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Axisymmetric and 3-D Numerical Simulations of the
Effects of a Static Magnetic Field on Dissolution of Silicon

into Germanium

F. Mechighel1,2,3, N. Armour4, S. Dost4 and M. Kadja3

Abstract: Numerical simulations were carried out to explain the behavior exhib-
ited in experimental work on the dissolution process of silicon into a germanium
melt. The experimental work utilized a material configuration similar to that used
in the Liquid Phase Diffusion (LPD) and Melt-Replenishment Czochralski (Cz)
growth systems. The experimental dissolution system was modeled by considering
axisymmetric and three-dimensional (3-D) domains. In both cases, the governing
equations, namely conservation of mass, momentum balance, energy balance, and
solute transport balance, were solved using the Finite Element Method.
Measured concentration profiles and dissolution heights from the experiment sam-
ples showed that the application of a static magnetic field increased the amount
of silicon transported into the melt. The magnetic field also induced a change in
dissolution interface shape. This change indicates a change in flow structure in
the melt. Both simulation models (axisymmetric and 3-D) predicted this change in
flow structure.
In the absence of magnetic field, a flat and stable interface was observed in the ex-
periments. In the presence of an applied field, the dissolution interface remains flat
in the center but curves back into the source material near the wall. The applica-
tion of the magnetic field gave rise to higher dissolution of silicon near the crucible
wall. This enhanced dissolution near the wall was well predicted by the present
3-D simulation model, but not by the axisymmetric model. This indicates that this
effect was due to the three-dimensionality of the melt flow.
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1 Introduction

Crystal growth is a solidification process that produces solid materials of single
crystalline structure. Most bulk single crystals of semiconductors are grown from
the liquid phase (melt and solution) [Müller and Ostrogorsky (1994); Dost and Lent
(2007); Mechighel (2013)].

The solution growth techniques such as Liquid Phase Electroepitaxy (LPEE), Liq-
uid Phase Diffusion (LPD), and the Traveling Heater Method (THM) and the melt
growth techniques such as Bridgman, Czochralski (CZ), Vertical Gradient Freez-
ing (VGF), and Float Zone (FZ) are used to grow single crystals of semiconductor
materials that are extremely valuable in the development of electronic and optoelec-
tronic devices [Dost and Lent (2007); Lappa (2005); Gulluoglu and Tsai (2000)].
Wafers cut from such crystals require uniform electrical properties to ensure a high-
er reproducibility and yield of such devices [Deal (2004)]. Consequently, there is
enormous economic motivation to produce homogeneous crystals. Hence, devel-
opments in the science and technology of crystal growth are continually sought to
meet increasingly precise wafer specifications required by chip manufacturers.

The literature on crystal growth processing, both experimental and/or numerical, is
very rich. These studies have addressed various issues involving the application of
magnetic fields, convective flow structures, flow stability, flow suppression, inter-
face stability, and growth rates. For instance, convective flow structures, the effect
of applied magnetic fields on flow structures, growth interface shapes, and growth
rates in solution crystal growth techniques such as LPD may be found in [Yildiz,
Dost and Lent (2005); Yildiz, Dost and Lent (2006); Yildiz, Dost and Yildiz (2006);
Armour, Dost and Lent (2007); Yildiz and Dost (2007a); Yildiz and Dost (2007b);
Armour, Yildiz, Yildiz and Dost (2008)], LPEE in [Armour, Sheibani, and Dost
(2006); Liu, Okano, and Dost (2002)], and THM in [Okano, Nishino, Ohkubo and
Dost (2002); Liu, Dost, Lent and Redden (2003); Kumar, Dost and Durst (2007)].

Although theoretical, numerical, and/or experimental investigations of morpholog-
ical instability in melt/solution crystal growth over the past half-century have pro-
vided a great deal of insight into the physics of the phenomenon, accurate predic-
tion of instabilities in semiconductors has proven, however, to be difficult. This is
mainly attributable to the fact that semiconductors are facet-forming materials with
highly anisotropic properties. Interfacial kinetics play a major role in the solidi-
fication of these materials, but the underlying kinetics mechanisms [Deal (2004);
Sampath and Zabaras (2001); Mechighel (2013)] influencing morphological stabil-
ity are still largely undiscovered. This is due in part to experimental difficulties
associated with fine control of the process parameters and an inability to monitor
processes occurring at the solid/liquid interface.
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Recently, a series of dissolution experiments were performed in a crucible similar
to that used in the LPD and Melt-Replenishment Czochralski (Cz) growth systems
[Armour and Dost (2009)] (schematically shown in Fig. 1) with and without the
application of a static vertical magnetic field. The measured concentration pro-
files from the samples processed with and without the application of magnetic field
showed that the amount of silicon transport into the melt was slightly higher in the
samples processed under magnetic field, and there was a substantial difference in
dissolution interface shape indicating a change in flow structure in the melt. With-
out an applied field, a flat and stable interface was observed. In the presence of
an applied field, however, the dissolution interface remained flat in the center but
dramatically curved back into the source material near the crucible wall. This indi-
cated a far higher dissolution rate at the edge of the silicon source.

In order to shed light on these experimental observations, numerical simulations
using both axisymmetric and 3-D simulation domains were carried out for this
dissolution process. Various levels of applied magnetic field were considered. The
objectives were i) to predict the experimental observations on dissolution rates and
enhanced mass transport near the wall in the melt, ii) to predict the flow patterns
and concentration distributions in the melt, iii) to have a better understanding for
the diffusion process in the melt which will be very beneficial in growth of SiGe
single crystals from the germanium side, iv) to examine the influence of convective
flow on dissolution of silicon, and v) to determine the limit of applicability of the
axisymmetric model in predicting these effects.

The present simulation results showed that both the axisymmetric and 3-D models
could predict the experimentally observed enhanced dissolution rates under mag-
netic field and also the associated changes in flow structure in the melt. The ax-
isymmetric model was also capable of predicting the dissolution interface shape
under magnetic field. However, the enhanced silicon dissolution near the crucible
wall under magnetic field was only predicted by the 3-D model; showing the three-
dimensionality of the flow field in the melt.

