. The
features evaluated are (i) whether the test is able to recognize clusters with partial
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Table 1: Datasets
Dataset # of instances # of features # of classes

Synthetic 200 2 4
Ionosphere 351 34 2

Vehicle 846 18 4
Glass 214 9 6

Cardiotocography 2126 21 10
Breast Tissue 106 9 6

Steel Plates Faults 1941 27 7

Synthetic data, 4 gaussians

X

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Y

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(a) Synthetic data (four Gaussians).

2.53E-33 3.84E-05 7.33E-05 7.49E-05
6.97E-05 7.04E-05 2.28E-33 3.92E-05
8.67E-05 8.51E-05 4.25E-05 2.66E-33
3.70E-05 2.75E-33 6.95E-05 7.76E-05

(b) Wald statistic (soft assignments).

1.73E-34 4.46E-05 4.46E-05 4.46E-05
4.46E-05 4.46E-05 1.73E-34 4.46E-05
4.46E-05 4.46E-05 4.46E-05 1.73E-34
4.46E-05 1.73E-34 4.46E-05 4.46E-05

(c) Wald statistic (hard assignments).

2.20E-48 1 1 1
1 1 2.20E-48 1
1 1 1 2.20E-48
1 2.20E-48 1 1

(d) Enrichment with hypergeometric distribution.
Figure 2: Enrichments of synthetic data (Jaccard similarity between class labels and clus-
ters=1.0).
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memberships (soft assignments) as being significant, (ii) whether it leads to a higher
number of assignments in soft clustering situations, and (iii) the variation in number
of enrichments as entropy of clusters and significance levels are changed. For the
purpose of this evaluation, consider the soft k-means algorithm where membership
probabilities at each stage of the iteration are non-zero across the clusters.

Table 1 describes the datasets used in this study; with the exception of the synthetic
dataset, all are taken from the UCI KDD/ML data repository. In each case, the
number of clusters to be identified is set equal to the number of natural classes
present in the dataset.

Fig. 2 presents results on synthetic data involving four separable Gaussians in a
two-dimensional layout. The enrichment p-values are also shown for all 16 com-
binations for the soft and hard versions of the Wald statistic as well as the hyper-
geometric test, which is commonly used for cluster evaluation. As can be seen, the
qualitative trends are the same so that for all stringent thresholds the results yield
four clusters enriched with four different class labels.

0.0002 0.0031
0.0007 0.0059

0.0038 0.0225
0.2341 0.5811

6.66E-15 1
1 6.66E-15

Figure 3: Ionosphere data. (left) Soft assignments: p-values are derived from Wald
statistic for the cth class and jth cluster. (middle) Hard assignments: p-values are
derived from Wald statistic for the cth class and jth cluster. (right) Enrichment
with hypergeometric distribution. (Jaccard similarity between fuzzy k-means and
the actual class-labels: 0.5865.)

Fig. 3 presents a more complicated situation with the ionosphere dataset. This
dataset involves two classes and there are more tangible differences between the
three statistical tests. Note that the Jaccard similarity between the fuzzy k-means
and class labels is not a perfect 1. As a result, for various values of the p-value
threshold, it is possible to get one, two, three, or four cells enriched by the Wald
statistic (soft assignment) whereas the hypergeometric distribution can lead to only
two or four cells enriched. The Wald statistic (hard assignment) also performs
better than the hypergeometric distribution.

Fig. 4 more directly describes a plot of the number of enriched cells as the p-value
cutoff is varied, using the vehicle dataset. The Wald statistics lead to a consistently
greater number of enrichments compared to the hypergeometric test. A similar plot
can be seen in Fig. 5.

A different type of evaluation is shown in Fig. 6(a) where the membership probabil-
ities are artificially varied (from a hard membership) to impose a specified entropy
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6.44E-20 4.11E-13 1.97E-11 0.004603
1.40E-05 0.010169 0.6351 9.90E-09
0.024838 3.03E-05 0.000149 7.72E-05
0.025948 5.46E-08 0.001541 4.93E-06

(a) Wald statistic (soft assignments).

