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Eshelby Stress Tensor T: a Variety of Conservation Laws
for T in Finite Deformation Anisotropic Hyperelastic Solid
& Defect Mechanics, and the MLPG-Eshelby Method in

Computational Finite Deformation Solid Mechanics-Part I

Z. D. Han1 and S. N. Atluri2,3

Abstract: The concept of a stress tensor [for instance, the Cauchy stress σσσ ,
Cauchy (1789-1857); the first Piola-Kirchhoff stress P, Piola (1794-1850), and
Kirchhoff (1824-1889); and the second Piola-Kirchhoff stress, S] plays a cen-
tral role in Newtonian continuum mechanics, through a physical approach based
on the conservation laws for linear and angular momenta. The pioneering work
of Noether (1882-1935), and the extraordinarily seminal work of Eshelby (1916-
1981), lead to the concept of an “energy-momentum tensor” [Eshelby (1951)]. An
alternate form of the “energy-momentum tensor” was also given by Eshelby (1975)
by taking the two-point deformation gradient tensor as an independent field vari-
able; and this leads to a stress measure T (which may be named as the Eshelby
Stress Tensor). The corresponding conservation laws for T in terms of the path-
independent integrals, given by Eshelby (1975), were obtained through a sequence
of imagined operations to “cut the stress states” in the current configuration. These
imagined operations can not conceptually be extended to nonlinear steady state or
transient dynamic problems [Eshelby (1975)]. To the authors’ knowledge, these
path-independent integrals for dynamic finite-deformations of inhomogeneous ma-
terials were first derived by Atluri (1982) by examining the various internal and
external work quantities during finite elasto-visco-plastic dynamic deformations,
to derive the energy conservation laws, in the undeformed configuration [ref. to
Eq. (18) in Atluri (1982)]. The stress tensor T was derived, independently, in it-
s path-independent integral form for computational purposes [ref. to Eq. (30) in
Atluri (1982)]. The corresponding integrals were successfully applied to nonlinear
dynamic fracture analysis to determine “the energy change rate”, denoted as T∗.
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A similar analytical work for elasto-statics was reported by Hill (1986). With the
use of the stress measure T for finite-deformation solid and defect mechanics, the
concept of “the strength of the singularities”, labeled in this paper as the vector T∗,
is formulated for a defective hyperelastic anisotropic solid undergoing finite defor-
mations, in its various path-independent integral forms.
We first derive a vector balance law for the Eshelby stress tensor T, and show that
it involves a mathematically “weak-form” of a vector momentum balance law for
P. In small deformation linear elasticity (where P, S and σσσ are all equivalent), the
stress tensor σσσ is linear in the deformation gradient F. Even in small deformation
linear elasticity, the Eshelby Stress Tensor T is quadratic in F. By considering the
various weak-forms of the balance law for T itself, we derive a variety of “con-
servation laws” for T in Section 2. We derive four important “path-independent”
integrals, T ∗K , T ∗(L)L , T ∗(M), T ∗(G)

IJ , in addition to many others. We show the relation
of T ∗K , T ∗(L)L , T ∗(M) integrals to the J−, L− and M− integrals given in Knowles
and Sternberg (1972). The four laws derived in this paper are, however, valid for
finite-deformation anisotropic hyperelastic solid- and defect-mechanics. Some dis-
cussions related to the use of T in general computational solid mechanics of finitely
deformed solids are given in Section 3. The application of the Eshelby stress tensor
in computing the deformation of a one-dimensional bar is formulated in Section
4 for illustration purposes. We present two computational approaches: the Primal
Meshless Local Petrov Galerkin (MLPG)-Eshelby Method, and the Mixed MLPG-
Eshelby Method, as applications of the original MLPG method proposed by Atluri
(1998,2004). More general applications of T directly, in computational solid me-
chanics of finitely deformed solids, will be reported in our forthcoming papers,
for mechanical problems, in their explicitly-linearized forms, through the Primal
MLPG-Eshelby and the Mixed MLPG-Eshelby Methods.

Keywords: Energy Momentum Tensor, Eshelby Stress Tensor, Meshless Local
Petrov Galerkin, MLPG

1 Balance laws for the Cauchy Stress σ , the first Piola-Kirchhoff Stress P,
the second Piola-Kirchhoff Stress S, and the Eshelby Stress T

We consider the finite deformation of a solid, wherein a material particle initially
at X, moves to a location x. We use a fixed Cartesian coordinate system with base
vectors ei, such that (X = XIei and x = xiei). The displacement of the material
particle is u = x−X, and v = −u [ui = (xi−XI)ei; u = u(X)]. The deformation
gradient tensor is F [FiJ =

∂xi
∂XJ
≡ xi,J = ui,J +δiJ].

There are infinitely many possible definitions of a stress-tensor in a finitely de-
formed solid [see, for instance Atluri(1984)]. Among the more commonly used
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ones are: the Cauchy stress tensor σσσ ; the first Piola-Kirchhoff stress tensor P; and
the second Piola-Kirchhoff stress S, which are related to each other, thus [see Atluri
(1984)]:

P = J F−1 ·σσσ = S ·Ft (1)

S = J F−1 ·σσσ ·F−t = P ·F−t (2)

where J is ‖F‖, and (·)t denotes a transpose.

Considering a general anisotropic hyperelastic solid, with the strain energy per unit
initial volume being denoted as W , the constitutive relation for P may be written as
[see Atluri (1984)]:

P =
∂W
∂Ft (3)

If W is a frame-indifferent function of F, it should be a function only of Ft ·F. Thus
[see Atluri (1984)],

PI j =
∂W
∂FjI

=
∂W

∂EMN

∂EMN

∂FjI
= SINFjN ; P = S ·Ft (4)

where

E =
1
2
(Ft ·F− I) =

1
2
(C− I); C = Ft ·F = 2E+ I (5)

as C is the right Cauchy-Green deformation tensor, E being the Green-Lagrange
Strain tensor.

The equations of Linear Momentum Balance (LMB) and Angular Momentum Bal-
ance (AMB) can be written equivalently in terms of σσσ , P, and S [see Atluri (1984)],
as:

∂σi j

∂xi
+ρ f j = 0 (LMB); σσσ = σσσ

t (AMB) (6)a

∂PI j

∂XI
+ρ0 f j = 0 (LMB); F ·P = Pt ·Ft (AMB) (6)b

∂

∂XI
[SIKFjK ]+ρ0 f j = 0 (LMB); S = St (AMB) (6)c

where ρ0 is the mass density (per unit initial volume). For a homogeneous solid,
ρ0 is not a function of X, but is a constant.
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The equivalence of Eqs. (6)a and (6)b can be seen from the following [using Eq.
(1)],

PI j,I =
∂

∂XI

(
J

∂XI

∂xr
σr j

)
=

∂

∂XI

(
J

∂XI

∂xr

)
σr j + J

∂σr j

∂XI

∂XI

∂xr
(6)d

However, as noted by Shield (1967) and Ogden (1975), we have the purely geo-
metric identity for any finite deformation, that:

∂

∂XI

(
J

∂XI

∂xr

)
= 0 (6)e

Thus, from Eqs. (6)(d,e), we have:

∂PI j

∂XI
= J

∂σr j

∂xr
(6)f

Thus, the geometric identity (6)e guarantees the equivalence of Eqs. (6)a and (6)b,
in any exact solution. However, in any computational solution, such an equivalence
may not always be assured.

