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Frequency Domain Based Solution for Certain Class of
Wave Equations: An exhaustive study of Numerical

Solutions
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Abstract: The paper discusses the frequency domain based solution for a certain
class of wave equations such as: a second order partial differential equation in one
variable with constant and varying coefficients (Cantilever beam) and a coupled
second order partial differential equation in two variables with constant and vary-
ing coefficients (Timoshenko beam). The exact solution of the Cantilever beam
with uniform and varying cross-section and the Timoshenko beam with unifor-
m cross-section is available. However, the exact solution for Timoshenko beam
with varying cross-section is not available. Laplace spectral methods are used to
solve these problems exactly in frequency domain. The numerical solution in fre-
quency domain is done by discretisation in space by approximating the unknown
function using spectral functions like Chebyshev polynomials, Legendre polyno-
mials and also Normal polynomials. Different numerical methods such as Galerkin
Method, Petrov- Galerkin method, Method of moments and Collocation method or
the Pseudo-spectral method in frequency domain are studied and compared with
the available exact solution. An approximate solution is also obtained for the Tim-
oshenko beam with varying cross-section using Laplace Spectral Element Method
(LSEM). The group speeds are computed exactly for the Cantilever beam and Tim-
oshenko beam with uniform cross-section and is compared with the group speeds
obtained numerically. The shear mode and the bending modes of the Timoshenko
beam with uniform cross-section are separated numerically by applying a modulat-
ed pulse as the shear force and the corresponding group speeds for varying taper
parameter m are obtained numerically by varying the frequency of the input pulse.
An approximate expression for calculating group speeds corresponding to the shear
mode and the bending mode, and also the cut-off frequency is obtained. Finally,
we show that the cut-off frequency disappears for large m, for ε > 0 and increases
for large m, for ε < 0.
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cy domain method, Timoshenko beam, group speed, cut-off frequency

1 Introduction

In this paper we discuss the numerical solution of partial differential equations
(PDEs) using frequency domain approach for the following four classes of prob-
lems such as:
Problem (i) / Class (i): A cantilever beam of uniform cross-section.
Problem (ii) / Class (ii): A cantilever beam of varying cross-section.
Problem (iii) / Class (iii): A Timoshenko beam of uniform cross-section.
Problem (iv) / Class (iv): Timoshenko beam of varying cross-section.
Problem (i) is a second order PDE in one variable with constant coefficient, for
which exact solution is available. Problem (ii) is a second order PDE in one vari-
able with varying coefficients for which exact solution is available in the form of
Bessel functions. The Timoshenko beam (Problem (iii)) is a second order coupled
PDE with constant coefficients, for which exact solution is available. Problem ((iv))
is coupled second order PDE in two variables with varying coefficients. Howev-
er, for Problem (iv) exact solution is not available. Problem (iii) and (iv) when
decoupled leads to a fourth order PDE. We solve all the four problems using spec-
tral methods. Numerical methods such as the Galerkin approach, Petrov-Galerkin
approach, Method of Moments and the Pseudo-spectral approach in frequency do-
main are also formulated for all the above problems. The numerical methods in
frequency domain are validated for problems for which exact solution is available
(Problem (i), (ii) and (iii)). We then obtain solution to Problem (iv) numerically.

Various numerical methods are devised and are avialable in literature for the solu-
tion of PDEs of which the finite element methods, finite volume method, spectral
method and Meshfree methods are quite popular. Solution of partial differential
equations (PDE) in time domain using spectral function approximation in the spa-
tial domain and then time marching in the temporal domain is quite popular [Boyd
(2000),Cohen (2002)]. The time domain solution has been applied for solution of a
class of Hamilton Jacobi Bellman equation called the Eikonal equation [Salehi and
Dehghan (2012)], a generalised Kuramoto Sivashinsky (GKS) equation [Khater
and Temsah (2008)], for a Heterogeneous Porous Media Flow [Black (1995)] etc.,
where different spectral methods are used for spatial discretisation.

An accuracy of finite element solutions for 3-D Timoshenko beams which is ob-
tained using a co-rotational formulation is studied in [Iura, Suetake, and Atluri
(2003)], where it is shown that the solutions converge to the exact beam theory as
the number of elements increases. A number of numerical studies to deal with the
4th order problem of thin beams like the meshless local Petrov Galerkin methods
(MLPG) [Atluri, Cho, and Kim (1999)], where the beams under various loading
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and boundary conditions are analysed and compared with the analytical solution.
A 4th order differential equation is used in [Atluri and Shen (2005)] to show that
various mixed MLPG methods are cost effective. Also, MLPG methods are used
in [Long and Atluri (2002)] for solving the bending problem of a thin plate using
least square approximation to interpolate the solution variables.

The Chebyshev collocation method for solution of simple ordinary differential e-
quations with examples is discussed in detail in [Saravi, Babolian, England, and
Bromilow (2008)]. They have compared the results with the Adams method and
has shown that the collocation method gives better rate of convergence compared
to Adams method. In [Salehi and Dehghan (2012)], the Eikonal equation, which
is a nonlinear partial differential equation for which exact solutions are usually
difficult to obtain is numerically solved using Legendre pseudo-spectral viscosi-
ty techniques to discretise the problem in space. In [Khater and Temsah (2008)],
the Chebyshev-spectral collocation method is used for spatial discretisation of the
GKS equation. The spectral element technique in time domain, where the test
function is different from the approximating polynomial is discussed in detail in
[Black (1995)]. In this Petrov-Galerkin method is used for the spatial discretisation
of a Heterogeneous Porous Media Flow and Adams-Bashforth/Crank Nicholson
Scheme is used for temporal discretisation.

Here, in this paper we consider the spectral element method in frequency domain
for the numerical solution of all the four problems.

Spectral methods using Fourier transforms for wave propagation analysis were pop-
ularised by [Doyle (1999)] and more recently by [Gopalakrishnan, Chakraborty,
and Mahapatra (2006)]. Spectral finite element method (SFEM) is an effective
tool used for solving wave propagation problems. It can be considered as a finite
element method [Reddy (2005)] formulated in frequency domain. In SFEM, the
governing partial differential equation is transformed in frequency domain using
Discrete Fourier Transform (DFT) and is reduced to a set of ordinary differen-
tial equations (ODEs) with constant coefficients, with frequency as a parameter.
The resulting ODE can be solved either analytically or numerically using spectral
function approximation. Usually an exact solution to the governing ODEs in fre-
quency domain is possible. In the absence of discontinuity, one single element
is sufficient to handle a rod of any length. Spectral element for elementary rod
[Doyle (1999)], elementary beam [Doyle and Farris (1990a,b)], Timoshenko beam
[Gopalakrishnan, Martin, and Doyle (1992)], for elementary composite beam [Ma-
hapatra and Gopalakrishnan (2003)], for functionally graded beams [Chakraborty
and Gopalakrishnan (2003)] are reported in literature. In [Godinho and Soares Jr.
(2013)] an optimised frequency domain iterative coupling algorithm is presented to
analyze interacting acoustic elastodynamic models, which are discretized by sev-
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eral different numerical methods discussed above. To avoid ill posed problems
arising due to frequency domain wave propagation analyses an optimal iterative
procedure for solid-fluid interactions is given in [Godinho and Soares Jr. (2012)].

In our recent study [Vinita, Gopalakrishnan, and Mani (2013)], the time domain
analysis for solution of the wave equation for a uniform cross-section Cantilever
beam is presented. In this study, the issues and challenges that arise in solving the
wave equation in time domain and frequency domain is addressed. In our earlier
study we have used both Lagrangian and Hermite interpolation for representation in
spatial domain. In this paper, we use the Lagrangian interpolation for representation
of the unknown function.

We discuss the performance of the four class of problems by considering:

(1) Effect of the number of FFT points used (Ns)

(2) Effect of the order of the polynomial (N) used for approximation

(3) Effect of the number of segments (elements) (S) used

(4) Effect of frequency ( f ) on the group speeds (cg)

(5) Observation of the shear mode and the bending mode for the Timoshenko beam
by using a modulated pulse

(6) Effect of the taper parameter m on the group speeds (cg) for Problem (ii) and
Problem (iv)

(7) Computation of group speeds for the Timoshenko beam with varying coefficient
for which an analytical expression is not available

We can use the Fourier spectral analysis for all the four problems. But this intro-
duces signal wrap around effects. One way of avoiding wrap around effect is by
increasing the time window T , or by providing an artificial damping to the sys-
tem. Another way of avoiding wrap around effect is by using a throw off element
which makes the transfer function complex, thereby providing sufficient damping
to the system. Also, wrap around effects do not exist if one uses Wavelet trans-
forms and Laplace transforms. The wavelet transform based finite element analysis
for composite beams are discussed in [Mitra and Gopalakrishnan (2006)]. The
wavelet transform does not suffer from wrap around problems since the periodicity
assumption is not used in constructing the transform, but lacks frequency resolu-
tion. It is shown that the wrap around effects are reduced as a result of taking the
Laplace Transform of the unknown axial displacement in place of Fourier transfor-
m [Murthy, Gopalakrishnan, and Nair (2011)]. Hence in our study, we have used
the Laplace transform method for solution of the all the four problems. We also use
Laplace spectral element method (LSEM) for an approximate solution to Problem
(iv).
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For approximate solution in frequency domain analysis, the set of ODEs in frequen-
cy domain is solved numerically using variational principles, by approximating in
spatial domain using spectral functions like Chebyshev and Legendre polynomial-
s. The method of weighted residuals [Reddy (2005)] is used for an approximate
solution in the spatial domain. We also study the various numerical methods like
Galerkin approach, Petrov-Galerkin approach, Method of Moments approach and
the Collocation approach [Boyd (2000); Canuto, Quarteroni, Hussaini, and Zang
(2006)]. We compare all the numerical methods with the exact solution available
for Problem (i), (ii) and (iii). For the Timoshenko beam with variable coefficients
(Problem (iv)), we present the numerical solution.

We also obtain the group speed for varying taper parameter m, by varying the fre-
quency of the input pulse. We then show that the modulated pulse is able to extract
the shear mode and the bending mode of the Timoshenko beam. We also observe
the effect of taper parameter m on the shear mode for fixed ε for Problem (iv).