2 General Considerations and Mathematical Background

The setup used in the simulation is the arrangement where the silicon seed was
floating on top of the germanium melt. In this case, the silicon seed covers the melt
free surface. This arrangement is similar to the crucible stacking used in the LPD
growth system for SiGe material [Yildiz, Dost and Lent (2005)]. A schematic for
the material configuration used in this work is shown in Fig. 1. The growth crucible
is of cylindrical shape and thus the samples are of cylindrical shapes with 24 mm
diameter as clearly indicated in Fig. 1 in the model domain. Initially, the domain
is equalized at 800˚C and it is then suddenly immersed into an 1100˚C isothermal
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region.

In the present model, the liquid phase is taken as the Si-Ge solution domain (Ω)
in the growth crucible (Fig. 1), and the solid phases represent the silicon poly-
crystalline feed (ΩS), and the ampoule-crucible wall (ΩQuatrz). The liquid phase is
considered as a mixture of two viscous and heat conducting incompressible New-
tonian fluids, and is assumed to be a dilute binary solution (Ge-rich) of the solute
(Si) and the solvent (Ge).

Furthermore, in the present model the following assumptions regarding the Si-Ge
solution are considered: (i) thermo-physical properties, such as, the thermal con-
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Figure 1: Schematic view of the experimental setup (upper left), the simulation
axisymmetric domain (upper right), the simulation 3-D domain (lower right), and
a picture of the LPD growth furnace (lower left).
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ductivity kL, the dynamic viscosity µL, and the thermal diffusivity αL = kL
/

ρLcpL,
and the diffusion coefficient DL of the melt are taken as constants, (ii) only laminar
flow regime is considered, (iii) no viscous dissipation, and (iv) the Boussinesq ap-
proximation holds: In the SixGe1−x liquid solution of the present setup, the density
of the mixture is expressed as: ρL = ρ0 [βT (TL−TL,re f )+βT (CL−CL,re f )], where
ρ0 is the density of the reference (starting) liquid solution which is the molten ger-
manium.

For the assumptions regarding the silicon source, thermo-physical properties, such
as, the thermal conductivity kS, and the thermal diffusivity αS = kS

/
ρScpS are

taken as constants, moreover, no species diffusion in the silicon solid is consid-
ered (DS ≈ 0). Similar thermo-physical properties for the quartz solids (ampoule-
crucible wall) are taken constants. The materials (silicon solid, Si-Ge solution, and
quartz) thermo-physical data were compiled from [Yildiz (2005); Yildiz and Dost
(2005)].

Figure 1 shows schematically the vertical cross section of the present growth sys-
tem. Under the above assumptions, the three-dimensional time-dependent gov-
erning equations describing the melt (fluid) flow, heat and solute transport for the
liquid phase are written in cylindrical coordinates x(r,ϕ,z). It is easy to write
two-dimensional (axisymmetric) equations from three-dimensional equations by
simply dropping the dependency on the azimuthal angle (ϕ) in the field dependent
variables.

2.1 The Governing Equations for the liquid phase

Ωt ⊂ Rnsd represents the spatial domain (Fig. 1) at time t ∈ (0, tmax), where nsd
is the number of space dimensions (nsd = 2 or 3 for respectively both the axisym-
metric model and the 3-D model), Γt is the boundary of Ωt . The part of the Γt

boundary at which the velocity components, temperature, or species concentration
is prescribed (essential condition) is denoted by (Γt)D. The Neumann (natural)
boundary conditions are imposed at the remaining part of the boundary (Γt)N .

2.1.1 The Navier-Stokes Equations

Under the above assumptions, the principles of conservation of mass and balance
of momentum yield the following Navier-Stokes equations, in which the velocity-
pressure formulation is adopted:

∇ ·u = 0 on Ωt , ∀t ∈ (0, tmax) (1)

ρL
(
∂u
/

∂ t
)
+ρL u ·∇u−∇ ·σ = F on Ωt , ∀t ∈ (0, tmax) (2)

where ρL, u(x, t), with x(r,ϕ,z) are the mass density of the mixture (satisfying
the Boussinesq approximation), mass average velocity vector, which has a radial,
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an axial and an azimuthal (tangential) components denoted by (u, v and w) and
the position vector (note that an axisymmetric flow field expressed in terms of the
cylindrical coordinate system x(r,ϕ,z) where all flow variables are independent of
the azimuthal angle ϕ). For simplicity since the velocity in the solid phases is zero,
as will be shown later, in the previous equations the flow velocity in the liquid phase
is designed by u(x, t) instead uL (x, t).
In the equation (2), F(x, t) represent the external body forces (which represent here
both the gravitational vector contribution (thermosolutal buoyancy force Fbuoy =
ρLg) and the magnetic body force FE (which is illustrated latter), respectively, and
σ is the stress tensor given by σ (p,u) =−pI+2µ ε (u) with the deformation rate
tensor ε (u) =

[
∇u+(∇u)T

]/
2, p the pressure, and I the identity tensor.

For the flow velocity field, the homogeneous Dirichlet condition (no-slip) was as-
sumed on the entire crucible (excluding the interface (Γint)t ,which is illustrated
latter), thus:

u(x, t) = 0 on [Γt − (Γint)t ] , ∀t ∈ (0, tmax) (3)

As initial condition (at t = 0), since the velocity field was specified u0 (x) = 0
(divergence–free velocity field) over the liquid domain Ωt thus

u(x,0) = u0 (x) = 0 on Ω0 (4)

2.1.2 Energy transport

The balance of energy over the liquid domain Ωt with the boundary Γt leads to the
following time-dependent convection-conduction equation, where neither heat gen-
eration (Joule heating) nor absorption are considered, furthermore, no heat transfer
by radiation is assumed:

∂TL
/

∂ t +u ·∇TL−αL∇
2TL = 0 on Ωt and ∀t ∈ (0, tmax) (5)

where TL represents the temperature in the liquid phase (Ωt).