When F is derived from an objective W , as in Eq. (4), P ≡ S ·Ft by definition [S
is symmetric], and hence the AMB for F in Eq. (6)b is inherently embedded in the
structure of W , viz, that W is a function of E only.

Following the seminal work of Noether (1918), and the extraordinarily important
contributions of Eshelby (1957,1975), the Eshelby stress tensor is defined, for finite
elasto-static deformations, as

T =W I−P ·F (7)a

or

TIJ =WδIJ−PIkFkJ =W δIJ−PIk(uk,J +δkJ) (7)b

where I is an identity tensor , W is the strain energy density (per unit initial volume),
Pik is the first Piola-Kirchhoff stress tensor, and uk,J = ∂uk/∂XJ . While T is often
referred to as the “Energy-Momentum Tensor”, it clearly has the dimensions of
“Stress” and was also independently derived by Atluri (1982) [see Eq. (29) in
Atluri (1982)]. It was also discussed in Atluri (1984) that any function of P and F
is a stress-measure (in finite deformation solid mechanics), such as T which is also
a function of P and F. We may also write T, equivalently, as [see Eq. (27) in Atluri
(1982)]:

T =W I−P ·F (7)a
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=W I−S ·Ft ·F (8)a

=W I−S ·C (8)b

=W I− J F−1 ·σσσ ·F (8)c

It can be seen from Eqs. (7)a and (8) that T is in general an unsymmetric tensor,
unless S and C are co-axial, which is the case only for isotropic materials. We note
thus, that the stress tensor T is symmetric for isotropic materials. We note that P is
a two-point tensor field such that

(NdA) ·P = df
P = PL jGLg j = PL jGLg j (9)

where (NdA) is a vector of an oriented-area in the undeformed configuration and
df is a vector of force acting on an oriented area (nda) (the image of (NdA)) in the
deformed configuration. Likewise, F is a two-point tensor field such that

dx = F ·dX

F = FkLgkGL = FkLgkGL (10)

where GL are covariant base vectors in the undeformed configuration, and gk are
covariant base vectors in the deformed configuration.

Hence it follows that P ·F is a tensor defined in the undeformed configuration. Since
W is the strain energy density per unit volume in the undeformed configuration, it
is seen that the tensor T in Eq (7) is a tensor defined entirely in the undeformed
configuration, similar to the second Piola-Kirchhoff stress tensor S, except that S
is symmetric, and T is unsymmetric.

If we consider infinitesimal deformations, then the difference between P, S and σσσ

disappears. Further, if we consider linear elastic behaviors, along with infinitesimal
deformation, P(or S or σσσ ) become linear in F. Even for linear elastic infinitesimal
deformations, the Eshelby Stress Tensor T is a quadratic function of F. This poses
some difficulties in the computational mechanics of infinitesimal deformations of
even linear elastic solids, if the Eshelby stress tensor is used directly as a variable.

The “traction vector” t∗, corresponding to the stress-tensor T, at a boundary with a
unit normal N in the initial configuration, is written as:

t∗ = N ·T =W N−N ·P ·F (11)a

or

t∗K = NITiK =WNK−NIPI jFjK (11)b
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Figure 1: a close volume V includes a crack tip within Vε

such that, the integral of the traction vector t∗ over the small volume Vε enclosing
a crack-tip in 2-D, or a crack-segment in 3-D [see Fig. 1], may be denoted as the
vector T∗, and represented thus:

T∗ =
∫

∂Vε

t∗dS =
∫

∂Vε

N ·TdS

≡
∫

∂V
N ·TdS−

∫
V−Vε

∇X ·TdV
(12)a

or

T ∗K =
∫

∂Vε

NITIKdS =
∫

∂V
NITIKdS−

∫
V−Vε

TIK,IdV

=
∫

∂V
(WNK−NIPI jFjK)dS−

∫
V−Vε

(WδIK−PI jFjK),IdV
(12)b

Following the celebrated works of Eshelby (1957, 1975), we call T∗ the vector of
“Force on the Defect” in finite-deformation elasto-statics of general (anisotropic)
hyperelastic solids. More precisely, in the case of cracks, it is a vector that quanti-
fies the singular nature of stress and strain fields in Vε . We note that V −Vε is free
from any defects and singularities, and we may write:∫

V−Vε

(WδIK−PI jFjK),IdV

=
∫

V−Vε

[W,K
∣∣exp . +(PI jFjK−PIk−PI jFjK),I]dV

=
∫

V−Vε

(W,K
∣∣exp . +ρ0 f jFjK)dV

(13)
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in which the following equations are used:

∂PIk

∂XI
+ρ0 fk = 0 (14)

If the material is homogeneous, [i.e., W does not explicitly depend on X], then
W,K

∣∣exp . = 0.

Thus, for the problem of a hyperelastic solid, containing a crack-like defect1, the
vector of “concentrated Force on the Defect” T∗ is given in Eq. (12). For an elasto-
static problem of a defective homogenous solid, with no body forces or crack face
tractions, we have a “path-independent” representation for T∗:

T ∗K =
∫

∂Vε

NITIK)dS =
∫

∂Vε

(WNK−NIPI jFjK)dS =
∫

∂V
(WNK−NIPI jFjK)dS (15)

This force T∗ in Eq. (12) has been called the “Force on the Defect” by Eshelby
(1951,1957,1975).

In as much as the Stress Tensor T [Eq. (7)] is defined as:

TIJ =W δIJ−PIkFkJ (16)

We see that in [Eq. (13)], even for finite deformations,

∂TIJ

∂XI
=W,J

∣∣exp . −
(

∂PIk

∂XI
+ρ0 fk

)
FkJ +ρ0 fkFkJ in V −Vε (17)

If the material is homogeneous, [i.e., W does not explicitly depend on X], and the
body forces do not exist, and if the deformation is static, the stress tensor T is
divergence free in a volume V −Vε , which is free of singularities:

∂TIJ

∂XI
=−∂PIk

∂XI
FkJ = 0 in elasto-statics and no body forces in V −Vε (18)

Otherwise, in general, we may write the generalized balance law for T:

∂TIJ

∂XI
−W,J

∣∣exp . −ρ0 fkFkJ =−
(

∂PIk

∂XI
+ρ0 fk

)
FkJ = 0 in V −Vε (19)a

Eq. (19)a implies that the balance law for T inherently involves the weak-form of
the linear momentum balance law for P, multiplied by the “test function” F.