It is also shown that the group speeds of the shear mode and the bending modes
vary with frequency and taper parameter m for the Timoshenko beam with varying
coefficients (Problem (iv)). Since the computation of the group speeds is not pos-
sible analytically for the Timoshenko beam with varying cross-section, we use the
numerical methods to compute the group speeds. We form an approximate expres-
sion for the computation of the group speed and the cut-off frequency for Problem
(iv)), Finally, we show that the cut-off frequency disappears for large m for ε > 0
and increases for large m for ε < 0.

2 Problem description

We define all the four problems in detail.

2.1 Problem(i): Cantilever beam of uniform cross-section

The governing partial differential equation for the axial displacement (u(x, t)), in
space and time of an undamped rod with uniform cross-section A0 (Fig. 1.a)), in
a given domain defined by the wave equation, is a second order partial differential
equation in one variable is given as,

EA0
∂ 2u
∂x2 (x, t)−ρA0

∂ 2u
∂ t2 (x, t) = 0, 0 < x < L (1)

with boundary conditions, u(0, t) = 0 and EA0
∂u
∂x (L, t) = FL.
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2.2 Problem (ii): Cantilever beam of varying cross-section

The governing partial differential equation for the axial displacement (u(x, t)), in
space and time of an undamped rod with varying cross-section A(x), in a given
domain defined by the wave equation, is a second order partial differential equation
in one variable with varying coefficients as,

∂

∂x

(
EA(x)

∂u
∂x

(x, t)
)
−ρA(x)

∂ 2u
∂ t2 (x, t) = 0, 0 < x < L (2)

with boundary conditions, u(0, t) = 0 and EA(L) ∂u
∂x (L, t) = FL. Here, the area of

cross-section is assumed to vary in the form as in [Doyle (1999)], with A(x) =
A0
(a+x

a

)m, where a is as shown in (Fig. 1.b) and m is the taper. This above form
leads to an exact solution in the form of Bessel functions in frequency domain. For
Problem (i) and Problem (ii), we consider a cantilever beam of length L, Young’s
Modulus, E and density ρ . It is fixed at one end and is subjected to an axial force,
FL at the free (other) end, as shown in (Fig. 1). The axial displacement is u(x, t) at
a particular time. The initial conditions assumed for Problem (i) and Problem (ii)
are, u(x,0) = 0 and ∂u

∂ t (x,0) = 0.

2.3 Problem (iii): Timoshenko beam of uniform cross-section

The Timoshenko beam is different from the Bernoulli beam as it also considers the
shear deflection. The details of the derivation for the Timoshenko beam is given in
[Doyle (1999); Reddy (2005)].

A Timoshenko beam of uniform cross-section is shown in (Fig. 2.a). The height
of the beam at x = 0 is h(x)|x=0 = h0. The height h(x) is uniform throughout the
length of the beam, with h(x) = h0, x ∈ [0,L]. Thus, the area of cross-section and
the moment of inertia is a function of x and can be written as,

A(x) = bh(x) = bh0 = A0

I(x) =
1

12
bh3(x) =

1
12

bh0 = I0
(3)

The Timoshenko beam leads to two partial differential equations in two variables
given as,

∂

∂x

(
GA(x)K

(
∂w
∂x
−φ

))
= ρA(x)

∂ 2w
∂ t2 (4)

∂

∂x

(
EI(x)

∂φ

∂x

)
+GA(x)K

(
∂w
∂x
−φ

)
= ρI(x)

∂ 2φ

∂ t2 (5)
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Here, w(x, t) is the transverse deflection and φ(x, t) is the shear deflection. Also,
for uniform cross-section and constant coefficients, A(x) = A0 and I(x) = I0. The
boundary conditions specified with A(L) = A0 and I(L) = I0 are,

At x = 0, w(0, t) = 0, φ(0, t) = 0 (6)

At x = L, GA(L)K
(

∂w
∂x

(L, t)−φ(L, t)
)
=VL or EI(L)

∂φ

∂x
(L, t) = ML (7)

2.4 Problem(iv): Timoshenko beam of varying cross-section

Here we consider a Timoshenko beam of varying height, with h(x)|x=0 = h0. The
height h(x) varies along the length of the beam as h(x) = h0

(
1+ εx

L

)m, where ε > 0
and m specifies the taper. Thus, the area of cross-section and the moment of inertia
can be written as a function of x as,

A(x) = bh(x) = bh0(1+
εx
L
)m = A0(1+

εx
L
)m

I(x) =
1

12
bh3(x) =

1
12

bh0(1+
εx
L
)m = I0(1+

εx
L
)3m

(8)

The partial differential equations in two variables for the Timoshenko beam with
varying coefficients are the same as given by (Eq. 4) and (Eq. 5). The boundary
conditions for the Timoshenko beam of varying cross-section are given by (Eq. 6)
and (Eq. 7).

The initial conditions assumed for Problem (iii) and (iv) of Timoshenko beam are
w(x,0) = 0, ∂w

∂ t (x,0) = 0, and φ(x,0) = 0, ∂φ

∂ t (x,0) = 0. For Problem (iii) and (iv),
we consider a Timoshenko beam of length L and constant width b, with Young’s
Modulus E, density ρ and shear modulus G = 1

2(1+ν) . Here ν is the Poisson’s
ratio. The boundary conditions at x = L, is either specified as a shear force VL or a
Moment force ML as defined by (Eq. 7).

For all the four problems, the axial force, FL in Problem (i) and (ii), the shear force
VL and Moment force ML in (Eq. 7) is taken either to be a Gaussian pulse or a
modulated pulse given by:

Gaussian pulse, FL/VL/ML =
1√

2πσ2
e−

(t−µ)2

2σ2 (9)

Modulated pulse, FL/VL/ML = sin(2π f t).cos(
1

Tpulse
t) (10)

Here, µ is the mean and σ2 is the variance. The pulse width is essentially controlled
by the variance parameter σ for the Gaussian pulse. For the modulated pulse, f is
the frequency and Tpulse is the time period of the pulse.
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The forcing function (FL/VL/ML), in the form of a Gaussian pulse and a modulated
pulse is shown in (Fig. 3) and (Fig. 4).
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Figure 3: Forcing function, FL is a
Gaussian pulse applied at the free end
of the rod
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Figure 4: Forcing function, VL is a mod-
ulated pulse applied at the free end of
the rod

In the next section we present the exact solution of the cantilever beam and the
Timoshenko beam in frequency domain.

3 Exact Solution in Frequency Domain

In this section, we first seek the exact solution for Problems (i), (ii) and (iii) in
frequency domain using spectral analysis. For Problem (i), the solution of (Eq. 1) in
time domain is well known and it is in the form of D’Alembert’s solution, u(x, t) =

f (x−ct)+g(x+ct), where c is the velocity of the medium, given by c =
√

E
ρ

. The
functions f and g signify the incident and reflected waves respectively. However,
obtaining the function f and g are not straight forward for all boundary conditions.
For Problem (ii), the exact solution of (Eq. 2) for the cantilever beam of varying
cross-section is in the form of Bessel functions, where the area of cross-section
varies in the form as given in section (2.2).

For Problem (iii) the exact solution for (Eq. 4) and (Eq. 5) is available in frequency
domain. The difference between the rod and the beam is that the beam does not
have a D’ Alembert’s solution and the solution itself is dispersive [Doyle (1999)].
Here we also consider a throw-off element attached at both the ends of the Timo-
shenko beam and we separate the shear mode and the bending mode. For Problem
(iv), the exact solution for (Eq. 4) and (Eq. 5) is not available. We get the solution
numerically and separate the shear mode and the bending mode for varying taper
parameter m and ε .
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Spectral methods using Fourier analysis have become very popular recently in wave
propagation analysis. This is because, the Fourier transformation reduces the gov-
erning PDE into a set of ODEs and an analytical solution is possible for most of
the 1-D waveguides. Spectral analysis using Fourier methods was first popularised
in [Doyle (1999)] and a complete state of the art of spectral analysis is discussed in
[Gopalakrishnan, Chakraborty, and Mahapatra (2006)]. Finite element method for-
mulated in the frequency domain is known as the Spectral Finite Element Method
(SFEM). Fourier based spectral finite element method (FSEM) has become a very
efficient tool for solving wave propagation problems, due to its ability to handle
problems involving high frequency signals. Usually, in FSEM one element is suf-
ficient to handle structures without discontinuities. Fourier analysis is prone to
signal processing errors due to periodicity assumption of signals both in time and
frequency domain. A detailed description of the Fourier analysis for the cantilever
beam was done as an initial study and is given in [Vinita, Gopalakrishnan, and Mani
(2013)].

In [Vinita, Gopalakrishnan, and Mani (2013)] we have considered a throw off el-
ement to avoid signal wrap around effects. If we allow some leakage of the sig-
nal response from the fixed boundary, it introduces an artificial damping so that
good resolution in the time response signal is obtained. The leakage is modelled
using an infinite element at the fixed end of the rod; also called a throw off ele-
ment [Doyle (1999); Gopalakrishnan, Chakraborty, and Mahapatra (2006)]. This
makes the transfer function of the system in Problem (i) complex, indicating that
the wave also attenuates as it propagates. That is, if the time window is large e-
nough, the wraparound problems can be avoided. Problem (iii) is also modelled
using a throw-off element attached at both the ends of the Timoshenko beam in
order to avoid signal wrap around effects. Thus for an exact solution, we can also
use the Fourier transform approach for the Timoshenko beam.

Another way of avoiding wrap around is by adding sufficient damping to the system
by taking the Laplace transform of the signal instead of Fourier transform [Murthy,
Gopalakrishnan, and Nair (2011)]. It is well known [Lathi (1998)] that the Laplace
Transform can be seen as the Fourier Transform of an exponentially windowed
signal. So in this paper, we discuss only the Laplace transform approach for a
solution in frequency domain.