The temperature boundary conditions on all the internal boundaries of the domain
(Fig. 1) (excluding the interface (Γint)t ,which is illustrated latter) are assumed as
continuity, which reads:

n · (q1−q2) = 0 on [Γt − (Γint)t ] , ∀t ∈ (0, tmax) (6)

where qi =−ki∇Ti (where, i refers to material 1 and material 2, i.e. solution/quartz).

The condition Tini = 800◦C was specified as the initial condition, which reads:

TL (x, 0) = T0 (x) = Tini on Ω0 (7)
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2.1.3 Solute transport

Since there is no mass transport through the crucible wall (impermeable), and by
assuming no solute (silicon) diffusion in the solid (Ds << DL), the solute transport
may then be given by the following time-dependent mass transport equation:

∂CL
/

∂ t +u ·∇CL−DL∇
2CL = 0 on Ωt and ∀t ∈ (0, tmax) (8)

where CL and DL are the concentration and the coefficient of the diffusion of the
liquid solute in the liquid phase (Si-Ge melt), respectively.

Since it was assumed that the crucible boundaries are not permeable for species
transport, thus, the solutal boundary conditions (excluding the interface (Γint)t ,
which is illustrated latter) associated with Eq. (8) are:

n ·DL∇CL = hC = 0 on [Γt − (Γint)t ] and ∀t ∈ (0, tmax) (9)

where hC represents a specified species flux (Neumann condition). Furthermore,
the following condition is specified as the initial condition:

CL (x, 0) =C0 (x) = 0 on Ω0 (10)

2.1.4 Electric charge balance equation and the magnetic body force

The crucible is subjected to an applied axial static magnetic field B = B0ez with the
uniform field intensity of B0 as shown in Fig. 1. For metallic liquids, the magnetic
body force FE acting on the points of the liquid (domain Ωt) may be taken simply
as

FE = J×B

where the contribution of electric charge is neglected, and the current density J is
given by the Ohm’s law by

J = σe (−∇φ +u×B) (11)

The current density J is governed by the conservation of current

∇ ·J = 0 (12)

with the assumption that the induced fields due to the applied magnetic field are
negligible [Mechighel (2013)]. This is a good approximation for metallic liq-
uids since the magnetic Reynolds numbers are sufficiently small [Giessler, Siev-
ert, Krieger, Halbedel, Huelsenberg, Luedke and Thess (2005); Kakimoto and Li-
u (2006)]. In the above equations φ is the electric potential and σe the electric
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conductivity of the liquid phase. In this case the magnetic body force becomes
FE = σe (−∇φ +u×B)×B.

Combining (11) and (12) leads to the following Poisson’s equation

∇
2
φ = ∇ · (u×B) = B0 ez · (∇×u) on Ωt , ∀t ∈ (0, tmax) (13)

that governs the electric potential distribution.

Note that for the axisymmetric model case, since the vorticity vector, ∇× u =(
∂u
/

∂ z−∂v
/

∂ r
)

eϕ = 0, thus the electrical potential conservation equation re-
duces to ∇2φ = 0, this simplifies significantly the axisymmetric problem and hence,
the resolution for this equation is not required as there was no contribution of gra-
dient of φ in the magnetic body force (i.e. FE = σe (u×B)×B).

2.2 Solid phases

The problem can be greatly simplified when assuming that there is no species diffu-
sion in the solid, so that us = 0 (where us is the velocity vector in the solid phases).
The only governing equation needed is the energy balance:

∂Ts
/

∂ t =
(
ks
/

ρscps
)

∇
2Ts, on Ωsolid , ∀t ∈ (0, tmax) (14)

where ρs, cps, and ks are the density, specific heat and thermal conductivity of the
solid phases (Fig. 1), respectively. Recall that the solid phases in the model are the
polycrystalline Si source; and the quartz crucible-ampoule which are modeled as a
rigid, heat conducting solid, as shown in Fig.1.

In the silicon solid phase, Ωsolid represents ΩS, (Fig. 1), and the temperature is
denoted by TS, the conditions on Γint (illustrated later), continuity conditions on
silicon source/crucible boundary and top silicon/vacuum boundary together pro-
vide the required boundary conditions for resolution of the heat transport problem.
(The vacuum above the surface is assumed to be a gas of negligible viscosity and
conductivity).

For the quartz crucible, Ωsolid represents ΩQuartz, (Fig. 1), and the temperature
is denoted by TQuartz, the thermal boundary conditions for the outer vertical wall,
and bottom surface of the quartz crucible are expressed as a specified temperature
(1100˚C). At the top surface of the domain the flux was set to zero. Furthermore,
perfect thermal contacts and continuous heat flux at the silicon seed/crucible, solu-
tion/crucible and inner crucible boundaries were assumed.

2.3 Conditions at silicon source/melt (dissolution) interface

The interfacial system of the present study consists of two non-reacting compo-
nents, Ge and Si, and two phases; the liquid phase (L) (Si-Ge melt assumed as a
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dilute binary liquid mixture (Ge-rich) of the solute (Si) and the solvent (Ge)) and
the solid phase (S) (silicon source).

The solid/liquid (source/melt or dissolution) interface is a complicated boundary
where the imposed conditions must account for interfacial transport of energy and
mass. Indeed, the dissolution interface is not only a source and sink for thermal
energy and components, but it moves as phase change takes place. The conditions
required to establish such an interface can be determined using thermodynamics,
(i.e. assuming the interface is an equilibrium state of the system). Furthermore, the
driving force for phase transformation (i.e. dissolution in the present study) can
be described by a deviation from this equilibrium state [Mechighel (2013)].