1 In the case of a sharp-crack-like defect, in the integrand in T∗ in ∂Vε , on the right hand side of Eq.
(14)a can have singularities of the type r−1/2, such that, in a 2-D problem, ds = r dθ , and T∗ has
a finite value even when r→ 0 in Vε .
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Eq. (19)a may be written more conveniently as,

∂TIJ

∂XI
−ρ0ρ0bJ =−

(
∂PIk

∂XI
+ρ0 fk

)
FkJ = 0 in V −Vε (19)b

bJ ≡
1
ρ0

W,J
∣∣exp . + fkFkJ

where the vector b is “the distributed force on the Defect”. Thus, each of the 3
balance laws T is equal to a combination of the 3 balance laws for P. If the material
is hypo-elastic or elastic-plastic, we may consider an objective rate of the stress-
tensor T, and an incremental “Strength of the Singularity”, ∆T∗, as contemplated
in Atluri (1982).

It is interesting to observe that, the “generalized weak-form”,∫
V
−
(

∂PIk

∂XI
+ρ0 fk

)
F∗kJ dV = 0 =

∫
V

(
∂TIJ

∂XI
−ρ0bJ

)
dV (20)

where V is a volume free of singularities and defects, and F∗kJ is the virtual de-
formation gradient of a comparison state with displacement field u∗k(XJ), has been
used by [Okada, Rajiyah and Atluri (1989a,b) , Han and Atluri (2003), and Qian,
Han and Atluri (2004)] in deriving very novel non-hyper-singular integral equation-
s for stresses in solid-mechanics, and gradient fields in acoustics, etc. These novel
non-hyper-singular integral equations lead to extremely convenient algorithms for
traction boundary value problems, and 3-dimensional fracture and fatigue mechan-
ics problems [Han and Atluri (2002)].

T is in general an unsymmetric tensor defined in the undeformed configuration for
anisotropic materials, and the balance law for T, even in finite deformation as stated
in Eq. (19) is a set of linear PDEs in the undeformed coordinates, XI . It has been
stated earlier that, for isotropic materials, T is symmetric and, similar to S, is a
tensor entirely defined in the undeformed configuration. Thus, for infinitesimal
deformations in an isotropic solid, T still satisfies the balance law:

∂TIJ

∂XI
= ρ0bJ (19)c

For a general anisotropic hyperelastic solid, one may find the displacement-like
quantities vI . We may require vK to satisfy the same boundary conditions as for
ui at ∂ (V −Vε). Thus vK may be thought of as “the variation of the undeformed
body” which is compatible with the prescribed boundary conditions for ui, and
correspond to the compatible strains derived from the stress tensor T. If we assume
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the displacement u= u(X) is one-to-one mapping, its inverse mapping can be taken
as the displacements [Knowles and Sternberg (1972)], as,

v(x) =−u(x) =−u(X+u(X)) and X = x+v(x) (21)

Thus the deformed configuration has been mapped back to the undeformed config-
uration. In the other words, vK can also be considered as “the displacements of the
deformed body”.

For finite deformations, the inverse deformation gradients, F−1, is defined as,

F−1
I j =

∂XI

∂x j
≡ XI, j = vI, j +δi j (22)

One may define the strain energy in the deformed configuration, denoted as W̃ , as
a frame-indifferent function of F−1. The corresponding first Piola-Kirchhoff stress
tensor of the inverse deformation, denoted as P̃, can be defined accordingly, as done
in Eq. (3), as,

P̃ =
∂W̃

∂F−t (23)

The Eshelby stress tensor T can also be defined alternately [Eshelby (1975), Chad-
wick (1975)], as

T =
1
J

Ft · P̃ (24)

It shows the duality of the Eshelby Stress and the Cauchy Stress which is discussed
in Section 3.

The corresponding left Cauchy-Green deformation tensor of the inverse deforma-
tion gradients can be written as,

b≡ F−1 ·F−t = C−1 (25)

which is also the inverse of the right Cauchy-Green deformation tensor. It has
been addressed as the “Finger Deformation Tensor” in the chemistry community for
handling various physical fields in the current configuration, which is not common
in applied mechanics. The corresponding strain tensor can be defined as

ẽ≡ 1
2
(I−F−1 ·F−t) =

1
2
(I−C−1) (26)

One may observe that for a linear elastic material,

W (F) =
1
2

S : E =
1
2
(W I−T) : ẽ (27)

where E being the Green-Lagrange Strain tensor in Eq. (5).
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2 A variety of weak-forms for the balance laws for T, in finite-deformation,
anisotropic hyperelasticity

For finite deformations of a non-isotropic and non-homogeneous hyperelastic solid
as shown in Fig. 1, the balance laws for the unsymmetric Eshelby stress tensor T
are:

∂TIJ

∂XI
= ρ0bJ in V −Vε (28)

which are a set of strong-form linear partial differential equations in the unde-
formed coordinates XI in the initial configuration in which the unsymmetic tensor
T is entirely defined.

If we choose arbitrary but differentiable test functions wJ(X), we may write the
weak-form of Eq.(28), as:∫

V−Vε

∂TIJ

∂XI
wJdV =

∫
V−Vε

ρ0bJwJdV (29)

Since V −Vε is free of any singularities, an application of the divergence theorem
to Eq. (29) leads to:∫

∂ (V−Vε )
t∗J wJdS−

∫
V−Vε

(TIJwJ,I +ρ0bJwJ)dV = 0 (30)

On the other hand, if we choose the gradients wJ,K(X) as the test functions, the
weak-form of Eq. (28) may be written in a vector-from, as:∫

V−Vε

∂TIJ

∂XI
wJ,KdV =

∫
V−Vε

ρ0bJwJ,KdV (31)

Or, equivalently, as:∫
∂ (V−Vε )

t∗J wJ,KdS−
∫

V−Vε

(ρ0bJwJ,K−TIJwJ,KI)dV = 0 (32)

Now we consider a class of test functions in Eq. (30), such that2,

wJ(X) = BJKXK +CJ (33)

2 We already considered the general test function F∗kJ

(
≡ ∂u∗k

∂XJ

)
corresponding to a virtual displace-

ment field u∗k , in deriving non-hyper-singular integral equations for stresses in solid mechanics, in
Eq. (20).
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where BJK and CJ are constants.

We now consider several simple cases of the constants BJK and CJ .