3.1 Problem (i) : Cantilever beam of uniform cross-section

For the exact solution we first take the Laplace transform of the unknown func-
tion, the axial displacement (u(x, t)), as ûn(x,sn) and differentiate in space and time
[Vinita, Gopalakrishnan, and Mani (2013)] and substitute the derivatives in the
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governing (Eq. 1),

EA0
d2ûn(x,sn)

dx2 −ρA0s2
nû(x,sn) = 0 (11)

d2ûn(x,sn)

dx2 + kn
2ûn(x,sn) = 0, n = 0,1, ...,Ns−1 (12)

where, kn is the wavenumber defined as kn = − j
(√

ρA0
EA0

)
sn. Here sn = σ +

jωn, n = 0,1, ...,Ns−1, where σ is a positive real constant (the damping factor)
which provides sufficient damping and ωn is the angular frequency in radians. The
value of σ is selected as, given in [Murthy, Gopalakrishnan, and Nair (2011)], by
two different approximations, namely Wilcox and Wedepohl approximations. The
corresponding boundary conditions are, ûn(0,sn) = 0 and EA0

dûn(L,sn)
dx = F̂L(sn),

for n = 0,1, ...,Ns− 1, where, F̂L is Laplace transform of the forcing function, FL.
Thus, we have Ns second order homogeneous linear ordinary differential equations,
which can be solved either analytically or using numerical methods. We attempt to
obtain the solution exactly, ûn(x,sn) in frequency domain. The exact solution for
axial displacement, ûn(x,sn) to the set of linear homogeneous second order ordinary
differential (Eq. 12) is given by,

ûn(x,sn) = Ane− jknx +Bne− jkn(L−x), n = 0,1, ...,Ns−1 (13)

where, An and Bn are the incident and the reflected wave coefficients which needs
to be determined using any of the two boundary conditions at the two ends of the
rod, namely x = 0 and x = L. We need to solve for the coefficients An and Bn for
only n = 1,2, ..., Ns

2 , since u(x, t) is a real function [Doyle (1999)]. Once An and Bn

are known, the axial displacement in frequency domain, ûn(x,sn) can be obtained
using (Eq. 13). The solution for axial displacement in time domain u(x, t), is then
obtained by taking the inverse Laplace transform.

3.2 Problem (ii): Cantilever beam of varying cross-section

For a cantilever beam with varying cross-section, we substitute the derivatives of
the axial displacement in the governing (Eq. 2), as,

E
d
dx

(
A(x)

dûn(x,sn)

dx

)
−ρA(x)s2

nû(x,sn) = 0 (14)

(a+ x)2 d2û(x,sn)

dx2 +m(a+ x)
dû(x,sn)

dx
+ k2

n(a+ x)2û(x,sn) = 0 (15)
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where, kn is the wavenumber defined as kn =− j
(√

ρA0
EA0

)
sn. (Eq. 15) is in the form

of the generalised Bessel equation [Doyle (1999)] defined as,

z2 d2û
dx2 +(1+2α)z

dû
dx

+(β 2z2γ +δ
2)û = 0 (16)

whose solution is given by, ûn = 1
zα

[
AnJν(

β zγ

γ
)+BnYν(

β zγ

γ
)
]
, where, Jν and Yν

are Bessel functions [Doyle (1999)] of the first and second kind respectively. The
parameters defined in the Bessel (Eq. 16) are, z = (a+ x), β = kn,γ = 1,δ = 0,
and α = 1

2 (q−1). The corresponding boundary conditions are, ûn(0,sn) = 0 and
EA(L)dûn(L,sn)

dx = F̂L(sn), for n = 0,1, ...,Ns − 1, where, F̂L is Laplace transform
of the forcing function, FL(t). We now solve for the Bessel solution subjected
to the boundary conditions. The results are obtained for different values of taper
parameter m and a.

3.3 Problem (iii) : Timoshenko beam of uniform cross-section

For an exact solution, for the problem (iii), we first take the Laplace transform
of the unknown function w(x, t) and φ(x, t) as ŵn(x,sn) and φ̂n(x,sn) as given in
[Vinita, Gopalakrishnan, and Mani (2013)]. The Laplace transform of the (Eq. 4)
and (Eq. 5), leads to two sets of (Ns) ordinary differential equations in two variables
with constant coefficient given by,

d
dx

(
GA(x)K

(
dŵn(x,sn)

dx
− φ̂n(x,sn)

))
= ρA(x)s2

nŵn(x,sn) (17)

d
dx

(
EI(x)

dφ̂n(x,sn)

dx

)
+GA(x)K

(
dŵn(x,sn)

dx
− φ̂n(x,sn)

)
= ρI(x)s2

nφ̂n(x,sn)

(18)

with A(x) = A0 and I(x) = I0, and boundary conditions,

At x = 0, ŵn(0,sn) = 0, φ̂n(0,sn) = 0 (19)

At x = L, GA0K
(

dŵn

dx
(L,sn)−φ(L,sn)

)
=VL or EI0

dφ̂n

dx
(L,sn) = ML (20)

Let us assume a solution for the horizontal and shear deflection in frequency do-
main in the form, ŵn(x,sn) = ŵn0e− jknx, and φ̂n(x,sn) = φ̂n0e− jknx. Thus,[
−GA0Kk2

n− s2
nρA0 jGA0Kkn

− jGA0Kkn −EI0k2
n−GA0K− s2

nρI0

][
ŵn0

φ̂n0

]
=

[
0
0

]
(21)
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H(kn)

[
ŵn0

φ̂n0

]
=

[
0
0

]
(22)

The above (Eq. 22) has a non trivial solution only if |H(kn)|= 0, which is given by
the characteristic equation as,

GA0KEI0k4
n +
(
GA0KρIs2 +ρA0EI0s2)k2

n +
(
ρI0s2 +GA0K

)
ρAs2 = 0 (23)

k4
n +(k2

bn + k2
sn)k

2
n +(k2

bnk2
sn + k2

cn) = 0 (24)

The coupling is not neglected here and we define, kbn=− j
√

ρI0
EI0

sn,ksn=− j
√

ρA0
GAK0

sn,

and kcn = − j
√

ρA0
EI0

sn. Here kbn, ksn and kcn can be called as the wave number-
s corresponding to the different modes such bending, shear and also the coupling
respectively. Finally, the wavenumber for the Timoshenko beam is given as,

k2
n = k2

n1,k
2
n2 =

−(k2
bn + k2

sn)±
√

(k2
bn + k2

sn)
2−4(k2

bnk2
sn + k2

cn)

2
(25)

Thus the exact solution for the ODEs defined by (Eq. 17) and (Eq. 18) for an uni-
form Timoshenko beam is given as,

ŵn(x,s) = Ane− jkn1x +Bne− jkn1(L−x)+Cne− jkn2x +Dne− jkn2(L−x) (26)

φ̂n(x,s) = αn1(kn1)Ane− jkn1x−αn1(kn1)Bne− jkn1(L−x)...

...+αn2(kn2)Cne− jkn2x−αn2(kn2)Dne− jkn2(L−x) (27)

Here α gives the relation between the horizontal deflection and shear deflection
which can be derived from (Eq. 17) as, αni(kni) = kni− k2

sn
kni
, i= 1,2. The boundary

conditions given in (Eq. 19) and (Eq. 20) are substituted in (Eq. 26) and (Eq. 27)
to obtain ŵn(x,sn) and φ̂n(x,sn). The horizontal deflection w(x, t) and the shear
deflection φ(x, t) in time domain is then obtained by inverse Laplace transform.

3.3.1 Throw off element:

We now consider a throw off element attached to both the ends of the Timoshenko
beam. The use of throw off element for a uniform rod is discussed in [Vinita,
Gopalakrishnan, and Mani (2013)]. We obtain the shear and bending modes sepa-
rately for the Timoshenko beam without reflections from the boundary for the exact
case. The throw off element attached at the boundary of the Timoshenko beam is
formulated by neglecting the reflected coefficients Bn and Dn in (Eq. 26) and (E-
q. 27).



144 Copyright © 2014 Tech Science Press CMES, vol.97, no.2, pp.131-174, 2014

For the infinite segment we assume an uniform cross-sectional area, A∞ and mo-
ment of inertia, I∞ equivalent to that at the boundaries (x = 0 and x = L) of the
beam. A throw off element attached at the boundary of a varying cross-section
Timoshenko beam is shown in (Fig. 2.b). Thus, the solution for the horizontal and
shear deflection for the Timoshenko beam at infinite segments on either ends is
given by,

ŵl∞n(x,sn) = Al∞ne− jkn1x +Cl∞ne− jkn2x (28)

φ̂l∞n(x,sn) = αn1(kn1)Al∞ne− jkn1x +αn2(kn2)Cl∞ne− jkn2x (29)

ŵr∞n(x,sn) = Ar∞ne− jkn1x +Cr∞ne− jkn2x (30)

φ̂r∞n(x,sn) = αn1(kn1)Ar∞ne− jkn1x +αn2(kn2)Cr∞ne− jkn2x (31)

Here the subscripts l and r stands for infinite segments attached at the left and right
of the Timoshenko beam. The solution for the finite segment of Timoshenko beam
is as given by (Eq. 26) and (Eq. 27). At the interface between the infinite and the
finite waveguide, we have the following boundary conditions. That is, at x = 0,
we have, ŵl∞n(0,sn) = ŵn(0,sn), φ̂l∞n(x,sn) = φ̂n(0,sn) and Gl∞Al∞K ∂ ŵl∞n

∂x (0,sn) =

GA0
∂ ŵn
∂x (0,sn), El∞Il∞

∂ φ̂l∞n
∂x (0,sn) = EI0

∂ φ̂n
∂x (0,sn). At x = L, we have, ŵr∞n(0,sn) =

ŵn(L,sn), φ̂r∞n(0,sn) = φ̂n(0,sn) and Gr∞Ar∞K ∂ ŵr∞n
∂x (L,sn) +GA0

∂ ŵn
∂x (L,sn) = V̂L,

Er∞Ir∞
∂ φ̂r∞n

∂x (L,sn)+EI0
∂ φ̂n
∂x (L,sn) = M̂L. Now, imposing the above boundary con-

ditions on (Eq. 28) to (Eq. 31) and (Eq. 26) and (Eq. 27) , we obtain ŵn(x,sn) and
φ̂n(x,sn). The horizontal deflection w(x, t) and the shear deflection φ(x, t) in time
domain is obtained by inverse Laplace transform.