General boundary conditions at a solid/liquid interface may be written as:

TS = TL = T 0
m +mLCL−2γSLϒ

/
∆S0 (15a)

kS (∇TS ·n)− kL (∇TL ·n) =−L fV
(
uint −u

)
·n (15b)

DL (∇CL ·n) =CL (κ−1)
(
uint −u

)
·n (15c)

where T 0
m is the melting temperature of pure Ge, mL is the liquidus slope given by

the two-component phase diagram, ϒ is the local mean curvature of the interface
(positive for convex surfaces viewed from the liquid), ∆S0 is the entropy of fusion
per unit volume for pure (Ge), γSL is the interfacial energy per unit area between the
solid and liquid phases, n is the unit normal vector to a point solid/liquid interface
pointing toward the liquid; uint is the velocity of the solid/liquid interface in the
reference (fixed) frame at that point, and L fV < 0 is the latent heat of fusion (en-
thalpy of fusion) for the solid (Si source) per unit volume, assumed identical for the
solute and κ =CS

/
CL is the equilibrium distribution coefficient of the solute.Here

all quantities are associated with the solid/liquid (S/L) interface boundary.

Assumptions at the dissolution interface

-The inclusion of the liquid velocity u at the dissolution interface in previous equa-
tions is necessary if the density of the solid and liquid are not equal [Deal (2004)].
The resulting shrinkage or expansion upon dissolution will alter the velocity of the
interface and affect the transport of components and heat, and u accounts for this.
However, since the experimentally observed dissolution rate of silicon source into
the solution is very small, so the velocity components (u, v and w) of fluid particles
at the dissolution interface can be neglected in the present system (thus u ·n = 0)
[Armour and Dost (2009)].

-As mentioned earlier, assuming the interface is at an equilibrium state of the sys-
tem, means that the local thermodynamic equilibrium (TS = TL = Teq) is reached
at the interface, the solute concentration at the dissolution interface is determined
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from the Si-Ge binary phase diagram, namely Ceq = f n(Teq), which is written for
the liquid (Ceq

L ) and solid (Ceq
S ) equilibrium compositions for the Ge-rich side of

the phase diagram. On the dissolution interface we adopt the following saturation
concentration (in molar concentration of silicon) predicted from the Si-Ge phase
diagram:

Ceq
L =Cdis

L = 2005.62×
[
(ccL×28.086)

/
((72.64× (1.0− ccL)+28.086× ccL))

]
and

Ceq
S =Cdis

S = 2005.62×
[
(ccS×28.086)

/
((72.64× (1.0− ccS)+28.086× ccS))

]
where

ccL =
[
4×10−6× (Teq−273.15)2−0.007× (Teq−273.15)+3.361

]
and

ccS =

{
6×10−9× (Teq−273.15)3−1×10−5× (Teq−273.15)2

+0.0198× (Teq−273.15)+7.044

}
-Furthermore, we assume that at the dissolution interface the contribution of latent
heat is neglected since the dissolution interface velocity is very small. Thus, the
energy balance at the interface, Eq. (15b), reduces to: kS (∇TS ·n)−kL (∇TL ·n)=0.

-We then write the mass balance equation at the dissolution interface, i.e. Eq. (15c),
DL (∇CL ·n) = CL (κ−1)

(
uint
)
·n. However, since the interface velocity is small

we take uint = 0, and thus the mass balance at the interface is excluded. Then, the
conditions at the dissolution interface (Γint)t become

CL =Cdis
L =Ceq

L at Tdis, (u = 0, v = 0 and w = 0), and kL
∂TL

∂n
= kS

∂TS

∂n
(16)

where Cdis
L and Tdis are respectively the equilibrium mass fractions of the solute and

the temperature at the dissolution interface (Tdis = Teq = TS = TL).

2.4 Symmetry conditions (used only for the axisymmetric model):

At the axis of symmetry, we use symmetry conditions. Also for physical (finite)
results, it is required that the radial velocity component be zero [Yildiz and Dost
(2005)]. Thus,

u = 0 and ∂v
/

∂ r = 0 on the symmetry axis (r = 0), ∀t ∈ (0, tmax) (17a)

n ·αL∇T = hT = 0 on the symmetry axis (r = 0), ∀t ∈ (0, tmax) (17b)

n ·DL∇C = hC = 0 on the symmetry axis (r = 0), ∀t ∈ (0, tmax) (17c)
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3 Numerical resolution

3.1 The ST-GLS formulation for unsteady incompressible fluid flow

Since the dissolution interface velocity is assumed to be negligible in the present
study so the space-time Galerkin/least-square (ST-GLS) finite element formulation
for incompressible fluid flows is used here. This formulation is used in order to
prevent numerical instabilities encountered when using the standard Galerkin fi-
nite element method (details on this technique can be found in works by Tezduyar
and Coworkers [Tezduyar (1992); Tezduyar, Mittal, Ray and Shih (1992)]. In the
present work, this stabilized finite element formulation was utilized using equal-
order interpolation velocity-pressure elements as proposed by [Tezduyar, Mittal,
Ray and Shih (1992)].

Firstly, the formulation assumes that the spatial domain is fixed in time; this implies
that the subscript t is dropped from the symbols Ωt and Γt [Tezduyar (1992)]. In
the space-time finite element formulation, the time interval (0, tmax) is partitioned
into subintervals In = (tn, tn+1), where tn and tn+1 belong to an ordered series of
time levels 0 = t0 < t1 < · · · < tN = tmax. The space-time slab Qn is defined as the
space-time domain Ω× In. The lateral surface of Qn is denoted by Pn; this is the
surface described by the boundary Γ, as t traverses In. Similarly, Pn is decomposed
into (Pn)D and (Pn)N with respect to the type of boundary condition being imposed
(as shown in Eq. 3, since we have only the Dirichlet part, including the dissolution
interface (Eq. 16), thus Pn = (Pn)D∪ (Pn)N = (Pn)D).