Case (A): BJK = 0 and CJ 6= 0.
In this case,

wJ(X) =CJ (34)

Use of Eq. (34) in Eq. (30) results in:∫
∂ (V−Vε )

t∗JCJdS−
∫

V−Vε

ρ0bJCJdV = 0 (35)

For arbitrary CJ , Eq. (35) leads to:∫
∂ (V−Vε )

t∗J dS−
∫

V−Vε

ρ0bJdV = 0 (36)

In Knowles and Sternberg (1972), and in Eshelby (1975), the notion of a “conserva-
tion law” is used only when the integral over the volume V −Vε is zero; thus in the
view of Knowles and Sternberg (1972) and Eshelby (1975), “path-independent-
integrals” are identities expressed as integrals over the surface ∂ (V −Vε) only.
However, in a computational sense, we allow here that a path-independent-integral
may involve both surface and volume integrals; such that an integral over ∂Vε

may be, for computational purposes, expressed as an integral over ∂V plus an-
other integral over V −Vε [See Nikishkhov and Atluri(1987)]. In the present sense
of a path-independent-integral, for finite deformations of nonhomogeneous non-
isotropic solids, the “path-independent” integrals have the representation:

T ∗K =
∫

∂Vε

t∗KdS =
∫

∂Vε

NLTLKdS ≡
∫

∂V
NLTLKdS−

∫
V−Vε

ρ0bKdV (37)a

or

T ∗K =
∫

∂V
(WNK−NLPL jFjK ]dS−

∫
V−Vε

(W,K
∣∣exp . +ρ0 f jFjK)dV (37)b

For elasto-static problems and for homogeneous anisotropic materials with zero
body forces, Eq. (37) reduces to:

T ∗K =
∫

∂Vε

(WNK−NLPL jFjK)dS =
∫

∂V
(WNK−NLPL jFjK)dS (38)
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Case (B): BJK =−BKJ and CJ = 0.
We consider the test function wJ such that BJK is skew-symmetric, and can be
expressed as:

BJK = eJLKωL (39)a

where eJLK is the permutation tensor, such that

wJ(X) = eJLM ωL XM (39)b

The weak form of Eq. (30) can now be written as:∫
∂ (V−Vε )

t∗J eJLM ωL XMdS−
∫

V−Vε

[ρ0bJ eJLM ωL XM +TMJ eJLM ωL]dV = 0 (40)a

Eq. (40)a may be written for arbitrary ωL as:∫
∂ (V−Vε )

NLTLJ eJLMXMdS−
∫

V−Vε

(ρ0bJ eJLMXM +TMJeJLM)dV = 0 (40)b

Thus, for finite deformations of an anisotropic hyperelastic material, with body
forces, the generalized L-Integral has the representation:

T ∗(L)L ≡
∫

∂Vε

NLTLJeJLMXMdS

=
∫

∂V
NLTLJeJLMXMdS−

∫
V−Vε

(ρ0bJeJLMXM +TMJeJLM)dV
(41)a

If one considers only an isotropic material, TIJ = TJI and thus TMJeJLM = 0. Further,
if one restricts to infinitesimal elasto-statics, and zero body forces, the integrands
in the volume integral over V −Vε in Eq. (41) vanishes, the generalized L-Integral
can be reduced as,

T ∗(L)L =
∫

∂V
NLTLJeJLMXMdS (41)b

The L-Integral in Eq. (41) is equivalent to its alternative form in term of the dis-
placements, as given by Knowles and Sternberg in 1972. By definition, Eq. (40)a
can be written as,∫

∂ (V−Vε )
NL(WδLJ−PLkFk,J)eJLMXMdS−

∫
V−Vε

(ρ0bJeJLMXM +TMJeJLM)dV = 0

(40)c
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However, the angular momentum balance for the stress P [NdS ·P = df in the de-
formed configuration] states that:∫

∂ (V−Vε )
x× (N ·P)dS+

∫
V−Vε

x×ρ0fdV = 0 (42)a

or∫
∂ (V−Vε )

(X+u)× (N ·P)dS+
∫

V−Vε

x×ρ0fdV = 0 (42)b

Thus, Eq. (42) leads to:∫
∂ (V−Vε )

NLPL je jlm(Xm +um)dS+
∫

V−Vε

ρ0 f je jlmxmdV = 0 (43)

Using Eq. (43) into Eq. (40)c, we obtain:∫
∂ (V−Vε )

NI(WδIJ−PIkuk,J)eJLMXMdS+
∫

∂ (V−Vε )
NIPI je jLmumdS

−
∫

V−Vε

(ρ0bJeJLMXM +TMJeJLM)dV +
∫

V−Vε

ρ0 f je jLmxmdV = 0
(44)

Eq. (44) is the conservation law in terms of the displacements for finite deforma-
tions of a hyperelastic, anisotropic solid. Eq. (44) can be reduced to the original
form identified by Knowles and Sternberg in 1972, for small deformation linear
elasticity without body forces,∫

∂ (V−Vε )
NI
{
(WδIJ−PIkuk,J)XM +PI jum

}
e jLmdS = 0 (45)

Thus, with Eq. (44), the generalized L-Integral in Eq. (41) has the alternative
representation in terms of the displacements, as

T ∗(L)L ≡
∫

∂Vε

NI
{
(WδIJ−PIkuk,J)XM +PI jum

}
e jLmdS

=
∫

∂V
NI
{
(WδIJ−PIkuk,J)XM +PI jum

}
e jLmdS

−
∫

V−Vε

(ρ0bJXM +TMJ−ρ0 f jxm)e jLmdV

(46)

Case (C): BJK =CδJK and CJ = 0.
such that

wJ(X) =C XJ (47)
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where C is a constant. Use of Eq. (47) in Eq. (30) results in a scalar identity:∫
∂ (V−Vε )

t∗J XJdS−
∫

V−Vε

(ρ0bJXJ +TJJ)dV = 0 (48)

Thus, for finite deformations of an anisotropic hyperelastic material, with body
forces, the generalized M-Integral has the representation:

T ∗(M) ≡
∫

∂Vε

NLTLJXJdS=
∫

∂ (V−Vε )
t∗J XJdS−

∫
V−Vε

(ρ0bJXJ +TJJ)dV (49)

The conservation law in Eq. (48) and the generalized M-Integral in Eq. (49) may
also have the representation in term of the displacements. Eq. (48) may be written
as:∫

∂ (V−Vε )
NL[WδLJ−PLk(uk,J +δkJ)]XJdS−

∫
V−Vε

(ρ0bJXJ +TJJ)dV

=
∫

∂ (V−Vε )
NL[WδLJ−PIkuk,J]XJdS−

∫
∂ (V−Vε )

NLPLkXkdS

−
∫

V−Vε

(ρ0bJXJ +TJJ)dV = 0

(50)

However,∫
∂ (V−Vε )

NLPL jXJdS =
∫

V−Vε

(PL j,LXJ +PJ j)dV =
∫

V−Vε

(−ρ0 f jXJ +PJ j)dV (51)

Thus, one is lead to the general conservation law:∫
∂ (V−Vε )