4.19E-22 1.03E-11 1.30E-08 0.081319
1.07E-11 0.065437 0.40054 2.64E-11
0.21376 0.000141 0.001119 7.38E-05
0.20959 3.72E-06 0.002103 9.07E-06
(b) Wald statistic (hard assignments).

1.16E-28 1 1 0.008583
1 0.99319 0.87421 1.35E-21

0.95129 2.57E-06 8.34E-05 1
0.95245 1.78E-08 0.000202 1

(c) Enrichment with hypergeometric distribution.
Vehicle data
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(d) Number of enrichments at different p-value cut-offs.
Figure 4: Vehicle data. (a) Soft assignments: p-values are derived from Wald s-
tatistic for the cth class and jth cluster. (b) Hard assignments: p-values are derived
from Wald statistic for the cth class and jth cluster. (c) Enrichment with hyper-
geometric distribution. (Jaccard similarity between fuzzy k-means and the actual
class-labels: 0.6506.) (d) Number of enrichments at different p-value cut-offs with
the three enrichment procedures.
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Cardiotocography  data
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Figure 5: Cardiotocography data. Number of enrichments at different p-value
cut-offs with the three enrichment procedures (Jaccard similarity between fuzzy
k-means and actual class labels: 0.7896).

on their distribution. As the entropy increases, the number of enrichments drops
monotonically in the case of the Wald (soft) statistic whereas the hypergeometric
enrichment test does not account for the entropy in a smooth manner. Fig. 6(b)
demonstrates the variation for a fixed value of the entropy but increasingly lax val-
ues of the p-value threshold. Again, the enrichments for the Wald (soft) statistic
increase steadily. Similar plots for the breast tissue, steel plate faults, and glass
datasets are shown in Figs. 7, 8, 9, respectively. Finally, Fig. 10 superimposes the
variation of p-value cutoff and entropy threshold to describe how the variation seen
in previous plots manifests at all p-value thresholds, whereas the hypergeometric
distribution is uniformly unable to provide a richer variety of enrichments.

5 Conclusion

This paper presented a new statistical test suitable for enrichment of soft clusters. It
was shown how this test produces significantly more enrichments, tunable control
of number of enrichments, and smoother variation in enriched cells with entropy
and p-value cutoffs. The method can be used as given here or embedded inside
a cluster refinment algorithm for continuous evaluation and updating of clusters.
Since few soft cluster enrichment methods exist, the framework here contributes a
key methodology for clustering and cluster evaluation research.
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Cardiotocography  data. Fixed αααα=0.05, varying entropy

Entropy
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Cardiotocography  data. Fixed entropy=2.5853, varying αααα
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Cardiotocography  data. Fixed αααα=0.05, varying entropy
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Cardiotocography  data. Fixed entropy=2.5853, varying αααα
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Figure 6: Cardiotocography data. (top) Number of enrichments with fixed p-value
threshold but varying entropy. Note that the number of enrichments falls monoton-
ically with increasing entropy. (bottom) Number of enrichments with fixed entropy
and varying p-value threshold. Note that the number of enrichments monotonically
increases with increasing p-value threshold.
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BreastTissue data
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(a) Number of enrichments at
different p-value cut-offs.

BreastTissue data. Fixed αααα=0.05, varying entropy
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BreastTissue data. Fixed entropy=0.70174, varying αααα
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BreastTissue data. Fixed αααα=0.05, varying entropy
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BreastTissue data. Fixed entropy=0.70174, varying αααα
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(b) Number of enrichments with (c) Number of enrichments with
fixed p-value threshold fixed entropy threshold

and varying entropy. and varying p-value threshold.
Figure 7: Breast tissue data. (Jaccard similarity between fuzzy k-means and the
actual class-labels: 0.7051.) (a) Number of enrichments at different p-value cut-
offs with the three enrichment procedures. (b) Number of enrichments with fixed
p-value threshold but varying entropy. Note that the number of enrichments falls
monotonically with increasing entropy. (c) Number of enrichments with fixed en-
tropy and varying p-value threshold. Note that the number of enrichments mono-
tonically increases with increasing p-value threshold.
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Steel Plates Faults data
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(a) Number of enrichments at different
p-value cut-offs.