Finite element discretization of a space-time slab Qn is achieved by dividing it in-
to elements Qe

n, e = 1, 2, · · · ,(nel)n, where (nel)n is the number of elements in the
space-time slab Qn. Associated with this discretization, by adopting the standard
notation of [Tezduyar (1992); Tezduyar, Mittal, Ray and Shih (1992)]) we define
the following finite element interpolation and variational function spaces for veloc-
ity and pressure:(

Sh
u

)
n
=
{

uh
∣∣uh ∈H1h

0 (Qn) , uh = 0 on (Pn)D -(Pn)int and uh ·n = 0 on (Pn)int

}
(

Vh
u

)
n
=
{

wh
∣∣wh ∈H1h

0 (Qn) , wh = 0 (Pn)D -(Pn)int and wh ·n = 0 on (Pn)int

}
(

Sh
p

)
n
=
(

V h
p

)
n
=
{

qh
∣∣∣ qh ∈ L2h (Qn)

/
R
}

The GLS technique is defined by imposing that the stabilization term added is an
element-by-element weighted least-squares formulation of the original Eq. 2 to as-
sure the numerical stability of the computations (see [Tezduyar (1992); Tezduyar,
Mittal, Ray and Shih (1992)] for further details). Using the standard notation of
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[Tezduyar (1992); Tezduyar, Mittal, Ray and Shih (1992)], the space-time formu-
lation of Eqs. 1, 2, 3 and 4 can be written as follows:

Start with
(
uh
)−

0 = (u0)
h, sequentially for Q1, Q2, . . . , Qn−1, given

(
uh
)−

n , find
uh ⊂

(
Sh

u
)

n and ph ⊂
(
Sh

p
)

n, such that: ∀wh ⊂
(
Vh

u
)

n and ∀qh ⊂
(
V h

p
)

n, we have:

∫
Qn

wh ·ρ
(

∂uh

∂ t +uh ·∇uh
)

dQ+
∫

Qn

ε
(
wh
)

: σ
(

ph,uh
)

dQ −
∫

(Pn)N

wh ·hN dP

+
∫

Qn

qh∇ ·uh dQ −
∫

Qn

wh ·FdQ+
∫
Ω

(
wh
)+

n ·
{(

uh
)+

n −
(
uh
)−

n

}
dΩ

+
(nel)n

∑
e=1

∫
Qe

n

τGLS
stab

[
ρ

(
∂wh

∂ t +uh ·∇wh
)
−∇ ·σ

(
qh,wh

)
−F
]
·

·
[
ρ

(
∂uh

∂ t +uh ·∇uh
)
−∇ ·σ

(
ph,uh

)
−F
]

dQ = 0

(18)

Note that the term
∫

(Pn)N

wh ·hN dP =
∫

(Pn)N

wh · (σ ·n) dP = 0 (since in our case

(Pn)N =∅). The coefficient τGLS
stab determines the weight of such added terms, and in

this weak form, following the notation used in [Tezduyar (1992)], we write
(
uh
)±

n =

lim
δ→0

uh (tn±δ ),
∫

Qn

(· · ·) dQ =
∫
In

∫
Ω

(· · ·) dΩ dt and
∫
Pn

(· · ·) dP =
∫
In

∫
Γ

(· · ·) dΓ dt.

For various ways of calculating matrix τGLS
stab , see for instance [Tezduyar (1992);

Shakib (1988); Hauke and Hughes (1998); Polner (2005); Förster (2007)]. In the
present study, this was implemented in COMSOL package (see [COMSOL Multi-
physics Modeling Guide (2008)]).

The finite element interpolation functions are discontinuous in time. The fully dis-
crete equations can be solved one space-time slab at a time (a fractional-step pro-
cedure). The memory needed for the global matrices involved in this method is
quite extensive. Iteration methods can be employed to substantially reduce the cost
involved in solving the linear equation systems arising from the space-time finite
element discretization. Here, resolution was achieved using the generalized mini-
mal residual (GMRES) method [Saad and Schultz (1986); COMSOL Multiphysics
Modeling Guide (2008)].

3.2 Streamline Upwind Petrov-Galerkin (SUPG) formulation for the heat trans-
port

For the heat transport equation, we adopt the SUPG stabilization given by [Ed Akin
and Tezduyar (2004)]. Consider the initial boundary value problem given by the
unsteady convection-conduction equation, Eq. 5, and its associated boundary and
initial conditions, Eqs. 6 and 7. The principle of the SUPG stabilization technique
is defined by taking a perturbation as the following: P (w) = u ·∇w. This will
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be introduced in the weak form of the problem, with being the weighting function.
Thus∫

Ω

w
(

∂TL
∂ t +u ·∇TL

)
dΩ+

∫
Ω

∇w · (αL∇TL)dΩ

−
∫

ΓN

whT dΓ+
nel

∑
e=1

∫
Ωe

τT
SUPG

(P (w)R (w)) dΩ = 0
(19)

where R (w) is the residual of the equation of energy, Eq. 5.

Using a suitably-defined finite-dimensional trial solution and interpolation function
spaces (further details, see [Ed Akin and Tezduyar (2004)]), the stabilized SUPG
finite element formulation of the previously written energy equation with boundary
and initial conditions can be written as follows.

Find T h
L ∈ Sh

T such that ∀wh ∈V h
T∫

Ω

wh
(

∂T h
L

∂ t +uh ·∇T h
L

)
dΩ+

∫
Ω

∇wh ·
(
αL∇T h

L
)

dΩ−
∫

ΓN

wh hT dΓ

+
nel

∑
e=1

∫
Ωe

τT
SUPG

((
uh ·∇wh

)(
∂T h

L
∂ t +uh ·∇T h

L −αL∇2T h
L

))
dΩ = 0

(20)

Here nel is the number of elements and Ωe is the element domain corresponding to
element e. τT

SUPG
is the SUPG stabilization parameter. For various ways of calcu-

lating τT
SUPG

, see for instance [Tezduyar and Osawa (2000); Ed Akin and Tezduyar
(2004)]. In the present study, this was implemented in COMSOL package.