Note that for Problem (iii), the modeling using throw off element aids in formu-
lation also using the Fourier transform approach. This is because use of a throw
off element avoids signal wrap around problems, as there is no reflection from the
boundaries.

3.4 Problem (iv): Timoshenko beam of varying cross-section

Timoshenko beam of varying cross-section does not have an exact solution. Here,
we use numerical methods for the solution. We discuss the numerical solution using
spectral functions such as Chebyshev polynomials, Legendre polynomials and the
Normal polynomials later in the paper. We try the different numerical methods such
as the Galerkin approach, Petrov-Galerkin approach, Method of Moments and the
Pseudo-spectral/Collocation Method for a solution.
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4 Derivation of the group speeds, phase speed and the corresponding time

In this section, we derive the phase speeds and the group speeds of the cantilever
beam and the Timoshenko beam. We consider the case for the damping factor,
σ = 0. We observe the phase speeds and group speeds using numerical compu-
tation and validate the results with the exact solution for the cantilever beam and
the Timoshenko beam. This helps in observing the speeds for cases where exact
solution is not available (Problem (iv)). The phase speed and the group speed is
defined as [Doyle (1999)], as cph =

ω

kn
and cg =

dω

kn
respectively.

4.1 Problem (i) and (ii): Cantilever beam of uniform and varying cross-section

The phase speed and group speeds are given as, cph =
ω

kn
=
√

E
ρ

and cg =
dω

kn
=
√

E
ρ

respectively. Note that the phase speeds and the group speeds are independent of
the frequency fn =

ωn
2π

, and area of cross-section and hence are the same.

4.2 Problem (iii): Timoshenko beam of uniform cross-section

The corresponding phase velocities and the group velocities for the Timoshenko
beam can be obtained as, cphni =

ωn
kni

, and cgni =
dωn
dkni

, for i = 1,2 respectively. Hence
the group speeds varies with the frequency as,

cgni =
2kni

−(k2
b + k2

s )ωn± 2(k2
b−k2

s )ω
3
n−4k2

c ωn

2
√

(k2
bn−k2

sn)−4kcn2

i = 1,2 (32)

where, kb =
√

ρI0
EI0

, ks =
√

ρA0
GAK0

, and kc =
√

ρA0
EI0

. Also, for a particular frequency
of the input pulse, the group speed cgni is used to calculate t (time required) as,
t = L

cgni
, for i = 1,2. Here i = 1,2 represents the bending mode and the shear mode.

We also obtain the group speeds for both the bending and shear mode numerically
by varying the input frequency. The numerical results obtained for Problem (iii) is
validated by the exact group speeds given by (Eq. 32). The results are discussed
later.

4.3 Problem (iv): Timoshenko beam of varying cross-section

It is not possible to get the phase speeds and the group speeds exactly for the Tim-
oshenko beam with varying area of cross-section. We get the group speeds numer-
ically for varying taper parameter m, by varying the frequency of the input pulse.
The variation of the group speeds with frequency is then plotted for both the shear
mode and bending modes. The results are discussed later in the paper.
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5 Numerical solution

In this paper, we analyse the performance of the numerical solution obtained us-
ing frequency domain analysis. For this, we first compare the numerical solution
with the available exact solution for Problem (i), Problem (ii) and Problem (iii).
For Problem (iv), as mentioned earlier, exact solution is not available, hence an
approximate solution is obtained using the numerical methods.

5.0.1 Solution approach

The fundamental approach to most of the numerical methods is the weighted residu-
al technique [Reddy (2005)] and is discussed in [Vinita, Gopalakrishnan, and Mani
(2013)], where in the domain of interest is split up into many sub elements there by
constructing a grid or mesh of the domain. Each mesh has a definite number of grid
points or nodes and the variation of the dependent variable is expressed in terms of
the values at the grid points that make up the single sub element. Such a relation
is known as the shape function. For an approximate solution, we use classical vari-
ational method, which leads to the Method of Weighted Residuals [Reddy (2005);
Boyd (2000)] where the residual is made zero in a weighted integral sense. In this
paper we discuss the weak form of the weighted integral form of the governing
differential equation to obtain the solutions.

For all the four Problems (i) to (iv), we can use either Fourier, or Laplace transform
to transform the corresponding PDEs to ODEs in frequency domain. In our study,
we use the Laplace transform. For Problem (i) and (ii), (Eq. 1) and (Eq. 2) in time
domain is given by (Eq. 11) and (Eq. 14) for n = 0,1, ...,Ns− 1 in the Laplace
domain. Similarly, for Problem (iii) and (iv), (Eq. 4 and (Eq. 5) in time domain are
given by (Eq. 17) and (Eq. 18) for n = 0,1, ...,Ns−1 in the Laplace domain.

The weighted residual technique and the weak form formulation reduces (Eq. 11)
and (Eq. 14) and the the corresponding (Eq. 17) and (Eq. 18) to the form respec-
tively as,

[K]ûn + s2[M]ûn = f̂n and [KD]

[
ŵn

φ̂n

]
= f̂n, (33)

where [K] and [M] are the stiffness and the mass matrix and [KD] is the dynamic
stiffness matrix, ûn, ŵn and φ̂n are the corresponding response vectors in frequency
domain. f̂n is the force vector in frequency domain. This above equation is solved
for ûn, ŵn and φ̂n for a given f̂n and the response in time domain is obtained using
the inverse Laplace transform.

Any numerical method including the weighted residual method in frequency do-
main require a grid (or elements). Over each grid (element), a set of solutions are
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assumed, which are synthesised over all elements to obtain global solution. The
nature of the solution assumed in Weighted Residual technique determine the type
of numerical method, which in turn fixes the nodal points on the grid. For spa-
tial discretisation in frequency domain, we consider N +1 interpolation points (or
grid points/nodes), where N is the order of interpolating polynomial. The prob-
lem domain, [x0,x f ] is divided into N partitions of equal or variable length, with
N + 1 interpolation points (or grid points/nodes). Thus, the unknown function in
frequency domain, can be approximated using an Nth order polynomial function in
the interval [x0,x f ]. The approximating function, approaches the exact solution in
frequency domain as N→ ∞. The selection of the grid points and the polynomials
for the approximation are briefly discussed in the next two sections.

5.1 Selection of Grid points or nodes

The grids are selected based upon quadrature rules. Quadrature rule depends on the
type of method employed under Weighted Residual method to solve the problem.
If we use the standard Galerkin procedure under Weighted Residual technique, we
will normally use Gauss Quadrature rule to integrate to obtain the matrices [K], [M]
and [KD] in (Eq. 33). On the other hand if we choose orthogonal polynomials such
as Chebyshev or Legendre polynomials as basis functions, then we will use Gauss
Lobatto integration rule to obtain [K], [M] and [KD]. The difference between the
former and the latter integration is that in the latter, the integration points coincides
with the nodal points, which will make [M] in (Eq. 33) diagonal.

Thus, we can have Gauss, Gauss-Radau or Gauss Lobatto grids as given in [Canuto,
Quarteroni, Hussaini, and Zang (2006)]. The advantage of the above grids over
uniform grid is that they have the distribution property that, they cluster around the
endpoints of the interval. The Gauss-Lobatto grid points are found to have the least
error. The Chebyshev Gauss Lobatto points, (CGL) are extensively used in earlier
studies [Canuto, Quarteroni, Hussaini, and Zang (2006)], as the interpolation at the
CGL nodes gives the closest approximation to a given function. Also, CGL points
result in the avoidance of the Runge phenomenon [Canuto, Quarteroni, Hussaini,
and Zang (2006)]. Hence, CGL points are used in this paper.

The CGL points are the roots of the Chebyshev differential equation, and are giv-
en in closed form as, xn = −cos(nπ

N ) for n = 0, ...,N. These points lying in the
interval [-1,1] are the extrema of the Nth order Chebyshev polynomial TN(x), de-
fined as Tn(x) = cos(ncos−1x). Our problem is specified in the interval [x0,x f ].
Thus, for our problem, we have the shifted CGL points (or grid points) defined as,
xi =

(x f−x0)xn+(x0+x f )
2 where, xn are the nodes corresponding to the interval [-1,1].

For our problem, x0 = 0 and x f = L.
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5.2 Selection of trial and test functions

In general, the axial displacement in frequency domain (ûn(x,sn)) of the Cantilever
beam, the horizontal displacement (ŵn(x,sn)) and the shear deflection (φ̂n(x,sn))
in frequency domain for the Timoshenko beam is approximated as a linear com-
bination of the trial function φi, for i = 1,2, ..,N and the test function v(x), is ap-
proximated as a weighted linear combination of functions ψi, for i = 1,2, ..,N. The
polynomials used as approximation functions are Chebyshev polynomials (Tn(x)),
the Legendre polynomials (Pn(x)) and the Normal polynomials (Kn(x)). Depend-
ing upon the choice of the trial and the test functions, we have different numerical
methods like the Galerkin method, Petrov-Galerkin method, Method of Moments
and the Pseudospectral method. The different polynomials used and the different
numerical methods are detailed in our technical report [Vinita, Gopalakrishnan, and
Mani (2013)].

For the cantilever beam with uniform cross-section (Problem (i)) and with varying
cross-section (Problem (ii)), we have only one dependent variable, the axial dis-
placement (u(x, t)). For the weighted form for Problem (i) and (ii), we consider the
test function with the same units as the axial displacement vu(x).

For the Timoshenko beam with uniform cross-section (Problem (iii)) and with vary-
ing cross-section (Problem (iv)), we have two dependent variables namely the hor-
izontal deflection (w(x, t)) and the shear deflection (φ(x, t)). Hence for Problem
(iii) and (iv), we need to consider the test functions corresponding to the horizon-
tal deflection vw(x) and also the test function corresponding to the shear deflection
vφ (x).

Lagrangian Interpolation and Shape functions: Here, for ease of computation, we
use the Lagrangian interpolation, in which, the trial function (unknown function)
ûN

n (x,sn), ŵN
n (x,sn), φ̂

N
n (x,sn) and the test function v(x) are represented as a func-

tion of function values at the grid points. Hermite interpolation can also be used
for representation of the unknown function. The representation using the shape
functions are described in detail in [Vinita, Gopalakrishnan, and Mani (2013)].