NL(WδLJ−PLkuk,J)XJdS

−
∫

V−Vε

[(−ρ0 f j +ρ0bJ)XJ +TJJ +PJ j]dV = 0
(52)a

where

TJJ +PJ j = 3W −PLkFkL +PJJ = 3W −PLkuk,L (52)b

For semi-linear anisotropic hyperelastic materials, one may postulate W such that:

W =
1
2

PLkuk,L (53)

Thus, for semi-linear anisotropic hyperelastic materials, one may write:

TJJ +PJ j =
1
2

PLkuk,L (54)
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For semi-linear anisotropic materials, one may write the conservation law for finite
deformations:∫

∂ (V−Vε )
NL(WδLJ−PLkuk,J)XJdS

−
∫

V−Vε

[(−ρ0 f j +ρ0bJ)XJ +
1
2

PLkuk,L]dV = 0
(55)a

However,

1
2

∫
V−Vε

PLkuk,LdV =
1
2

∫
∂ (V−Vε )

NLPLkukdS− 1
2

∫
V−Vε

PLk,LukdV (55)b

Thus, Eq. (55)a may be written, for finite deformations, of semi-linear anisotropic
hyperelastic materials, as:∫

∂ (V−Vε )
NL

{
(WδLJ−PLkuk,J)XJ−

1
2

PLkuk

}
dS

−
∫

V−Vε

[(−ρ0 f j +ρ0bJ)XJ−
1
2
(−ρ0 f j)u j]dV = 0

(56)

If we consider only infinitesimal deformations of anisotropic linear-elastic mate-
rials, and when deformations are independent of time and body forces are absent,
Eq. (56) reduces to:∫

∂ (V−Vε )
NL

{
(WδLJ−PLkuk,J)XJ−

1
2

PLkuk

}
dS = 0 (57)

where, for infinitesimal deformations, PLk becomes synonymous with the Cauchy
stress tensor, i.e., σik. Eq. (57) has been identified as a conservation law, lead-
ing to the now so-called M integral given by Knowles and Sternberg (1972) for
infinitesimal deformations of linear elastic anisotropic materials.

Thus, the generalized M-Integral in Eq. (49), for finite deformations of an anisotrop-
ic hyperelastic material, with body forces, has the representation in term of the
displacements.

T ∗(M) =
∫

∂Vε

NL

{
(WδLJ−PLkuk,J)XJ−

1
2

PLkuk

}
dS

=
∫

∂V
NL

{
(WδLJ−PLkuk,J)XJ−

1
2

PLkuk

}
dS

−
∫

V−Vε

[(−ρ0 f j +ρ0bJ)XJ +
1
2

ρ0 f ju j]dV

(58)
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Case (D): BJK = BKJ , J = |BJK |= 1 and CJ = 0.
We now consider test functions wJ =BJKXK , where BJK is a symmetric deformation
matrix, with the constraint that |BJK |= 1.

Thus,

wJ(X) = BJKXK and wJ,J = 0 (59)

With the polar decomposition, the Eshelby stress tensor T can be written as

TIJ = HIJ + eIMNGNJ,M (60)

where HIJ,I = TIJ,I = ρ0bJ is curl-free and GIJ,I = 0 is divergence free.

With zero body forces and using Eq. (59) in Eq. (30), we may write:∫
∂ (V−Vε )

NITIJBJKXKdS = 0 (61)

Thus we obtain the generalized conservation law for finite deformation in an anisotrop-
ic hyperelastic solid, as:∫

∂ (V−Vε )
NITIJXKdS = 0 (62)

By applying Stoke’s Theorem to Eq. (61), the generalized conservation law can be
written for the potential function of the Eshelby stress tensor, as∫

∂ (V−Vε )
eIKLNKGLJdS = 0 (63)

Thus Eq. (63) may be considered to lead to the G-Integral:

T ∗(G)
IJ ≡

∫
∂Vε

eIKLNKGLJdS =
∫

∂ (V−Vε )
eIKLNKGLJdS (64)

Note that by using other arbitrary test functions, which may be arbitrary polyno-
mials in XK , we may obtain an arbitrary number of generalized conservation laws.
However, each of these four special cases (A-D) discussed above has its own phys-
ical meaning and is corresponding to its own conservation law, as

• Case A, T ∗K : the linear momentum conservation law;

• Case B, T ∗(L)L : the angular momentum conservation law;

• Case C, T ∗(M): the divergence theorem;
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• Case D, T ∗(G)
IJ : Stokes’ theorem;

Note that the G-Integral is the fourth path-independent integral of Noether’s type
[Noether (1918)], besides the three integrals reported by [Knowles and Sternberg
(1972) and Eshelby (1975)]. Here these four conservation laws provide 12 indepen-
dent equations for 3-D problems, and 6 independent equations for 2-D problems.
T ∗(M) has been widely applied to incompressible problems with the pressure as
an independent variable. T ∗(G)

IJ can be applied for the independent shear stresses
for problems with materials such as liquid crystals or meta-materials, or anti-plane
problems assuming no shear strains.

In addition, the Eshelby stress tensor can also be extended to the gradient theory
of solids if the strain energy function in Eq. (3) is also dependent on the sec-
ond derivatives of the displacements, ui,JK [Eshelby (1975)]. The corresponding
conservation laws can also be obtained simply by writing the corresponding weak-
forms of both macroscopic and microscopic momentum balance laws, as well as
their forms weighted by the “test function” of the first and second derivatives of
the displacements, following Eq. (17). The concept of “force of defects” can also
be determined through conservation laws [Gurtin (2002)]. Another extension of
the Eshelby tensor is to micropolar materials, in which the strain energy function
is dependent on the deformation curvature. Similar conservation laws can also be
derived by involving the curvature terms [Lubarda and Markenscoff (2003)].

3 The use of the Eshelby Stress Tensor in computational finite deformation
solid mechanics

Since the concept of “the force on defect” was introduced by Eshelby in 1951, the
Eshelby stress tensor (or the energy-momenturm tensor) has been extended for con-
tinuum mechanics of solids by Eshelby (1975), and independently in Atluri (1982)
in which the expression of the Eshelby tensor has been given in term of the strain
energy in the deformed configuration. The duality of the Eshelby Stress and the
Cauchy Stress was also discovered by Eshelby (1975) and Chadwick (1975), and
was extended to finite strain. With the use of the states of inverse deformation
[Shield (1967)] and of the dual reciprocal states in finite elasticity [Ogden (1975)],
the Eshelby stress tensor has been widely explored. The concept of “Eshelbian
Mechanics” was introduced by Maugin (1995) based on the configuration invari-
ance of the energy conservation law of Noether’s Theorem, as the Lagrangian-
Hamiltonian-Noetherian formulation. In contrast, Newtonian mechanics is based
on the conservation laws of linear and angular momenta, and leads to the ener-
gy conservation law in the rate form in the undeformed configuration. As shown
in Eqs. (17) and (19), the balance law for T inherently involves the “weighted”
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weak-form of the momentum balance law for P.