Finally, the finite element discretization of this weak form yields a system of semi-
discrete equations for t ∈ (0, tmax). In order to trace the transient response, this
system of semi-discrete equations can be advanced in time by suitable finite dif-
ference schemes such as the θ family methods. A fully implicit method known
as "Backward Differentiation Formulas" (BDF) is used [Donea and Huerta (2003);
COMSOL Multiphysics Modeling Guide (2008)].

3.3 SUPG FEM for solute transport equation

The same SUPG stabilization technique is used for the solute transport equation.
Using a suitably-defined finite-dimensional trial solution and interpolation function
spaces, the stabilized finite element formulation of the previously written species
equation (Eq. 8) with boundary and initial conditions (Eqs. 9 and 10) can be written
as follows:

Find Ch ∈ Sh
C such that ∀wh ∈V h

C :∫
Ω

wh
(

∂Ch
L

∂ t +uh ·∇Ch
L

)
dΩ+

∫
Ω

∇wh ·
(
DL∇Ch

L
)

dΩ−
∫

ΓN

whhC dΓ

+
nel

∑
e=1

∫
Ωe

τC
SUPG

((
uh ·∇wh

)(
∂Ch

L
∂ t +

(
uh ·∇Ch

L
)
−DL∇2Ch

L

))
dΩ = 0

(21)
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Here τC
SUPG is the SUPG stabilization parameter (for solute transport equation).

For various ways of calculating τC
SUPG, see for instance [Franca; Frey and Hughes

(1992); Tezduyar and Osawa (2000)]. In the present study, this was implemented
in COMSOL package.

3.4 Heat transport by conduction in the solid phases

The classical Standard Galerkin formulation [Donea and Huerta (2003); COMSOL
package] is used for Eq. 14, with the corresponding boundary and initial condition-
s. Further details about the mathematical modeling and solution methodology are
illustrated in the article by [Mechighel, Armour, Dost and Kadja, (2011)].

4 Results and discussion

The 3-D simulation conducted in the absence of magnetic field exhibited a de-
caying dissolution phenomenon, and showed an expected diffusion-dominated be-
havior in the region close to the dissolution interface, in agreement with the ex-
perimental observation of [Armour and Dost (2009)] (Fig. 2). Transport into the
Ge-rich melt is relatively slow and continues to slow down as the concentration
gradient flattens. Mathematically, this means that in Eq. 8 the diffusive term,
(−∇ · (DL∇CL) = −DL∇2CL), is dominant compared with the convective term,
(u ·∇CL), in this region. In fact, this is due to the physics of the experimental
configuration. In this system, the silicon source placed at the top of the melt dis-
solves, under the applied temperature profile, into the Ge-rich melt, and then dif-
fuses downward in the opposite direction to the gravity-induced buoyancy force.
Due to the large density difference between the Si solute and the Ge-rich melt, the
lighter silicon solute is buoyant, and the diffusion of silicon acts to stabilize the
melt against natural (thermosolutal) convection. This makes the silicon transport
in this system diffusion dominated, and naturally leads to slower dissolution rates.
At the center of the melt and near the crucible wall, however, convective flow is
present as illustrated in the following manner.

The nature of the flow in the melt can be quantified by determining the relative
contributions of convection and diffusion by calculating the ratio of the buoy-
ancy force to the viscous force, known as the thermal Grashof number, GrT =
gβT (GT )R4

/
υ2

L . For GrT values less than 104, viscosity dominates and convec-
tion is minimal (Stokes flow). However, if GrT is greater than 104, convection is
present, and the diffusion boundary layer is truncated by the melt flow. Taking a
lower limit for the present study (with the melt radius R of 12 mm and a temperature
gradient GT of 5 K/cm) we calculate GrT ≈ 6× 105. This means that a relatively
weak convective flow (thermal convection) was present in the melt. In addition, an
upper bound for the size of the diffusion boundary layer is estimated by (DL

/
Rdis),
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(a) experiment [Armour and Dost (2009)] (b) 3-D simulation 
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Figure 2: Average height of silicon dissolved into Ge-rich melt: (a) experiment
conducted with no field and under a 0.8 Tesla magnetic field level [Armour and
Dost (2009)]; (b) comparison between the numerically predicted and measured
dissolution heights. Prediction is in good agreement with experiment. Indeed, the
maximum relative error between the simulation and experimental results is less
than 6%.

using the smallest dissolution rate. For Rdis = 2.5 mm/hr, this is 36 mm. Therefore,
since convection was present, the diffusion boundary layer in the system was less
than 36 mm.

To provide further insight into the nature of the melt flow and mixing in the present
crucible configuration, numerical simulations using both axisymmetric and 3-D
models were carried out without and with the application of magnetic field. The
numerically predicted concentration and melt flow velocity fields are presented in
Figs. 3, 4, 5. The components of melt flow velocity (u,v and w) are also graphically
shown in Figs. 6, 7, 8.

Computed flow patterns in the melt after 20 minutes of dissolution are graphically
represented by flow velocity vectors in Fig. 3. The rotation of the thermosolutal
convection cell is counterclockwise (Fig. 3a). In 3-D simulation, this is an annular
roll (Fig. 3b and 3d). Near the crucible wall (i.e. sides of the sample) fluid moves up
toward the dissolution interface, and then it travels along the dissolution interface
toward the center, finally turning downwards in the direction of the crucible bottom
surface. Along the dissolution interface near the center of the sample, flow is very
weak, and consequently, the solute transport is diffusion dominated in this region.
Slow dissolution (lower dissolution rate) in this region results in a semi-mixed melt.
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However, a stronger flow along the vertical wall (sides) of the domain leads to
a better mixing in the melt and gives rise to relatively faster dissolution rates of
the source at the edge. Indeed, the concentration profile around the dissolution
interface shows that silicon is being mixed away from the region near the crucible
wall towards the center of the melt (Fig. 3b and 3c).