Problem (i) and (ii):Representation of the axial displacement and the test function

In general, the approximate solution in frequency domain (ûN
n (x,sn)), and the cor-

responding test function can be represented using any of the trial functions, φi

(Chebyshev or Legendre or Normal polynomial) and finally we can represent the
unknown function and the test function using the corresponding shape functions as,

ûN
n (x,sn) =

N

∑
k=0

Nuk(x)û
N
n (xk,sn), vN

u (x) =
N

∑
k=0

Nvk(x)v
N(xk) (34)

Problem (iii) and (iv): Representation of horizontal deflection, shear deflection
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and the test function

Similarly the unknown functions in the Timoshenko beam (ŵN
n (x,sn),φ̂ N

n (x,sn)),
and the corresponding test functions can be represented using any of the trial func-
tions (Chebyshev or Legendre or Normal polynomial) and finally we can represent
each unknown function and their corresponding test functions using the shape func-
tions as,

ŵN
n (x,sn) =

N

∑
k=0

Nwk(x)ŵ
N
n (xk,sn), φ̂

N
n (x,sn) =

N

∑
k=0

Nφ k(x)φ̂
N
n (xk,sn) (35)

vN
w(x) =

N

∑
k=0

Nvw k(x)vw
N(xk), vN

φ (x) =
N

∑
k=0

Nvφ k(x)vφ
N(xk) (36)

Here N(.)k is the shape function with ∑
N
k=0 N(.)k = 1. In the next section, we formu-

late the weak form of the weighted integral form of the differential equations for
the cantilever beam and the Timoshenko beam. The formulations for each case is
done separately.

6 Weak form formulation

We see that for the corresponding differential equations for the Cantilever beam
and Timoshenko beam (Eq. 11), (Eq. 14), (Eq. 17) and (Eq. 18)), the differential
operator L is of the order of 2. We expect that our solution be 2nd order continu-
ous or in other words (u,w,φ) ∈C2(0,L). Now the order of the differential of the
unknown functions ( dnu

dxn ,
dnw
dxn and dnφ

dxn ) can be reduced if we distribute the differen-
tial of the unknown function to the weighting function, vi in the weighted residual
form. Thus, the weighted residual form reduces to the weak form of the corre-
sponding differential equation. This can be achieved using integration by parts, of
the weighted residual form of equation [Boyd (2000); Reddy (2005)] and the ad-
vantage of reducing the differential equation to the weak form is that it increases
the solution space.

Thus, for a second order differential operator L , we require that the function
(u,w,φ) ∈ C1(0,L). Thus, we have larger solution subspace to search for u,w
and φ . Another advantage is that, the weak form of a self adjoint operator L
leads to a symmetric matrix for [K], [M] and [KD] in (Eq. 33). Computation with
symmetric matrices are more efficient as special algorithms are available. More-
over, the boundary conditions are directly embedded in the weak form formulation.
The weak form formulation in frequency domain and time domain approach is dis-
cussed in the next section. The weak form formulation and the solution to the wave
equation for the cantilever beam of uniform cross-section (Problem (i)) is given in
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detail in our technical report [Vinita, Gopalakrishnan, and Mani (2013)]. The for-
mulation of the varying case can also be obtained on similar lines. Hence in this
section we consider only Problem (iii) and (iv).

6.1 Problem (iii) and (iv): Weak form formulation and solution to the weak
form

In this section we consider the weak form formulation for the Timoshenko beam
of varying cross-section (Problem (iv)). The formulation for the the uniform case
(Problem (iii)) can be derived from the varying case by considering A(x) =A0, ∀x∈
[0,L] and for the varying problem (Problem (iv)) A(x) = A0

(
1+ εx

L

)m, ∀x ∈ [0,L].
Consider (Eq. 17) and (Eq. 18) for the Timoshenko beam of varying cross-section
(Problem (iv)). The weighted integral form for the above referred differential equa-
tions is,

∫ L

0

((
GA(x)K

(
ŵ′n− φ̂n

))′− s2
nρA(x)ŵn

)
. vw(x)dx = 0 (37)

∫ L

0

((
EI(x)φ̂ ′n

)′
+GA(x)K

(
ŵ′n− φ̂n

)
− s2

nρI(x)φ̂n

)
. vφ (x)dx = 0,

n = 0,1,2, ...,Ns−1
(38)

In the above equation, ŵn = ŵn(x,sn) and φ̂n = φ̂n(x,sn) is the Laplace transform
of w(x, t) and φ(x, t) respectively and vw(x) and vφ (x) are the test functions which
have the same units as the horizontal deflection and the shear deflection respec-
tively. Also, (.)′ = ∂ (.)

∂x , (.)′′ = ∂ 2(.)
∂x2 . Integrating the above (Eq. 37) and (Eq. 38),

we can get the weak form of the corresponding equations. Now, the variation-
al problem can be defined as, to find ŵn(x,sn) and φ̂n(x,sn) such that the weak
form of the wave equations are satisfied. Also, the boundary conditions are di-
rectly embedded in the weak form. We seek a solution for the weak form by
approximating ŵn(x,sn), φ̂n(x,sn) and vw(x) and vφ (x) as ŵN

n (x,sn), φ̂
N
n (x,sn) and

vN
w(x) and vN

φ
(x) and its corresponding derivatives in the weak form. We know

that at the boundary x = L and x = 0, GA(L)K
(

dŵN
n (L,sn)
dx − φ̂ N

n (L,sn)
)
= V̂L and

Nvw i(0) (GA(0)K
(

dŵN
n (0,sn)
dx − φ̂ N

n (0,sn)
)
= 0. Applying these boundary conditions

and substituting ŵN
n (x,sn) and φ̂ N

n (x,sn) and its derivatives in the weak form of the
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Timoshenko beam for n = 0,1,2...,Ns−1 we get,

Nvw i(L)V̂L−GK
N

∑
j=0

∫ L

0
A(x)N′vw iN

′
w jŴnjdx+GK

N

∑
j=0

∫ L

0
A(x)N′vw iNφ jΦ̂n jdx...

...− s2
nρ

N

∑
j=0

∫ L

0
A(x)NviNw jŴnjdx = 0

(39)

Nvφ i(L)M̂L−E
N

∑
j=0

∫ L

0
I(x)N′vφ i

N′φ j
Φ̂n jdx+GK

N

∑
j=0

∫ L

0
A(x)Nvφ iN

′
w jŴnjdx...

...−GK
N

∑
j=0

∫ L

0
A(x)Nvφ iNφ jΦ̂n jdx− s2

nρ

N

∑
j=0

∫ L

0
I(x)Nvφ iNφ jΦ̂n jdx = 0

(40)

Here i = 0,1,2, ...,N. The boundary conditions are specified either as shear force
VL or moment force ML. Also, Ŵn =

[
ŵN

n (x0,sn) ŵN
n (x1,sn) ... ŵN

n (xN ,sn)
]T ,

and Φ̂n =
[
φ̂ N

n (x0,sn) φ̂ N
n (x1,sn) ... φ̂ N

n (xN ,sn)
]T is the approximate solution

to the weak form in frequency domain with Wn j = wN
n (x j,sn) and Φn j = φ N

n (x j,sn).
The solution to our problem, involves the following steps.

• Step 1: Define, χ̂n =
[
Ŵn | Φ̂n

]T
• Step 2: Define the matrices, KA,KI,MA,MG,MI,P and L as,

KAi j = GK
∫ L

0
A(x)N′vw iN

′
w jdx, KIi j = E

∫ L

0
I(x)N′vφ i

N′φ j
dx,

MAi j = ρ

∫ L

0
A(x)Nvw iNw jdx, MGi j = GK

∫ L

0
A(x)Nvφ iNφ jdx,

MIi j = ρ

∫ L

0
I(x)Nvφ iNφ jdx, Pi j = GK

∫ L

0
A(x)N′vw iNφ jdx,

Li j = GK
∫ L

0
A(x)Nvφ iNw jdx,

where, (.)i j and (.)i j are respectively the components of the corresponding
matrices KA,KI,MA,MG,MI,Pand L.

• Step 3: Define KD =

[
KA+MA −P
−L KI+GA+MI

]
. Thus Eq. 39) and (E-

q. 40) can be represented in matrix form as, KD
[
Ŵn | Φ̂n

]T
=
[
V̂ | M̂

]T
.
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• Step 4: Solve for χ̂n, such that [KD]χ̂n = F̂v is satisfied. where, χ̂n, which
is the vector containing nodal variables at all the nodal points of ŵn and φ̂n,
is the solution in the frequency domain and F̂v is the vector with the shear
force and the moment force appended.

• Step 5: Extract Ŵn and Φ̂n from χ̂n. Convert Ŵn and Φ̂n into time domain
using inverse Laplace Transform.

6.2 Collocation approach

The collocation approach for the cantilever beam with uniform cross-section is
derived in detail in [Vinita, Gopalakrishnan, and Mani (2013)]. In this section we
discuss only the collocation approach for the Timoshenko for varying cross-section.
The collocation approach for the uniform cross-section can be derived directly from
the varying case, by taking A(x) = A0 and dA(x)

dx = 0, throughout the length of the
beam.

