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How to Select the Value of the Convergence Parameter in
the Adomian Decomposition Method

Lei Lu1,2 and Jun-Sheng Duan2,3

Abstract: In this paper, we investigate the problem of selecting of the conver-
gence parameter c in the Adomian decomposition method. Through the curves of
the n-term approximations φn(t;c) versus c for different specified values of n and t,
we demonstrate how to determine the value of c such that the decomposition series
has a larger effective region of convergence.
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1 Introduction

With the development of computer technology and computational software, an-
alytic approximate solutions with high accuracy for nonlinear problems become
feasible by the analytic approximate methods such as the Adomian decomposition
method (ADM) [Adomian (1986, 1989, 1994)], collocation method [Dai, Schnoor,
and Atluri (2012)], variational iteration method [Wazwaz (2009)] and perturbation
method [Hinch (1991)], etc.

The ADM [Adomian and Rach (1983); Adomian (1983, 1986, 1989, 1994); Wazwaz
(2009, 2011); Serrano (2011); Lai, Chen, and Hsu (2008); Duan, Rach, Baleanu,
and Wazwaz (2012)] is a practical technique for solving nonlinear functional e-
quations, including ordinary differential equations (ODEs), partial differential e-
quations (PDEs), integral equations, integro-differential equations, etc. The ADM
provides efficient algorithms for analytic approximate solutions and numeric simu-
lations for real-world applications in the applied sciences and engineering without
unphysical restrictive assumptions such as required by linearization and perturba-
tion. It is convenient for implementation in computational software [Duan, Rach,
and Wazwaz (2013)] and new algorithms for the Adomian polynomials increase its
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computing efficiency [Duan (2011)]. The accuracy of the obtained analytic approx-
imate solutions can be verified by direct substitution into the original equation [Fu,
Wang, and Duan (2013); Duan, Rach, Wazwaz, Chaolu, and Wang (2013)].

First, we demonstrate the procedure of the ADM by solving a first-order nonlinear
differential equation

d
dt

u(t)+α(t)u(t)+ f (t,u(t)) = g(t), u(t0) =C0, (1)

where the functions α,g and f are analytic.

We rewrite Eq. (1) in Adomian’s operator-theoretic form

Lu = g−Ru−Nu, (2)

where L = d
dt (·), Ru = α(t)u(t) and Nu = f (t,u(t)).

Applying the integral operator L−1(·) =
∫ t

t0(·)dt to both sides of Eq. (2) yields

u(t) = Φ+L−1g−L−1[Ru+Nu], (3)

where Φ = u(t0) =C0 for the case of a first-order ODE.

In the ADM, the solution u(t) is represented by the Adomian decomposition series

u(t) =
∞

∑
n=0

un(t) (4)

and the nonlinearity comprises the Adomian polynomials

Nu =
∞

∑
n=0

An(t), (5)

where the Adomian polynomials An(t) [Adomian and Rach (1983)] are defined as

An(t) = An(u0,u1, . . . ,un) =
1
n!

∂ n

∂λ n f (t,
∞

∑
k=0

λ
kuk(t))

∣∣∣∣∣
λ=0

. (6)

Various algorithms for the Adomian polynomials have been developed by Rach
(1984, 2008), Wazwaz (2000), Abdelwahid (2003) and several others [Abbaoui,
Cherruault, and Seng (1995); Zhu, Chang, and Wu (2005); Biazar, Ilie, and Khoshke-
nar (2006); Azreg-Aïnou (2009)]. Recently, new algorithms and subroutines writ-
ten in MATHEMATICA for fast generation of the Adomian polynomials to high
orders have been developed by Duan (2010a,b, 2011) and Duan and Guo (2010).
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Substituting Eqs. (4) and (5) into Eq. (3) yields
∞

∑
n=0

un(t) = Φ+L−1g−L−1[R
∞

∑
n=0

un(t)+
∞

∑
n=0

An(t)]. (7)

From Eq. (7), the solution components are determined by the Adomian recursion
scheme

u0(t) = Φ+L−1g, (8)

un+1 = −L−1[Run(t)+An(t)], n≥ 0, (9)

where the n-term approximation is given as φn(t) = ∑
n−1
k=0 uk(t).