Steel Plates Faults  data. Fixed αααα=0.05, varying entropy
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Steel Plates Faults  data. Fixed entropy=1.2394, varying αααα
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Steel Plates Faults  data. Fixed αααα=0.05, varying entropy
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Steel Plates Faults  data. Fixed entropy=1.2394, varying αααα
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(b) Number of enrichments with (c) Number of enrichments with
fixed p-value threshold fixed entropy

and varying entropy. and varying p-value threshold.
Figure 8: Steel plates faults data. (Jaccard similarity between fuzzy k-means and
the actual class-labels: 0.6681.) (a) Number of enrichments at different p-value
cut-offs with the three enrichment procedures. (b) Number of enrichments with
fixed p-value threshold but varying entropy. Note that the number of enrichments
falls monotonically with increasing entropy for the Wald statistic. (c) Number of
enrichments with fixed entropy and varying p-value threshold. Note that the num-
ber of enrichments monotonically increases with increasing p-value threshold.
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0.001818 0.52675 0.024238 0.000976 0.002223 0.000158
0.50349 0.001906 0.027655 0.44946 0.01467 0.000578
0.74637 0.11826 0.27557 0.13109 0.14334 0.10098

0.076722 0.077435 0.0341 5.72E-14 0.52862 0.96004
0.22361 0.28552 0.92325 0.001095 0.59563 0.50917

0.001022 0.002282 0.48559 0.90422 0.071899 2.46E-29
(a) Wald statistic (soft assignments).

0.001963 0.11255 0.12676 0.009157 0.002023 0.000818
0.30894 0.00686 0.003817 0.30555 0.010584 0.000413
0.32133 0.015633 0.45692 0.2294 0.50024 0.13556

0.043498 0.16394 0.5157 1.58E-17 0.14028 0.77611
0.094326 0.11177 0.58895 0.010253 0.044467 0.41467
0.002171 0.066556 0.32999 0.34745 0.18909 6.81E-26

(b) Wald statistic (hard assignments).

2.94E-05 0.9909 1 1 0.000116 1
0.10504 0.000219 0.000592 0.93647 0.99994 1
0.94019 0.005541 1 1 0.31445 1

1 0.98804 1 2.50E-10 1 0.50722
1 1 1 0.030639 0.045746 0.31695
1 0.99672 1 0.93545 0.9751 1.63E-21

(c) Enrichment with hypergeometric distribution.
Glass data
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(d) Number of enrichments at different p-value cut-offs.
Figure 9: Glass data. (a) Soft assignments: p-values are derived from Wald statistic for
the cth class and jth cluster. (b) Hard assignments: p-values are derived from Wald statistic
for the cth class and jth cluster. (c) Enrichment with hypergeometric distribution. (Jaccard
similarity between fuzzy k-means and the actual class-labels: 0.7117.) (d) Number of
enrichments at different p-value cut-offs with different enrichment procedures.
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Glass data. Fixed αααα=0.05, varying entropy
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Glass data. Fixed entropy=0.70174, varying αααα
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(a)
Glass data. Varying , varying entropy
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Glass data. Fixed =0.05, varying entropy
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(b)
Figure 10: Glass data. In this example, assignments are directly taken from the
class labels. The entropy is changed by modifying the membership probability
of the class of every instance. (a) Number of enrichments with different p-value
thresholds and fixed entropy. (b) The plot at left shows how the number of en-
richments change over the p-value thresholds and entropy. Note that the p-value
is fixed for each of the spikes in this plot. For example, α remains 0.0020 in the
interval between 0.0020 and 0.0028. The plot at the right side shows the change in
number of enrichments with entropy where the p-value threshold is fixed.
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