The method of obtaining the solution using collocation approach is different from
the other approaches. In collocation approach, the solution to the weighted inte-
gral form of the wave equation for the Timoshenko beam (Eq. 37) and (Eq. 38)
in frequency domain is obtained by considering the test functions, v(x), vw(x)
and vφ (x) respectively for each equation as a Dirac Delta distribution. Hence,
v(.)i

(x) = δ (x−xi), and the trial function, φi is taken either as Chebyshev or Legen-
dre polynomials and the residual is made to be zero at the collocation points. The
solution is obtained as follows:

We need to solve for Ŵn and Φ̂n in frequency domain as solution to the weak form
for n = 0,1,2, ...,Ns−1 given by,

∫ L

0
GK(A(x)(N′w(x)Ŵn))

′
δ (x− xi)dx−

∫ L

0
GK(A(x)(Nφ (x)Φ̂n))

′
δ (x− xi)dx

−
∫ L

0
s2

nρA(x)(Nu(x)Ŵn)δ (x− xi)dx = 0

(41)

∫ L

0
E(I(x)(N′φ (x)Φ̂n))

′
δ (x− xi)dx+

∫ L

0
GK(A(x)(N′w(x)Ŵn))δ (x− xi)dx

−
∫ L

0
GK(A(x)(Nφ (x)Φ̂n))δ (x− xi)dx−

∫ L

0
s2

nρI(x)(Nφ (x)Φ̂n)δ (x− xi)dx = 0

(42)

The weak form defined by (Eq. 41) and (Eq. 42), now reduces to the strong form
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of the solution defined at the collocation points 0 < xi < L, i.e.,

GKA(xi)N′′w(xi)Ŵn +GKA′(xi)N′w(xi)Ŵn−GKA(xi)N′φ (xi)Φ̂n...

...−GKA′(xi)Nφ (xi)Φ̂n− s2
nρA(xi)Nw(xi)Ŵn = 0

(43)

EI(xi)N′′φ (xi)Φ̂n +EIA′(xi)N′φ (xi)Φ̂n +GKA(xi)N′w(xi)Ŵn...

...−GKA(x)Nφ (xi)Φ̂n− s2
nρI(xi)Nφ (xi)Φ̂n = 0

(44)

The important point here is that the equation satisfies for all xi only in (0,L), except
at the boundary. Hence, we have to impose the boundary conditions:

At xi = 0 as, ∑
N
j=0 Nw j(x0)Ŵn j = 0, ∑

N
j=0 Nφ j(x0)Φ̂n j = 0 and

At xi = L as, GK ∑
N
j=0 A(xN)N′w j(xN)Ŵn j = V̂L or E ∑

N
j=0 I(xN)N′φ j

(xN)Φ̂n j = M̂L

The residuals of the differential (Eq. 17) and (Eq. 18) for varying cross-section in
frequency domain are given as,

Rw(x,sn)Ω =GK
d
dx

(
A(x)

(
d
dx

ŵN
n (x,sn)− φ̂(x,sn)

))
− s2

nρA(x)ŵN
n (x,sn),

Rφ (x,sn)Ω =E
(

I(x)
d
dx

φ̂(x,sn)

)
+GKA(x)

(
d
dx

ŵN
n (x,sn)− φ̂(x,sn)

)
...

−s2
nρI(x)φ̂ N

n (x,sn), for 0 < x < L (45)

Rw0(x,sn)∂Ω = ŵN
n (0,sn)−w(0,sn), Rφ0(x,sn)∂Ω = φ̂

N
n (0,sn)−φ(0,sn) (46)

RwL(x,sn)∂Ω =GA(L)
(

dŵN
n

dx
(L,sn)− φ̂(x,sn)

)
−V̂L or,

RφL(x,sn)∂Ω =EI(L)
dφ̂ N

n

dx
(L,sn)−V̂L (47)

Comparing the residual in 0 < x < L given by (Eq. 45) with equation (Eq. 43)
and (Eq. 44) we see that R(xi,sn)Ω = 0. Similarly comparing the residuals at the
boundary xi = 0 given by (Eq. 46), and for the residual at xi = L given by (E-
q. 47) with the corresponding boundary conditions at xi = 0, and xi = L, we see
that Rw0(0,sn)∂Ω = 0 and Rφ0(0,sn)∂Ω = 0 for xi = 0 and RwL(L,sn)∂Ω = 0 and
RφL(L,sn)∂Ω = 0 for xi = L.

Thus, the residual is forced to be zero at the collocation points, leading to (N +
1) algebraic equations. The two set of (N + 1) algebraic equations are solved to
obtain Ŵn and Φ̂n. We convert Ŵn and Φ̂n into time domain using inverse Laplace
transform. The advantage of collocation approach, is that the integration process
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involved in obtaining all the matrices [KA], [KI], [MA], [MG], [MI], [P] and [L] is
avoided. This results in a drastic reduction of computation time. But, it is difficult
to form a generalised stiffness matrix as the boundary conditions are to be imposed
for a general solution.

7 Results and Discussion

In this section, we present the numerical results obtained for all the four problems
(Problems (i) to (iv)) obtained using different numerical methods such as Galerkin,
Petrov-Galerkin, Method of Moments and the Pseudo-spectral method. The numer-
ical results obtained is first compared with the problems for which exact solution
is available (Problem (i) to (iii)). For Problem (i) and (ii), we discuss the effect of
the number of FFT points (Ns), the number of segments (S) and the order of the
polynomial (N) used for approximation. We then show the numerical results of
Problem (ii) for different values of taper parameter m and it is then compared with
the exact solution.

We have considered a Gaussian pulse for Problem (i) and Problem (ii). But for
the Timoshenko beam we consider the modulated pulse. The FFT magnitudes with
frequency for both the Gaussian and the modulated pulse is shown in (Fig. 5). The
group velocities for the different modes such as the shear mode and the bending
mode for Problem (iii) are also shown in (Fig. 5). For a modulated pulse, we are
able to separate the shear mode and the bending mode as is clear from (Fig. 5). But
in the case of a Gaussian pulse, since cut-off frequency for the Timoshenko beam
of uniform cross-section (Problem (iii)) is at fc0 =

1
2π

√
GA0K

ρI0
, and hence the shear

mode will not be visible.

The numerical solution to Problem (iii) is also sought and compared with the exact
solution available. We also separate the shear mode and the bending mode numer-
ically for Problem (iii). The group speeds for Problems (i) to (iii) can be computed
exactly. The group speed for Problem (i) and (ii) are constant and is independent
of frequency, but for Problem (iii) and (iv), the group speeds vary with frequency.
Also, the group speeds for Problem (iv) is not available analytically. Hence, we
first determine numerically the group speeds for Problem (iii) for which the group
speeds can be computed exactly. We then compare the numerical results with the
exact results. Finally, for Problem (iv), we also plot the group speed with frequency
by observing the group speeds numerically for the shear mode and bending mode
for varying frequencies. We also observe that the group speeds vary with the taper
parameter m. An approximate expression for calculating the cut-off frequency and
the group speeds corresponding to the shear mode and the bending mode is also
obtained.
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Figure 5: Effect of the Gaussian pulse and the Modulated pulse

7.1 Advantages of frequency domain analysis over time domain analysis

A comparitive study of the frequency domain (both Fourier transform and Laplace
Transform method) and the time domain analysis for Problem (i) in detailed in
[Vinita, Gopalakrishnan, and Mani (2013)]. In the report we have used the New-
mark integration scheme for time marching for Problem (i).

The time domain approximation of the solution and frequency domain approxi-
mation with the Galerkin method considering Chebyshev polynomial as the trial
function was studied in detail in [Vinita, Gopalakrishnan, and Mani (2013)]. In fre-
quency domain approach, for the number of FFT points Ns = 256, with T = 1 milli
secs and ∆t = T

Ns
= 3.9µ secs, the error was of the order of 10−5, whereas for

time domain approach the number of discretisation points required Nt was 1000,
with ∆t = 1µ secs. It is also interesting to note that for computation in frequency
domain, we need to compute only upto Ns

2 = 128, which even reduces the compu-
tational time. As ∆t, was increased to 3µ secs, it was observed that the algorithm
becomes unstable.

A comparison of the mean squarred error (MSE) and maximum error (Errmax) for
time and frequency domain methods are shown in (Tab. 1). We have considered the
number of FFT points, Ns and the number of time discretisation points, Nt as 1024,
(Ns = Nt). In time domain analysis, we require ∆t < ∆tcritical , where ∆tcritical =
Ωcrit
ωmax

. Hence, we have chosen a higher value for Ns and have taken Ns = Nt for
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comparison. The parameters for the time stepping algorithm, γ = 1
2 and β = 0. The

details of the parameters are given in [Vinita, Gopalakrishnan, and Mani (2013)].
In (Tab. 1), we fix the number of degrees of freedom Ng, in the spatial domain as
55 and vary the number the order of polynomial (N) per segment and the number
of segments (S), such that Ng = SN +1 = 55.

From the table we see that the sampling time ∆t has to be decreased for the time do-
main analysis as we increase the order of the polynomial (N), so that ∆t < ∆tcritical
[Vinita, Gopalakrishnan, and Mani (2013)]. This is because the resonant frequen-
cies ω depends upon stiffness and mass matrix [K] and [M] respectively. Also,
sampling time, ∆t is correspondingly decreased by increasing Nt . Also, increase in
Nt increase the computational time drastically. In the case of time domain analysis,
when we increase the number of nodes per segment to 19, we require Nt = 3000
with ∆t = 0.33 µ seconds. For the same case in the frequency domain analysis, we
need to compute the solution ûn(x,ωn), only upto Ns

2 = 512, which considerably
reduces the computational time in frequency domain approach. The effect of the
sampling time ∆t, with variation in the design parameter γ is also studied in our
report [Vinita, Gopalakrishnan, and Mani (2013)].

However, the frequency domain approach using Discrete Fourier Transform leads
to wrap around effects, which can be avoided either by increasing the time window,
or by using a throw off element, by taking a Laplace transform or Wavelet trans-
forms of the unknown function. In the case of the Laplace transform the damping
factor is selected using the Wilcox and Wedepohl methods [Murthy, Gopalakrish-
nan, and Nair (2011)], which needs to be designed.

7.2 Effect of the selection of grid points

For Collocation approach, the MSE and Errmax for CGL (Chebyshev Gauss Lobot-
to), LGL (Legendre Gauss Lobotto) and equidistant points are shown in (Tab. 2).
The Legendre polynomials were chosen as the trial function (φi). We see from
Table (2) that CGL points have the least error. Thus, for all our analysis, CGL
points were considered for the above reason. The details are studied in [Vinita,
Gopalakrishnan, and Mani (2013)].

7.3 Effect of various parameters on the solution of the Cantilever beam and
Timoshenko beam

It is of interest to study the effect of the number of FFT points (Ns), number of
segments (S), the order of the polynomial (N) required for approximation, the effect
of taper parameter m and the effect of frequency f , for various numerical methods
on the solution of the Cantilever beam and the Timoshenko beam.