We remark that the convergence of the Adomian decomposition series has previ-
ously been proven by several investigators [Abbaoui and Cherruault (1994, 1995);
Abdelrazec and Pelinovsky (2011); Rach (2008)]. For example, Abdelrazec and
Pelinovsky (2011) have published a rigorous proof of convergence for the ADM
under the aegis of the Cauchy-Kovalevskaya theorem. In point of fact, the Adomian
decomposition series is found to be a computationally advantageous rearrangement
of the Banach-space analog of the Taylor expansion series about the initial solution
component function.

We remark that the domain of convergence for the Adomian decomposition series
may not always be sufficiently large for engineering purposes. In order to cope with
such occurrences some authors have applied one of several well-know convergence
acceleration techniques such as the diagonal Padé approximants [Adomian (1994);
Wazwaz (2009)] or the iterated Shanks transform [Adomian (1994); Duan, Chaolu,
Rach, and Lu (2013)].

Wazwaz (1999) and Wazwaz and El-Sayed (2001) have proposed different modified
decomposition methods, where the sum Φ+L−1g was partitioned or decomposed
and then its components were distributed to subsequent solution components in
order to suppress the occasional phenomenon of noisy convergence as well as to
facilitate the calculation of integrals.

In [Duan (2010a); Duan, Rach, and Wang (2013)], the parametrized recursion
scheme, which embeds a convergence parameter c into the recursion scheme, was
proposed in order to obtain decomposition solutions with larger effective regions
of convergence.

By introducing a parameter c with a specified decomposition c = ∑
∞
n=1 cn into the

recursion scheme (8) and (9), we deduce the parametrized recursion scheme

u0(t) =Φ+L−1g− c, (10)

un+1 = cn+1−L−1[Run(t)+An(t)], n≥ 0. (11)
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Similarly, we can introduce the convergence parameter c into the modified recur-
sion schemes [Wazwaz (1999); Wazwaz and El-Sayed (2001)].

For sake of discussion, we list two specific decompositions of the convergence
parameter c and their corresponding parametrized recursion schemes as

c =
∞

∑
n=1

cn, cn =
c
2n , (12)

u0(t) = Φ+L−1g− c, (13)

un+1(t) =
c

2n+1 −L−1Run(t)−L−1An(t), n≥ 0, (14)

and

c =
∞

∑
n=1

cn, cn = (1− c)cn, |c|< 1, (15)

u0(t) = Φ+L−1g− c, (16)

un+1(t) = (1− c)cn+1−L−1Run(t)−L−1An(t), n≥ 0, (17)

where the n-term approximation as parametrized by c is thus φn(t;c) = ∑
n−1
k=0 uk(t).

In this paper, we shall present a method to determine the value of the convergence
parameter c through examination of the curves of φn(t;c) versus c for different val-
ues of n and t such that the parametrized decomposition series has a larger effective
region of convergence.

2 Illustration of the proposed method

For a specified t, φn(t;c) denotes the analytic approximations of the solution u(t)
such that the curves of φn(t;c) versus c become horizontal over the effective field of
c. By virtue of this property, we can efficiently determine the value of the conver-
gence parameter c such that the decomposition series has a larger effective region
of convergence. We illustrate the effectiveness of our method through the following
four examples.

Example 1. Consider the Riccati equation

du
dt

+u2 = 0, u(0) = 1, (18)

where the exact solution is u∗(t) = 1
t+1 for t >−1.
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Applying the integral operator L−1 =
∫ t

0(·)dt to both sides of Eq. (18) yields u =
1−L−1u2.

Next, we decompose the solution u = ∑
∞
n=0 un and the nonlinearity f (u) = u2 =

∑
∞
n=0 An, where the Adomian polynomials An are

A0 = u2
0, A1 = 2u0u1, A2 = 2u0u2 +u2

1, . . . , An =
n

∑
k=0

ukun−k. (19)

Applying the parametrized recursion scheme (12)–(14)

u0 = 1− c, un =
c
2n −L−1An−1, n≥ 1, (20)

we calculate the parametrized solution components as

u1 =
c
2
− (1− c)2t,

u2 =
c
4
+
(
−c+ c2) t +

(
1−3c+3c2− c3) t2,

u3 =
c
8
+

(
− c

2
+

c2

4

)
t +
(

3c
2
−3c2 +

3c3

2

)
t2 +

(
−1+4c−6c2 +4c3− c4) t3,

· · · ,

where the n-term parametrized approximation is φn(t;c) = ∑
n−1
k=0 uk(t;c).