The stable flow structure (caused by silicon buoyancy in the melt) results in a flat
dissolution interface. The most significant difference with the application of the
magnetic field is the shape of the dissolution interface as seen in Fig. 9 (taken
from reference [Armour and Dost 2009]). In Fig. 9, we see the photos of the

  
(a) axisymmetric model (b) 3-D model (vertical cross section) 

  

(c) 3-D model: concentration field in the 

region near the center of the interface 

(d) 3-D model: streamlines  

 Figure 3: Results after 20 min of dissolution with no magnetic field. Arrows indi-
cate the flow structure, and isolines/isosurfaces illustrate the solute concentration
distribution. In the 3-D simulation the dissolution pattern clearly indicates that it is
more concentrated in the center.
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polished surfaces of the cross-sections of two processed samples, which are ob-
tained by cutting through the center of the cylindrical processed samples at the end
of the dissolution experiment. In this figure, the photo of the cross-section of the
processed sample on the right (under magnetic field) clearly shows the enhanced
dissolution (more silicon dissolution) near the crucible wall compared with that in
the photo on the left (with no magnetic field). On the left, we see that the silicon
dissolution interface remains almost flat, but on the right, more silicon dissolved
near the wall leading to a curved interface that is visible in the photo.

  

  

(a) axisymmetric model (b) 3-D model (vertical cross section)   

  

  

(c) 3-D model: concentration field in the 

region near the center of the interface 

(d) 3-D model: streamlines   

 Figure 4: Results after 20 min of dissolution under a 0.2 Tesla field. Arrows in-
dicate the flow structure and isolines/isosurfaces illustrate the solute concentration
distribution. In the 3-D simulation the dissolution pattern clearly indicates that it is
more concentrated in the center (but is less pronounced than the simulation with no
applied field).
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As mentioned earlier, the change observed in the interface shape indicates the effect
of the applied magnetic field on the melt flow. This expected change in the melt
flow is well predicted by the present 3-D numerical simulation (as shown in Figs.
3 and 5). The rotation of the thermosolutal convection roll is clockwise under mag-
netic field (Figs. 5b and 5d). One may explain the numerically predicted flow and
dissolution patterns as follows. The downward strong warm flow, due to the com-
bined effect of gravitational and magnetic body forces, is observed in the regions
near to the crucible wall (Fig. 5b and 5d), due to solute rejection in the melt. The
flow starts from the region near the interface edge (i.e. edge of the silicon source)

  

  

(a) axisymmetric model (b) 3-D model (vertical cross section)   

  

  

(c) 3-D model: concentration field in the 

region near the edge of the interface 

(d) 3-D model: streamlines   

 Figure 5: Results after 20 min dissolution with a 0.8 Tesla applied field. Arrows in-
dicate the flow structure and isolines/isosurfaces illustrate the concentration profile.
In the 3-D simulation the dissolution pattern indicates that it is more concentrated
near the edge.
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and moves towards the crucible bottom surface, supplying and enriching the melt
with the dissolved solute. The solute transport by convection in this region leads
to further dissolution from the source (faster dissolution at the edge of the silicon

  
(a) axisymmetric model: radial velocity plotted 

at different radial positions 

(b) axisymmetric model: axial velocity plotted 

at different radial positions 

  
(c) 3-D model: radial velocity (d) 3-D model: tangential velocity 

 

z = 2 mm 

 

z = 12 mm 

 

z = 23 mm 

(e) 3-D model: radial, axial and tangential components of velocity at different radial positions 

 Figure 6: Results after 20 min of dissolution with no applied field. Slices indicate
the radial and tangential velocity components plotted at different radial positions (z
= 2 mm, 12 mm and 23 mm).
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(a) axisymmetric model: radial velocity plotted 

at different radial positions 

(b) axisymmetric model: axial velocity plotted 

at different radial positions 

  

(c) 3-D model: radial velocity (d) 3-D model: tangential velocity 

 

z = 2 mm 

 

z = 12 mm 

 

z = 23 mm 

(e) 3-D model: radial, axial and tangential components of velocity at different radial positions 

 Figure 7: Results after 20 min of dissolution with 0.2 Tesla applied field. Slices
indicate the radial and tangential velocity components plotted at different radial
positions (z = 2 mm, 12 mm and 23 mm).
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source). Near the crucible bottom surface, a warmer downward flow turns towards
the center of the melt and brings the dissolved solute to the center (Fig. 5b and
5d) which results in well-mixed regions along the sides and the center of the melt.

 

  
(a) axisymmetric model: radial velocity plotted 

at different radial positions 

(b) axisymmetric model: axial velocity plotted 

at different radial positions 

  
(c) 3-D model: radial velocity (d) 3-D model: tangential velocity 

 

z = 2 mm 

 

z = 12 mm 

 

z = 23 mm 

(e) 3-D model: radial, axial and tangential components of velocity at different radial positions 

 Figure 8: Results after 20 min of dissolution with 0.8 Tesla applied field. Slices
indicate the radial and tangential velocity components plotted at different radial
positions (z = 2 mm, 12 mm and 23 mm).
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The observed stronger downward flow (driven by the gravitational body force) at
the center was reversed in direction with the applied magnetic field (Fig. 3b and
5b). In the region close to the center of the interface, the melt flow is almost absent
and the solute transport is diffusion-dominated. This naturally leads to far slower
dissolution rates at the center and results in semi-mixed region at the center of the
melt near the dissolution interface. It is important to note that the axisymmetric
model does not predict these trends (Fig. 3a and 5a). This indicates the significant
impact of the tangential flow component on the interface shape.

The magnetic field appears to be acting to mix silicon away from the region near
the crucible wall into the center, a direction inverse to the case with no applied
field (Fig. 3d and 5d). This action creates a higher concentration gradient near the
crucible wall at the edge of the silicon source, and increases dissolution (Fig. 5c).
Thus, in both cases (with and without magnetic field) the melt flow gives rise to
mixed and semi-mixed regions near the dissolution interface. Under the 0.8 Tesla
magnetic field, much higher dissolution rates were realized at the edge of the source
material, which is in agreement with the experimental observations (Fig. 9).