The Eshelby stress tensor and its alternate forms have been widely used in devel-
oping numerical methods, especially for problems with singularities or inhomo-
geneities. On the other hand, by its definition in Eq. (7), the Eshelby stress tensor
is a quadratic function of the deformation gradient tensor even for linear elastic
or seme-linear (involving a linear relation between P and F) materials undergoing
infinitesimal deformations. It becomes very difficult to develop numerical methods
explicitly based on using the Eshelby stress tensor as a direct variable in solving
problems, since T is a nonlinear function of F even for small-strain linear elastic
behavior. A few exceptions include the exact use of the Eshelby tensor for inho-
mogeneous inclusions (Eshelby 1957,1959), and in the boundary integral forms for
micromechanics [Mura (1991)]. The Eshelby stress tensor has so far been widely
used only in a post processing computation to evaluate the forces on defects (or
the configurational forces), especially for mesh-based numerical methods, once the
stress and deformation are already computed.

We now review the difference between the equilibrium equations of the Cauchy
stress, and the balance laws for Eshelby stress. The strong form of the momentum
balance equations for the Cauchy stress tensor σσσ are in the deformed configuration
as in Eq. (6)a. The Cauchy stress tenor σσσ in the deformed configuration is analo-
gous to the Eshelby stress tensor in the undeformed configuration, and the Cauchy
stress tensor is also a quadratic function of the inverse of the deformation gradient
tensor, i.e. F−1

I j = ∂XI
∂x j

even for semi-linear elastic solids. It implies that both the
equilibrium equations based on the Cauchy stress tensor and the balance law of the
Eshelby stress tensor are not suitable for linearization for solving the corresponding
strong forms even for linear elastic materials undergoing infinitesimal deformation-
s. The well-known equilibrium equation based on the first Piola-Kirchhoff stress
tensor P in Eq. (6)b can be obtained through the coordinate transformation as in
Eq. (10). It can be easily linearilized in the undeformed configuration. Its weak
forms over the solution domain have been widely used for developing numerical
methods including the finite element methods. Without losing generality, the weak
form of Eq. (6)b can be written with a test function w j as,∫

V
PI j,Iw j dV = 0 (65)a

and for a continuous function w j,∫
∂V

NIPI jw j dS−
∫

V
PI jw j,I dV = 0 (65)b

In order to make the strong form of the Cauchy stress tensor satisfied through the
weak forms in Eq. (65)a, the trial functions of the first Piola-Kirchhoff stress tensor
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P need to satisfy its strong form in Eq. (6)b. It also requires that the deformation
gradient tensor satisfy the geometric identity [Shield (1967), Ogden (1975)],

(J F−1
I j ),I = 0 (66)

as already discussed in Eqs. (6)(d-f).

If Eq. (66) is not satisfied in a numerical computation, various attendant numerical
issues need special treatment, such as the well-known finite-element mesh compat-
ibility issues of strong displacement continuity and strong traction reciprocity. For
example, many “locking” issues in mesh-based numerical methods are related to
the weak-form conditions,

PI j,I 6= 0

PI j,Iw j = 0
(67)

Because of which, the extra configurational forces are introduced. The crack prob-
lem is another example of a “strong singularity” at the crack-tip, as the value of
(J F−1

I j ),I is infinite within Vε .

Hence, the Eshelby stress tensor as well as its alternate forms have been widely
used in computing the configurational forces in the scalar or vector forms. The at-
tendant path-independent integrals have been computed using the contour integral
method, the domain integral method [Nikishkov and Atluri(1987)], or the interac-
tion integral method, as well as the T ∗ integral for dynamic nonlinear problems
[Atluri (1982), Nishoka and Atluri (1983)]. Its vector form in Eq. (12) provides
the directional strength of the singularities for crack initialization and propagation
[Gurtin & Podio-Guidugli (1996), Kienler & Herrmann (2002)]. It has also been
used to evaluate and correct the incompatibility of the mesh-based trial functions,
in order to avoid configuration forces, such as in the selective integration scheme, in
the assumed strain field methods, and in the use of high-order elements with prop-
er terms etc. One of the recent applications has been to develop the locking-free
mesh-based methods for Hamiltonian systems by choosing only configurational-
force-free terms under high speed rotation [Garcia-Vallejo, Mikkola and Escalona
(2007), Sugiyama, Gerstmaya, Shabana (2006), Zhao and Ren (2012)].

It is impossible to make the deformation gradient tensor satisfy Eq. (66) through
mesh-based trial functions. The trial functions through the use of the meshless
interpolations, such as the moving least squares approximations and the radial ba-
sis aroximations, have been widely studied. However, the high-order continuity
of such meshless trial functions, through the global solution domain, does not im-
ply that Eq. (66) is satisfied any better. It becomes even more computationally
costly because a high-order numerical quadrature scheme is required if the global
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Galerkin approach is adopted. In contrast, the local meshless trial functions as in
the Meshless Local Petrov Galerkin (MLPG) methods of Atluri et al (1998,2004),
can satisfy Eq. (66) better, especially with the use of low order polynomial basis.
Various test functions can be also chosen for computational efficiency, through the
Meshless Local Petrov Galerkin (MLPG) approach [Atluri, et al (1998, 2004)]. It
should be pointed out that the mixed MLPG method [Atluri, Han and Rajendran
(2004)] becomes even more promising since the strain or stress can be interpolated
independently along with the displacements as “the generalized degrees of free-
dom”. Hence, Eq. (66) can be satisfied in a better way. By mapping the deforma-
tion gradient or stress variables back to the nodal displacements, the “locking-free
MLPG method” has been developed by [Atluri, Han and Rajendran (2004)]. Since
the balance laws for the Eshelby stress tensor T are essentially “weighted” forms
of the momentum balance laws for the first Piola-Kirchhoff stress P, we may also
make use of the Eshelby stress tensor to remove the restriction in Eq. (66), and the
MLPG method can be extended to allow discontinuity in deformation. The inho-
mogeneity can also be included as “the distributed force on the defect” in Eq. (19).
We call the resulting computational approach to solve for the displacements and
the stress in a finitely deformed solid as the MLPG-Eshelby Method for computa-
tional solid mechanics. This represents a radical departure from the current state
of computational solid mechanics. While the MLPG-Eshelby method for gener-
al computational finite deformation solid mechanics will be fully described in our
forthcoming papers, a simple one-dimensional example is provided in the next sec-
tion.