In Figs. 1(a)–1(d), we plot the curves of φ10(t,c),φ15(t,c),φ20(t,c) versus c for
t = 1, t = 1.5, t = 2 and t = 2.5, respectively. We observe in each subfigure that
there is an interval, where the horizontal segments overlap one another, and the
corresponding fields of c contract as the values of t increase. Thus we observe that
φn(t;c) converges for a larger field of t when c equals about 0.6.

In Fig. 2, we plot the exact solution u∗(t) and the 16-term approximations φ16(t;c)
for c = 0.4, 0.6, 0.8. We observe by comparing the three values of c that the
decomposition series for c = 0.6 has the largest effective region of convergence.

We note that if the convergence parameter c was not introduced, which corresponds
to the case of c = 0, then the n-term approximation would be the Maclaurin polyno-
mials of the exact solution, i.e. φn(t) = 1− t + t2−·· ·+(−t)n−1, which converges
only on the interval −1 < t < 1.

Next, we apply the parametrized recursion scheme (15)–(17) to this example,

u0 = 1− c, un = (1− c)cn−L−1An−1, n≥ 1, (21)
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Figure 1: Curves of φn(t;c) versus c for (a) t = 1, (b) t = 1.5, (c) t = 2, (d) t = 2.5
and for n = 10 (solid line), n = 15 (dot line), n = 20 (dash line).
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Figure 2: The exact solution u∗(t) (solid line) and the 16-term approximations
φ16(t;0.4) (dot line), φ16(t;0.6) (dash line) and φ16(t;0.8) (dot-dash line).
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Figure 3: Curves of φn(t;c) versus c for (a) t = 2, (b) t = 3, (c) t = 4, (d) t = 5 and
for n = 10 (solid line), n = 15 (dot line), n = 20 (dash line).

where |c|< 1. We calculate the parametrized solution components as

u1 = (1− c)(c− t + ct),

u2 = (1− c)(c− t + ct)2,

u3 = (1− c)(c− t + ct)3,

u4 = (1− c)(c− t + ct)4,

· · · ,

where the n-term parametrized approximation is φn(t;c)=∑
n−1
k=0 uk(t;c). In Figs. 3(a)–

3(d), we plot the curves of φ10(t,c), φ15(t,c), φ20(t,c) versus c for t = 2, t = 3, t = 4
and t = 5, respectively. As t increases, the horizontal segments contract to a neigh-
borhood of c = 0.85.

In Fig. 4, we plot the exact solution u∗(t) and the 18-term approximations φ18(t;c)
for c = 0.4, 0.6, 0.8. We observe for the three values of c that the decomposition
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Figure 4: The exact solution u∗(t) (solid line) and the 18-term approximations
φ18(t;0.4) (dot line), φ18(t;0.6) (dash line) and φ18(t;0.8) (dot-dash line).

series for c = 0.8 has the largest effective region of convergence.

In fact, the n-term approximation is

φn(t;c) =
n−1

∑
k=0

(1− c)(c− t + ct)k, (22)

which converges for t such that |c− t + ct|< 1, i.e. the interval −1 < t < 1+c
1−c .

Example 2. Consider the nonlinear differential equation with a negative power
nonlinearity

du
dt
− 1

2u
= 0, u(0) = 1, (23)

where the exact solution is u∗(t) =
√

1+ t.

By the ADM, we rewrite Eq. (23) as

u = 1+
1
2

L−1 1
u
,

where L−1 =
∫ t

0(·)dt. The first several Adomian polynomials for the nonlinearity
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f (u) = 1/u are

A0 =
1
u0

,

A1 =−
u1

u2
0
,

A2 =
u2

1

u3
0
− u2

u2
0
,

A3 =−
u3

1

u4
0
+

2u1u2

u3
0
− u3

u2
0
,

A4 =
u4

1

u5
0
− 3u2

1u2

u4
0

+
u2

2

u3
0
+

2u1u3

u3
0
− u4

u2
0
,

. . . .