Frequency Domain Based Solution 157

Ta
bl

e
1:

E
rr

or
A

na
ly

si
s

fo
rG

al
er

ki
n

M
et

ho
d

in
Ti

m
e

D
om

ai
n

an
d

Fr
eq

ue
nc

y
D

om
ai

n

G
al

er
ki

n
A

pp
ro

ac
h

Fr
eq

ue
nc

y
D

om
ai

n
Ti

m
e

D
om

ai
n

N
o.

of
N

od
es

/S
eg

.
N

o
of

Se
g.

N
s,

∆
t

M
SE

E
rr

m
ax

N
t,

∆
t

M
SE

E
rr

m
ax

(N
+1

)
S

3
27

N
s
=

10
24
,∆

t=
0.

98
µ

se
cs

9.
28

E
-6

2.
09

E
-6

N
t
=

10
24
,∆

t=
0.

98
µ

se
cs

1.
66

E
-5

3.
51

E
-6

4
18

1.
07

E
-6

2.
40

E
-7

N
t
=

10
24
,∆

t=
0.

98
µ

se
cs

2.
36

E
-5

5.
05

E
-6

N
t
=

14
28
,∆

t=
0.

70
µ

se
cs

1.
23

E
-5

2.
02

E
-6

7
9

1.
35

E
-8

2.
47

E
-9

N
t
=

10
24
,∆

t=
0.

98
µ

se
cs

2.
42

E
-5

5.
15

E
-6

10
6

8.
05

E
-1

0
1.

35
E

-1
0

N
t
=

14
28
,∆

t=
0.

70
µ

se
cs

1.
29

E
-5

2.
16

E
-6

19
3

9.
23

E
-1

2
1.

14
E

-1
2

N
t
=

30
00
,∆

t=
0.

33
µ

se
cs

5.
00

E
-6

6.
24

E
-7

28
2

1.
20

E
-1

2
1.

50
E

-1
3

N
t
=

40
00
,∆

t=
0.

25
µ

se
cs

4.
93

E
-6

6.
53

E
-7

55
1

1.
52

E
-1

2
2.

55
E

-1
3

N
t
=

80
00

,∆
t=

0.
12

5
µ

se
cs

2.
55

E
-6

2.
33

E
-7



158 Copyright © 2014 Tech Science Press CMES, vol.97, no.2, pp.131-174, 2014

Table
2:E

rrorA
nalysis

forC
ollocation

m
ethod

considering
differentgrid

points

G
rid

N
o.ofN

odes/
N

o.of
C

G
L

points
L

G
L

points
E

quidistantpoints

points
Segm

ent
Segm

ents
M

SE
E

rrm
ax

M
SE

E
rrm

ax
M

SE
E

rrm
ax

N
g

N
+

1
S

16

16

1
1.46E

-4
1.64E

-5
1.31E

-1
3.06E

-2
2.85E

+0
5.85E

-1

31
2

2.53E
-6

2.43E
-7

6.28E
-6

7.25E
-7

2.87E
-2

7.60E
-3

46
3

4.29E
-8

6.70E
-9

1.57E
-7

2.47E
-8

4.45E
-5

1.70E
-5

61
4

1.61E
-9

2.71E
-10

5.78E
-9

9.90E
-10

7.95E
-7

1.29E
-7

76
5

9.06E
-11

1.56E
-11

3.20E
-10

5.50E
-11

4.34E
-8

8.08E
-9

91
6

6.02E
-12

1.19E
-12

2.11E
-11

4.22E
-12

2.94E
-10

5.97E
-10



Frequency Domain Based Solution 159

7.3.1 Effect of Ns (Number of FFT points)

The results for different FFT points for Problem (i) and (ii) for the Galerkin and
Collocation method are compared with the exact solution and is shown in (Fig. 6)
and (Fig. 7) respectively. In our approach we have considered the following: Ns =
128,256,512 and 1024, N = 4, S = 12, Ng = SN + 1 = 49, taper parameters for
Problem (ii) - m = 1 and a = 0.5, trial function - Chebyshev. In order to increase
the time window, sampling time is taken as ∆t = 3 µ seconds. It is observed that
even for Ns = 128, the wrap around effect is avoided.
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Figure 6: Problem (i): Effect of Ns for different FFT points (128, 256, 512 and
1024) with dt = 3µ secs

For Problem (iii), we consider the following: Ns = 512 and 1024, N = 30, S = 8,
Ng = SN +1 = 121, Length of the finite beam L = 2 m, trial function - Legendre.
In order to keep the time window constant, sampling time is ∆t = 2 and 1 µ sec-
onds. The variation of the transverse velocity with time for different FFT points
is plotted for Galerkin approach, and Collocation approach for Problem (iii) as
shown in (Fig. 8). We obtained similar results for the Petrov-Galerkin and Method
of Moments approach, and hence not shown here.

7.3.2 Effect of S (Number of segments)

In the finite element analysis, the beam element length, L is divided into finite ele-
ment or segments S. An Nth order polynomial approximation is used per segment.
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Figure 7: Problem (ii): Effect of Ns for different FFT points (128, 256, 512 and
1024) with dt = 3µ secs

Thus, each segment will have N +1 nodes. For a fixed degree of freedom (DOF),
Ng, the number of segments (S) and the number nodes per segment (N +1) are se-
lected such that SN +1 = Ng. This helps in selecting a polynomial of lower order.
In order, to study the effect of the number of segments (S), we kept the order of
polynomial (N) fixed in each segment and varied the number of segments S. Here,
we have considered the following parameters for Problem (i) and (ii): Ns = 512,
∆t = 1 µ seconds, order of the polynomial per segment, N = 2, with number of n-
odes per segment, (N+1 = 3), S = 8,16,32,64 with Ng = SN+1 = 17,33,65,129.
Taper parameters for Problem (ii) - m = 1 and a = 0.5, Trial function - Chebyshev.
The variation of velocity with time is plotted for Galerkin and Collocation approach
for Problem (i) and (ii) as shown in (Fig. 9) and (Fig. 10) respectively. The results
are compared with the exact solution. Here, it is seen from this figure that in fre-
quency domain analysis, the approximate solution approaches the exact solution as
we increase the number of segments, when the order of the polynomial is low.
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For Problem (iii), we have considered the following parameters: Ns = 1024, ∆t =
1 µ seconds, order of the polynomial per segment, N = 30, with number of n-
odes per segment, (N + 1 = 3), S = 3,5, Ng = SN + 1 = 91,151, Trial function -
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Figure 8: Problem (iii): Effect of Ns for different FFT points (512 and 1024) with
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Chebyshev. The variation of transverse velocity with time is plotted for Galerkin
and Collocation approach for Problem (iii) as shown in (Fig. 11) and (Fig. 12) re-
spectively. The results are compared with the exact solution. Here, it is seen from
this figure that in frequency domain analysis, the approximate solution approaches
the exact solution as we increase the number of segments, when the order of the
polynomial is low.
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N = 30 for Galerkin approach
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N = 30 for Collocation approach

7.3.3 Effect of N (order of the polynomial)

To study the effect of the order of the polynomial (N), in each segment, we fix
number of segments and vary the number of nodes per segment. For Problem (i)
and (ii), we have considered the following parameters: Ns = 512, ∆t = 1 µ seconds,
order of the polynomial per segment, N = 2,6,9,11, with number of nodes per seg-
ment, (N +1 = 3,7,10,12), S = 8, Ng = SN +1 = 17,49,57,89, taper parameters
for Problem (ii) - m = 1 and a = 0.5, Trial function - Chebyshev. The variation of
velocity with time is plotted for Galerkin and Collocation approach for Problem (i)
and (ii) as shown in (Fig. 13) and (Fig. 14) respectively. The results are compared
with the exact solution.

We have given a detailed study of the error analysis of the different numerical
methods for Problem (i) in [Vinita, Gopalakrishnan, and Mani (2013)]. To study
the effect of the order of the polynomials (N), we considered the Collocation ap-
proach. The variation of mean squared error (MSE) with Ng is shown in (Fig. 15)
and the variation of maximum error (Errmax) with Ng is shown in (Fig. 16). The
MSE and Errmax decreases as we start increasing the number of nodes per segment.
As the order of the polynomial (N) increases per segment, the convergence rate also
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increases. These figures show an exponential convergence and the exponential de-
crease in error and is proportional to the order of the polynomials (N). For Problem
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Figure 16: Problem(i): Max. Error
for collocation approach for different
order of polynomial

(iii), we have considered the following parameters: Ns = 1024, ∆t = 1 µ seconds,
order of the polynomial per segment, N = 20,27, with number of nodes per seg-
ment, (N+1 = 21,28), S = 5, Ng = SN+1 = 101,136, Trial function - Chebyshev.
The variation of velocity with time is plotted for Galerkin and Collocation approach
for Problem (iii) as shown in (Fig. 17) and (Fig. 18). The results are compared with
the exact solution. The (Fig. 9) and (Fig. 13), (Fig. 10) and (Fig. 14), (Fig. 11)
and (Fig. 17) and (Fig. 12) and (Fig. 18) show that the approximating polynomi-
al converges to the exact solution with lesser number of segments (S), for higher
order of polynomial (N), taken per segment. We obtained similar results for the
Petrov-Galerkin and Method of Moments approach, and hence not shown here.
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7.3.4 Effect of taper parameter m

The results for Problem (ii) with varying cross-section is compared with the exact
solution by considering a = 1 and for varying taper parameter m = 1,2,3,4. Here
we have taken the modulated pulse as the force (FL) acting at x = L. We have
considered the following parameters: Ns = 1024, ∆t = 1 µ seconds, N = 9, S = 8,
Ng = SN + 1 = 81, Trial function - Legendre. The axial velocity for varying m is

−5

0

5
x 10

−5

d
u d
t

(a) m = 1

 

 

−5

0

5
x 10

−5

d
u d
t

(b) m = 2

 

 

−5

0

5
x 10

−5

d
u d
t

(c) m = 3

 

 

0 1 2 3 4 5 6

x 10
−4

−5

0

5
x 10

−5

d
u d
t

Time (secs)

(d) m = 4

 

 

Galerkin Collocation Exact

Figure 19: Problem (ii): Comparison
with the exact method for varying ta-
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shown for the Galerkin and Collocation approach and is compared with the exact
solution. Here we require a higher degree of freedom since we have considered the
modulated pulse for comparison instead of the Gaussian pulse. From (Eq. 19), we
find that as m increases the magnitude of the pulse decreases, but the group velocity
remains constant.