In the 3-D simulations, magnetic field levels under (B0 < 0.2 Tesla) appear not
to have a significant impact on the flow structure. For magnetic field levels in
the range of (0.2 ≤ B0 < 0.6 Tesla), the applied field does not have significant
effects on the flow structure nor on the interface shape but causes a non-uniform

 

Figure 9: Polished cross-sections of the quenched samples from the experiments
conducted with no field on the left and that with a 0.8 Tesla field on the right
[Armour and Dost 2009]. On the left, we see that the silicon dissolution interface
remains almost flat, but on the right, more silicon dissolved near the edge of the
dissolution interface (curved area).
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concentration distribution in the melt (Fig. 4b and 4c). Magnetic field levels in
the range of (0.6≤ B0 ≤ 0.8 Tesla), however, have a significant impact on the flow
structure and lead to a more uniform concentration distribution in the melt (Figs.
5b and 5c).

Due to a small increase in the amount of dissolved silicon (Fig. 2), it appears
that the (0.2 ≤ B0 < 0.6 Tesla) range of applied field does not have a significant
impact on the flow structure. Particularly the 3-D simulation results well predict
this observation. In the center region and near the crucible bottom, both the radial
and tangential flow velocity components appear to be smoothed out and slightly
damped (Figs. 6c, 6d, 7c and 7d). In the regions ahead of the dissolution inter-
face near the crucible wall, however, these flow velocity components appear to be
smoothed and slightly enhanced (Fig. 6c, 6d, 7c and 7d). Also, except the regions
near to the wall, where the axial flow appears to be enhanced, the similar trend may
be observed for the axial flow (Figs. 6e and 7e).

The effect of the 0.8 Tesla level of applied field on flow structures is significant as
shown by the 3-D simulation. In the center region and near the crucible bottom,
both the radial and tangential flow velocity components appear to be weakened and
are inverted in direction (Figs. 6c, 6d, 8c and 8d). In the regions near the interface
and close to the crucible wall, however, these two flow velocity components appear
to get slightly stronger and are inverted (Figs. 6c, 6d, 8c and 8d). Furthermore,
except the regions near to the crucible wall where the axial flow is stronger and
inverted in direction (Figs. 6e and 8e), the axial flow velocity appears to be weak-
ened (for instance at the positions z = 2 mm and 12 mm) and almost suppressed (for
instance at z = 23 mm) in the rest of the domain. These observations were noted by
[Armour and Dost (2009)].

In most crystal growth systems, a static magnetic field is frequently utilized to
suppress thermosolutal convective fluid flow in the melt. In the present crucible
configuration, however, it appears that the melt flow is not suppressed. Instead,
the already weak stable flow structure is strengthened under the effect of applied
magnetic field due to the buoyancy of the silicon solute. Indeed, the applied field
strengthens and inverts the upward flow near to the crucible wall and weakens and
inverts the downward flow in the center region and near the crucible bottom (Figs.
3 and 5).

In fact, an external magnetic field, aligned perfectly with the axis of the growth cell
(z-direction), gives rise to a magnetic body force in the radial plane that balances
the vertical gravitational body force, and consequently strengths both the radial
and the tangential flow velocity components, and suppresses the axial flow. This
fluid flow behavior can easily be understood from the fact that maximum electro-
magnetic damping of the fluid flow occurs when the velocity field u is oriented
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orthogonal to the magnetic field vector B = B0ez because of the particular form of
the electromagnetic damping force (FE = σe (u×B)×B). It should be noted that
the axisymmetric model fails to predict these trends.

The present 3-D numerical simulation results confirm the experimental observa-
tions of [Armour and Dost (2009)]. The observed dissolution structure may be
valuable to the LPD crystal growth of Si-Ge system, where the curvature of the
growth interface evolves with time. It may be possible to use this effect to better
control interface shape.

5 Conclusions

The numerical simulations conducted for the dissolution process of silicon into
germanium melt using both axisymmetric and 3-D simulation domains led to the
following conclusions.

-Transport of silicon in the Ge-rich melt where silicon is being dissolved from the
top exhibits a diffusion-dominated behavior (in the region near to the dissolution
interface and the center). This behavior is due to the silicon solute buoyancy in
the heavier Ge-rich melt, which has been previously explained experimentally by
[Armour and Dost (2009)] and predicted numerically by [Yildiz, Dost and Lent
(2005)].

-The present 3-D simulation predicts that the application of a static magnetic field
strengthens the radial and tangential flow velocity components in the region near
the crucible wall at the edge of the silicon source, and thus leads to a stronger
convective flow pattern in the melt close to this region. Consequently, this change
in the melt flow gives rise to a significant mixing of silicon away from the region
near the crucible wall into the center of the melt. This phenomenon may have an
application in controlling growth interface geometry and maintaining a constant
growth interface curvature during the LPD growth of SiGe single crystals.

-Axial mixing in the melt does not appear to significantly increase and the concen-
tration profile seems to evolve in a diffusion-dominated manner.

-The chosen value of silicon diffusivity DSi
L = 2.5× 10−8m2

/
s agrees well with

experiment.

-The numerical results of the present simulations indicate that the silicon dissolu-
tion was slightly enhanced under an applied vertical magnetic field. This enhance-
ment peaked for the field levels between 0.2 to 0.5 Tesla. The magnetic level of 0.8
Tesla appears to be an optimum value for obtaining uniform concentration distri-
bution. This observation can be attributed to the altered flow structure in the melt
due to the applied magnetic field.
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-Simulation results also show that, as the magnitude of the applied magnetic field
increases, the flow pattern becomes three-dimensional. The radial and tangential
flow velocity components increase, causing higher dissolution rates at the edge of
the silicon source. These observations were well predicted by the 3-D model while
the axisymmetric model failed to do so.
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