By the parametrized recursion scheme (12)–(14), the solution components un are
determined as

u0 = 1− c, un =
c
2n +

1
2

L−1An−1, n≥ 1. (24)

Then, we calculate the parametrized solution components in succession as

u1 =
c
2
− t

2(−1+ c)
,

u2 =
c
4
− ct

4(−1+ c)2 +
t2

8(−1+ c)3 ,

u3 =
c
8
− c(−1+2c)t

8(−1+ c)3 +
3ct2

16(−1+ c)4 −
t3

16(−1+ c)5 ,

. . . .

In Figs. 5(a)–5(d), we plot the curves of φ11(t,c),φ13(t,c),φ15(t,c) versus c for t =
1, t = 5, t = 10 and t = 15, respectively. The plots show as the parameter c decreases
from 0 to − 6 that the effective region of convergence of the decomposition series
gradually increases.

In Fig. 6, we plot the exact solution u∗(t) and the 15-term approximations φ15(t;c)
for c = 0,−2,−4, where the gradual expansion of effective regions of convergence
is obvious.

We note that if the parameter c was not introduced, i.e. the case of c = 0, then
the n-term approximation φn(t) would be the Maclaurin polynomials of the exact
solution u∗(t), which converges only on the interval −1≤ t ≤ 1.
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Figure 5: Curves of φn(t;c) versus c for (a) t = 1, (b) t = 5, (c) t = 10, (d) t = 15
and for n = 11 (solid line), n = 13 (dot line), n = 15 (dash line).
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Figure 6: The exact solution u∗(t) (solid line) and the 15-term approximations
φ15(t;0) (dot line), φ15(t;−2) (dash line) and φ15(t;−4) (dot-dash line).
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We have checked by using the specific decomposition (15) of the parameter c that
the decomposition series for c =−0.35 has a larger effective region of convergence
than that for c = 0.

Example 3. Consider the Lane-Emden equation

d2u
dt2 +

2
t

du
dt

+u5 = 0, u(0) = 1,u′(0) = 0, (25)

where the exact solution is u∗(t) = (1+ t2

3 )
−1/2. Let

L = t−2 d
dt
(t2 d

dt
(.)), (26)

then Eq. (25) becomes

Lu =−u5. (27)

Applying the inverse operator L−1 =
∫ t

0 t−2 ∫ t
0 t2(.)dtdt to both sides of Eq. (27)

yields

u = 1−L−1u5. (28)

The first several Adomian polynomials for the quintic nonlinearity f (u) = u5 are

A0 = u5
0,

A1 = 5u4
0u1,

A2 = 10u3
0u2

1 +5u4
0u2,

A3 = 10u2
0u3

1 +20u3
0u1u2 +5u4

0u3,

A4 = 5u0u4
1 +30u2

0u2
1u2 +10u3

0u2
2 +20u3

0u1u3 +5u4
0u4,

. . . .

The components of the solution u = ∑
∞
n=0 un are determined by the parametrized

recursion scheme (12)–(14)

u0 = 1− c, un =
c
2n −L−1An−1, n≥ 1. (29)

We obtain the parametrized solution components as

u1 =
c
2
+

1
6
(−1+ c)5t2,

u2 =
c
4
− 5

12
(−1+ c)4ct2− 1

24
(−1+ c)9t4,

u3 =
c
8
+

5
24

(−1+ c)3c(1+ c)t2 +
3
16

(−1+ c)8ct4 +
5

432
(−1+ c)13t6,

. . . ,
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Figure 7: Curves of φn(t;c) versus c for (a) t = 1.5, (b) t = 2, (c) t = 2.5, (d) t = 3
and for n = 12 (solid line), n = 14 (dot line), n = 16 (dash line).

where the n-term parametrized approximation is φn(t;c) = ∑
n−1
k=0 uk(t;c).

In Figs. 7(a)–7(d), we plot the curves of φ12(t,c),φ14(t,c),φ16(t,c) versus c for
t = 1.5, t = 2, t = 2.5 and t = 3, respectively. We observe in each of the subfigures
that there is an interval, where the horizontal segments overlap one another, and the
corresponding fields of c contract as the values of t increase. Thus we observe that
φn(t;c) converges for a larger field of t when c equals about 0.3.

In Fig. 8, we plot the exact solution u∗(t) and the 16-term approximations φ16(t;c)
for c = 0, 0.15, 0.3. We observe for the three values of c that the series solution has
the largest effective region of convergence for c = 0.3.

We note that if the parameter c was not introduced, i.e. the case of c = 0, then
the n-term approximation φn(t) would be the Maclaurin polynomials of the exact
solution u∗(t), and converge only on the interval −

√
3≤ t ≤

√
3.