4 A simple example of the application of the Eshelby Stress Tensor in Com-
putational Solid Mechanics

4.1 Formulation

For illustration purposes, we use the identity for the Eshelby stress tensor, derived
independently in Atluri (1982) [Eqs. (18)&(19) in Atluri (1982)]. While compu-
tational methods for finite deformations of hyperelastic solids will be considered
in our forthcoming papers, we consider now only a homogeneous linear elastic bar
in a one-dimensional domain Ω, with a boundary ∂Ω, subjected to the continuous
body force b(X) and the surface traction P̄(Xn), and undergoing infinitesimal de-
formations. The bar is descretized into n segments, each of an arbitrary length, as
shown in Fig. 2.

One may write the Eq. (18) in [Atluri (1982)] for one-dimensional elasto-static
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Figure 2: a bar divided into non-uniform segments

problems, as,∫
V
[
dW
dX
− d(P ·F)

dX
−ρ0b(X) ·F ]dV = 0 for ∀V ⊂ [X1,Xn] (68)a

and the traction boundary conditions as

P(Xn) = P̄ (68)b

It is clearly seen that the combination of the first two terms in the left-hand side
in Eq. (68)a leads to the definition of the Eshelby stress tensor in the present one-
dimensional problem [i.e. T =W −P ·F]. The corresponding strong form balance
law for the Eshelby stress tensor can be written as,

dT
dX

=
dW
dX
− d(P ·F)

dX
= ρ0b(X) ·F for ∀X ∈ [X1,Xn] and X /∈ {Zi} (69)

Let u(X) be the trial function for the displacements, over the solution domain, and
let it be piece-wise continuous except at several points X = Zi. Eq. (69) is simply
the weighted weak form of the equilibrium equation for the Piola-Kirchhoff stress
P for the one-dimensional problems, as

− dP
dX
·F = ρ0b(X) ·F for ∀X ∈ [X1,Xn] and X /∈ {Zi} (70)

in which the constitutive relation for P in Eq. (3) is applied. One may choose
the trial function u(X) to be piece-wise continuous over each local sub-domain
Ωi ≡ (Xi− li,Xi + li) (except X1 and Xn have only one side), but not necessarily
continuous at Zi = Xi− li for i = 2,n. Hence, there are n−1 gaps between the local
sub-domains, at the points Zi.

One may choose δX [ a “variation” in the values of the coordinates of a material
particle of the solid, in its initial configuration] to be a test function, in order to
write the weak-form of Eq. (70). We take δX to be piece-wise continuous, except
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at several points X = Zi. The equilibrium equations for the Eshelby stress, as in Eq.
(70), can be written in a weak form, over each local domain Ωi, as∫ Xi+li

Xi−li
[− dP

dX
·F−ρ0b(X) ·F ]δX dX

=
∫ Xi+li

Xi−li
[− dP

dX
−ρ0b(X)]δxdX

for ∀X ∈ [X1,Xn] and X /∈ {Zi} (71)a

or by applying the divergence theorem,∫ Xi+li

Xi−li
[− dP

dX
·F−ρ0b(X) ·F ]δX dX

=
∫ Xi+li

Xi−li
PδF dX− Pδx|Xi+li

Xi−li−
∫ Xi+li

Xi−li
ρ0b(X)δxdX

for ∀X ∈ [X1,Xn] and X /∈ {Zi}

(71)b

in which by definition,

δx≡ FδX and δF ≡ dδx
dX

(72)

From Eq. (72) it is clear that δx(X) is not in the same class of functions as the trial
function, u(X). Thus Eq. (71) for the Eshelby stress tensor necessarily implies a
Petrov-Galerkin approach.

The summation of Eq. (71)b over the solution domain should be zero only if there
are no gaps of the trial function [i.e. u(X) is continuous at every point]. However,
the trial function is not continuous but has gaps at X =Zi. The alternate test function
δx(X) also becomes non-continuous over the gaps X = Zi due to the discontinuity
of the displacement gradients, F(X). If the actual solution contains no “real gaps”
at X = Zi [i.e. δX is continuous], the corresponding gaps are introduced simply
because of the discretization error, as well as the alternate test function δx(X).
However the weak form in Eq. (71)a is still valid over the domain Zi− ε ≤ X ≤
Zi + ε . For illustration purposes, we may use this weak form over the gaps in the
undeformed configuration to preserve the balance of energy, rather than applying
the balance law of the Eshelby stress tensor, to derive the corresponding weak form
over the gaps. By ignoring the body force over the gaps and taking a small segment
2ε = Z+

i −Z−i centered at the gaps X = Zi, one may take a linear continuous test
function over the gaps as,

δx(X) = [δx(Z−i )(Z
+
i −X)+δx(Z+

i )(X−Z−i )]/(2ε) for ∀X ∈ [Z−i ,Z
+
i ] (73)
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with an average of [δx(Z+
i )+δx(Z−i )]/2.

Thus one may have the weak form for the gaps as∫ Z+
i

Z−i
[− dP

dX
·F−ρ0b(X) ·F ]δX dX

=−[P(Z+
i )−P(Z−i )][δx(Z+

i )+δx(Z−i )]/2
for ∀X ∈ [Z−i ,Z

+
i ] (74)

By adding Eqs. (74) and (71)b, the weak form of the equilibrium equations can be
obtained for the numerical discretization problem as:

n

∑
i=1

∫ Xi+li

Xi−li
PδF dX +

n

∑
i=2

[P(Z+
i )+P(Z−i )][δx(Z+

i )−δx(Z−i )]/2

=
n

∑
i=1

∫ Xi+li

Xi−li
ρ0b(X)δxdX

(75)

On the other hand, if defects exist at the gaps X = Zi, the corresponding “forces
on the defects” can be computed through Eq. (68). The test function δX has to be
discontinuous at X = Zi. The average movement of the defects can be defined as

δX(Zi) = [δX(Z+
i )+δX(Z−i )]/2 (76)

With the use of Eq. (27) or the weak forms in Section 3 for Vε , the Eshelby traction
t∗ can be computed in terms of the strain energy changes of V\Vε which also be
used to drive the defects or break elements [LSTC (2013)]. The applications of
the Eshelby stress for discontinuous mechanics will be discussed in our following
papers.