We also compare the results of Problem (i) with Problem (ii) in (Fig. 20). It is seen
from (Fig. 20) that the group velocity is independent of the taper parameter m and
the area of cross-section.

For Problem (iv), we do not have an exact solution and hence we use numerical
methods for solution of the tapered Timoshenko beam. We also compare the so-
lution by splitting up the beam into S stepped segments of uniform cross-section
and form the exact solution for each segment. We then obtain the Laplace spectral
finite element solution (LSEM). The numerical methods such as Galerkin, Petrov-
Galerkin, Method of Moments and the Pseudo-spectral methods are then compared
with the approximate spectral finite element solution obtained.

The results of the transverse velocity for taper parameter m = 1,2,3,4 for the
Galerkin and Pseudo-spectral method with comparison to the LSEM are shown
in (Fig. 21) and (Fig. 22) respectively. The corresponding group speeds for each
case is also shown in the figures. The figures show that the group speeds vary with
the taper parameter m. The approximate results using LSEM and the numerical
methods are found to be very close to each other.

7.3.5 Effect of f (Frequency of the input pulse)

The effect of frequency of the modulated pulse on the shear and the bending modes
are shown in (Fig. 23). We see that the shear mode disappears for low frequencies
for Problem (iii) with constant area of cross-section A0. The shear mode is seen to
be prominent for high frequency input pulse of 75 kHz (Fig. 23-(c)).

7.4 Group speeds, cg

In this section we consider, the group speeds of the cantilever beam and the Timo-
shenko beam. The group speeds can be computed exactly for Problem (i), (ii) and
(iii). For Problem (iv), we use the numerical methods for computation of the group
speeds and show that the group speeds vary with taper parameter m.

7.4.1 Problem (i) and (ii): Cantilever beam

The group speeds for Problem (i) and Problem (ii) is a constant and is given by√
E
ρ

. Thus the group speeds are independent of the frequency and taper parameter
m.
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Figure 21: Problem (iv): Effect of taper parameter m on the shear modes and bend-
ing modes - Galerkin Method

7.4.2 Problem (iii): Timoshenko beam of uniform cross-section

The group speed of the Timoshenko beam with uniform cross-section computed
exactly is plotted in (Fig. 24). The group speeds for the shear mode and the bending
mode are shown separately in (Fig. 24.(a)) and (Fig. 24.(b)) respectively. It is seen
that the group speeds vary with frequency for the Timoshenko beam, whereas the
group speed is a constant for the Cantilever beam. The group speeds for Problem
(iii) are also observed numerically, by varying the frequency f of the input pulse.
The corresponding velocities are tabulated and the data is interpolated to obtain the
group speeds at different frequencies. The group speeds obtained numerically is
also shown in (Fig. 24). We see that the group speed obtained numerically is very
close to the exact group speeds computed from (Eq. 32).
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Figure 22: Problem (iv): Effect of taper parameter m on the shear modes and bend-
ing modes - Pseudo-spectral Method

7.4.3 Problem (iv): Timoshenko beam of varying cross-section

The group speeds for varying cross-section cannot be computed exactly for the
Timoshenko beam. Hence the corresponding group speeds for varying parameter
m = 1,2,3 and 4 are computed numerically, by varying the frequency of the input
pulse. From the transverse velocity graph, we get the corresponding time taken for
the shear mode and the bending mode to occur. The corresponding group velocities
for each case (m = 1,2,3,4) is then tabulated and the data can be interpolated to
get the group speeds for different frequencies. This is shown in (Fig. 25).

Now consider the group speed, cgni for the Timoshenko beam of uniform cross-
section for the shear mode and the bending mode as given by (Eq. 32). For Problem
(iv), the different modes are a function of x, as they vary with the area of cross-
section A(x) and the moment of inertia I(x), along the length of the beam as,

kbn(x) =

√
ρI(x)
EI(x)

sn, ksn(x) =

√
ρA(x)

GA(x)K
sn, kcn(x) =

√
ρA(x)
EI(x)

sn (48)

For our analysis we consider the LSEM, where we divide the whole length into a
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Figure 23: Problem (iii): Effect of the frequency f of the input pulse on the shear
mode and the bending modes
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Figure 25: Problem (iv): Group speeds
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section

number of segments of uniform length. Thus, we get a band of group speeds for
each m as shown in (Fig. 26). We observe that the boundaries of the band match the
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values of m = 0 and m = 4, with the numerical results obtained using the Galerkin,
Petrov-Galerkin, Method of Moments and Pseudo-spectral approach and is shown
in (Fig. 26). Hence, we can approximate the group speeds of the varying case
(Problem (iv)) by (Eq. 49) as,

cgni ≈ lim
x→L

2kni(x)

−(kb(x)2 + ks(x)2)ωn± 2(kb(x)2−ks(x)2)ω3
n−4kc(x)2ωn

2
√

(kbn(x)2−ksn(x)2)−4kcn(x)2

(49)

where kb(x) =

√
ρI(x)
EI(x)

, ks(x) =

√
ρA(x)

GA(x)K
, kc(x) =

√
ρA(x)
EI(x)

(50)

The cut off frequency for Problem (iv) can also be approximated as,
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Figure 26: Problem (iv): Group speeds of Timoshenko beam with varying cross-
section using approximate expression

fc ≈
1

2π

√
GKA(x)

ρI(x)
=

1
2π

√
GKA0

ρI0

√
1

(1+ εx
L )

2m =
1

(1+ εx
L )

m fc0 (51)
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Figure 27: Problem (iv): Group speeds of Timoshenko beam showing variation in
cutoff frequency with m and ε

where fc0 is the cut off frequency for the Timoshenko beam of uniform cross-
sectional area A0. Hence we can say that,

lim
m→∞

fc ≈ lim
m→∞

1
(1+ εx

L )
m fc0 = 0, for ε > 0 (52)

lim
m→∞

fc ≈ lim
m→∞

1
(1+ εx

L )
m fc0 = ∞, for ε > 0

(Fig. 27) shows the approximate group speeds for ε = 0.1 and ε = −0.1 for m =
0,4,20. (Fig. 27) also shows that the cut-off frequency decreases as m increases for
ε > 0, and the cut-off frequency increases as m increases for ε < 0.

8 Conclusion

The Cantilever beam with uniform and varying area of cross-section (Problem (i)
and (ii)) and the Timoshenko beam with uniform and varying area of cross-section
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(Problem (iii) and (iv)) are solved in the frequency domain using different numeri-
cal methods such as the Galerkin approach, Petrov-Galerkin approach, Method of
Moments approach and the Pseudo-spectral approach. We have compared all the
numerical methods with the exact solution available for Problem (i), and (iii). For
the Cantilever problem with varying coefficient (Problem (ii)), exact solutions are
not available for all the cases. We have considered a special case for which exact
solution is available in the form of Bessel functions and have compared the nu-
merical results for varying taper parameter m. Laplace spectral methods are used
to solve the problem exactly in frequency domain for Problem (i), (ii) and (iii).
An infinite element (throw-off element) at both the ends for Problem (iii) is for-
mulated for avoiding reflections from the boundary. This allows two formulations
for the Timoshenko beam namely the Fourier transform approach and the Laplace
transform approach.

The approximation of the integral for calculating the stiffness matrix and mass ma-
trix for the Galerkin, Petrov-Galerkin and Method of Moments approach is done
using GLL integration. For the Pseudo-spectral or Collocation approach the in-
tegration is not required and hence reduces the computational time. A numerical
solution is obtained for Problem (iv) using all the numerical methods discussed
above and also using Laplace spectral element method.

The numerical solution for the set of ODEs in frequency domain for the Cantilever
beam and the Timoshenko beam is obtained using variational principles and the
results are presented.

(1) The effect of the number of FFT points (Ns) used for frequency domain method
is studied for Problem (i), (ii) and (iii). It is observed that the frequency domain
analysis gives results very close to the exact solution even for Ns = 256.

(2) The effect of the order of the polynomial N per segment used for the approx-
imation of the unknown function is studied for Problem (i), (ii) and (iii). The
MSE and Errmax is low as the order of the polynomial increases for the same
degree of freedom. The higher order of polynomial also reduces the error of
integral approximation.

(3) The effect of number of segments S used is also studied for Problem (i), (ii)
and (iii). It is shown that for a lower order polynomial approximation, the
numerical solution approaches the exact solution as we increase the number of
segments.

(4) The effect of the frequency of the input pulse on the group speeds for the Can-
tilever beam (Problem (i) and (ii)) and the Timoshenko beam (Problem (iii) and
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(iv)) are also studied. It is shown that the group speeds are a constant for the
Cantilever beam and the group speed vary with frequency for the Timoshenko
beam.

(5) It is also shown that a modulated pulse is able to extract the shear mode and
the bending mode of the Timoshenko beam (Problem (iii) and (iv)).

(6) We show that the effect of taper parameter m does not affect the group speed
for Problem (ii), whereas it is shown numerically that the group speeds vary
correspondingly for the shear mode and bending mode for Problem (iv). The
group speeds are obtained numerically by varying the frequency of the input
pulse and are tabulated for varying frequency for different taper parameter m.

(7) An approximate expression for the group speeds and the cut off frequency and
it is compared with the results obtained numerically. We also show that the
cut-off frequency disappears for large m for ε > 0 and increases for large m for
ε < 0.

The numerical methods in frequency domain are able to obtain the same results
as the exact solution for Problem (i), Problem (ii) and Problem (iii). Hence, we
obtain the shear mode and bending mode for the Timoshenko beam with varying
cross-section (Problem (iv)) using all the numerical methods. The group speeds are
also obtained numerically for the Timoshenko beam with varying cross-section for
varying frequency and varying taper parameter m.
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