We have checked by using the specific decomposition (15) of the parameter c that
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Figure 8: The exact solution u∗(t) (solid line) and the 16-term approximations
φ16(t;0) (dot line), φ16(t;0.15) (dash line) and φ16(t;0.3) (dot-dash line).

the decomposition series for c = 0.2 has a larger effective region of convergence
than that for c = 0.

Example 4. Consider the nonlinear differential equation with a logarithmic non-
linearity

du
dt

= t +
1
t

ln(u), u(1) = 2, (30)

where this initial value problem does not have an exact analytic solution.

Applying the integral operator L−1 =
∫ t

1(·)dt to both sides of Eq. (30) yields

u = 2+
1
2
(t2−1)+L−1 1

t
ln(u). (31)

We compute the components of the solution u = ∑
∞
n=0 un by the parametrized mod-

ified recursion scheme as

u0 = 2− c, u1 =
c
2
+

1
2
(t2−1)+L−1 1

t
A0, un =

c
2n +L−1 1

t
An−1, n≥ 2, (32)

where the first several Adomian polynomials An for the logarithmic nonlinearity
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f (u) = ln(u) are

A0 = ln(u0),

A1 =
u1

u0
,

A2 =−
u2

1−2u0u2

2u2
0

,

A3 =
u3

1−3u0u1u2 +3u2
0u3

3u3
0

,

A4 =−
u4

1−4u0u2
1u2 +2u2

0
(
u2

2 +2u1u3
)
−4u3

0u4

4u4
0

,

. . . .

The parametrized solution components are computed as

u1 =
c
2
+

1
2
(
−1+ t2)+ ln(2− c)ln(t),

u2 =
c
4
− −1+ t2 +2ln(t)(−1+ c+ ln(2− c)ln(t))

4(−2+ c)
,

. . . ,

where the n-term parametrized approximation is φn(t;c) = ∑
n−1
k=0 uk(t;c).

In Figs. 9(a)–9(d), we plot the curves of φ8(t,c),φ10(t,c),φ12(t,c) versus c for t =
1.5, t = 2, t = 2.5 and t = 3, respectively. The curves display that the effective
region of convergence of φn(t;c) gradually increases as c decreases from 0 to − 6.

In Fig. 10, we plot the MATHEMATICA numeric solution u∗(t), and the 12-term
approximations φ12(t;c) for c = 0, −3 and −6. We observe for the three values of
c that the decomposition series for c = −6 has a larger effective region of conver-
gence than that for c = 0.

We have checked by using the decomposition (15) of the parameter c that the de-
composition series for c = −0.7 has a larger effective region of convergence than
that for c = 0.

In summary, by introducing the convergence parameter c and its specified decom-
position, we adjust each term of the decomposition series. For some field of c,
the decomposition series has a larger effective region of convergence than for other
fields of c. Through the curves of φn(t;c) versus c for different values of n and t,
we can determine the optimal field of c.

From our investigation, we observe that the decomposition of the convergence pa-
rameter c is nonunique. Here we have demonstrated two simple decompositions
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Figure 9: Curves of φn(t;c) versus c for (a) t = 1.5, (b) t = 2, (c) t = 2.5, (d) t = 3
and for n = 8 (solid line), n = 10 (dot line), n = 12 (dash line).
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Figure 10: The MATHEMATICA numerical solution u∗(t) (solid line) and the 12-
term approximations φ12(t;0) (dot line), φ12(t;−3) (dash line) and φ12(t;−6) (dot-
dash line).
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of the parameter c in Eqs. (12) and (15) and their effects on the solutons by the
Adomian decomposition series.

3 Conclusions

In this paper, we have presented a new method to optimize the value of the con-
vergence parameter c in the ADM. Our proposed method examines the curves of
φn(t;c) versus c for different values of n and t. If the curves become horizontal in
some region of c, then that region corresponds to an effective field of c. We can
contract the effective field of c by increasing the values of the argument t. We can
choose c through this method and thus expand the effective region of convergence
of the Adomian decomposition series for solutions of nonlinear differential equa-
tions. We have investigated four examples of nonlinear differential equations to
demonstrate how to practically expand the region of convergence for the solution
by the Adomian decomposition series of nonlinear ODEs.
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