Eq. (75) may, at first glance, appear to be quite similar to the discretized equi-
librium equations for the hybrid finite element methods [Atluri (1975)], which,
however, are based on the direct “weak-form” of a momentum balance law for P,
rather than on the balance law for P, weighted a priori with F. However, the con-
cepts behind Eq. (75), and the hybrid finite element methods, are quite different.
For a given set of nodes in the undeformed initial configuration, {Xi}, and a trial
function for the displacement u(X), the corresponding stress P(X) can be com-
puted following the standard finite element procedures. The “weak-form” of the
momentum balance law for P states that u(X) is the solution, if the deformed do-
main x = X + u(X) renders the “total potential energy” stationary. By taking any
admissible test function δu(X), the corresponding stress P̃(X) computed from the
neighboring solution ũ(X)= u(X)+δu(X) must also satisfy the same “weak-form”
of the momentum balance law for P. It is also clear, that in the usual Galerkin finite
element methods, the test function δu(X) [or the “variation” of u(X)] belongs to
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the same class of functions as u(X). In contrast, in present case of writing a “weak-
form” of the balance law for the Eshelby stress tensor, namely for Eq. (70), one
may keep the trial function u(X) unchanged but change the coordinates in the ini-
tial configuration, namely Xi, to admissible neighboring points Yi = Xi + δXi, thus
resulting in a new node set {Yi}. Keeping the same trial function u(X), the new trial
function for the node Yi can be computed through Eq. (72), as

u(Yi) = u(Xi)+ δX
du
dX

∣∣∣∣
X=Xi

≡ u(Xi)+δx(Xi) (77)

or within a piece-wise continuously defined sub-domain,

u(Y ) = u(X)+
du(X)

dX
δX = u(X)+FδX ≡ u(X)+δx(X) (78)

It is clear that the test function δx(X) used in Eq. (71) is dependent on both {Xi}
and u(X), instead of being an admissible function of {Xi} only, as in the usual
finite element methods. It is the “change of the trial function” caused by “mesh
changes”. Within the general Galerkin approach, δx(X) is replaced with the dis-
placement variation and thus the weakform in Eq. (75) is reduced to the momentum
balance law for P. The conservation law for the energy of the system can not be
preserved in the usual finite element method. In other words, the Galerkin ap-
proach enforces that the system’s energy conservation law is preserved only in the
undeformed configuration, instead of in any other configurations. Noether’s theo-
rem [Noether (1918)] states that the energy conservation law must be configuration
invariant. Hence, the test function in term of δx(X) [as an alternate form of δX]
should be chosen differently from the trial function of u(X) which essentially leads
to the Petrov-Galerkin approach.

With a continuous test function δX , the corresponding stress P(Y ) can also be
computed in a same way. The “weak-form” of the balance law for T states that
u(X) is the solution if all “computed” solutions u(Y ) and P(Y ) also satisfy the same
weak form. If not, the newly computed unbalanced nodal forces are the so-called
configurational forces.

If the mapping operation between the mesh changes δX and the changes of the
trial function δx(X) = FδX is invertible, through using a continuous trial func-
tion, any admissible test function δx(X) can be used in Eq. (75), instead of δX
explicitly. However, such compatible invertible relations can be not defined for 2-
D or 3-D problems for a global mesh-based or even a meshless interpolation. One
may choose δx(X) to be same as δu(X), which has been done in most global mesh-
less Galerkin methods by ignoring the actual inverted functionδX through F . It may
cause some numerical issues, such as i) the continuity requirement not allowing any
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discontinuity or defects within the whole solution domain; ii) higher order quadra-
ture schemes for high-order nonlinear integrands in the domain integrals requiring
more material integration points which is computationally time costly for nonlinear
materials; and iii) difficulty in enforcing the essential boundary conditions as δX
is mapped to different class of funtions. On the other hand, a compatible and in-
vertible relations between δx(X) and δX can be easily constructed in a closed form
within “a local spatial patch” [or a local sub domain]. Such techniques have been
widely used in the error estimation and mesh adaptivity with higher order accuracy.
Hence the weak-forms within a local sub domain become more convenient through
the Meshless Local Petrov-Galerkin (MLPG) approach [Atluri (1998, 2004)].

4.2 Numerical implementation

There are many ways to choose the trial function u(X), over the solution domain
with various orders of continuity, in the initial coordinates. First the moving least
squares (MLS) approximation is used to construct the trial function based on the
fictitious nodal value û(i) [Atluri (2004)], as

uMLS(X) =
n

∑
i=1

Φ
(i)(X)û(i) (79)

The continuity of the trial function uMLS is dependent on the weight functions
w(i)(X) in the MLS interpolation [Atluri (2004)]. In the present study, we choose
the fourth-order spline function as the weight function, which leads to a continuous
trial function.

Secondly, the mixed interpolation for both F(X) and u(X) can also be used to
construct the trial functions based on the fictitious nodal value û(i) and F(i) [Atluri,
Han and Rajendran (2004)] over each segment, as

FMIX(X) = F(i) ≡ duMLS

dX

∣∣∣∣
X=Xi

uMIX(X) = u(X (i))+F(i) · (X−X (i))

for ∀X ∈ [Xi−1,Xi] (80)

It is clear that the trial function uMIX(X) is piece-wise linear, but discontinuous at
points Zi (i.e. with gaps).

The test function δX does not explicitly appear in Eq. (75), instead only δx ap-
pears. Hence, one may define δx over the solution domain, and the corresponding
δX may be computed through Eq. (72) which is not involved in the numerical com-
putation. It needs to be pointed out that Eq. (72) can not be defined globally (except
in their global boundary/domain weighted integral forms) rather than within a local
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sub-domain. It is another reason which precludes the Eshelby stress tensor from be-
ing implemented through the global mesh-based methods [Such as the usual finite
element methods, or the global Galerkin methods]. Eq. (75) becomes nonlinear in
δx if the test function δX is assumed first, and δx then is computed through Eq.
(72).

The test function δx can be chosen to be piece-wise linear for a simple mapping
relations between δX and δx. First the element-based simple polynomial shape
functions are chosen to interpolate the test function based on the nodal values v(i)

over each segment, as,

δxFEM(X) = N(i−1)
δx(i−1)+N(i)

δx(i) for ∀X ∈ [Xi− li,Xi + li] (81)

in which the shape functions N(i−1) = 1−ξ and N(i) = ξ are linear. The test func-
tion δxFEM is piece-wise linear and possesses C0 continuity (i.e. no gaps), and
a linear relation between δX and δx can be obtained within elements if the trial
function is continuous, such as uMLS.

On the other hand, the mixed MLS interpolation is also chosen to construct the
discontinuous trial function uMIX . A simple continuous test function δX can be
chosen as discussed in Section 2, as:

δXMIX(X) = δX (i)+δλ
(i) · (X−X (i)) for ∀X ∈ [Xi− li,Xi + li] (82)

where δX (i) and δλ (i) are two independent nodal variables.

Thus a linear relation between δX and δx can be computed within each local sub-
domain, by definition, as

δxMIX(X)= F(X) ·δX(X) = F(i)[δX (i)+δλ
(i) · (X−X (i))]

= F(i)
δX (i)+F(i)

δλ
(i) · (X−X (i))

≡ δx(i)+δF(i) · (X−X (i)) for ∀X ∈ [Xi− li,Xi + li]

(83)

in which the nodal values δx(i) and δF(i) are independent variables and different
from those used in Eq. (80).

The MLPG approach based on the Eshelby stress tensor [hereafter labeled as the
MLPG-Eshelby Method] is presented here first by choosing uMLS as the trial func-
tion, and δxFEM as the test function. We call this the “Primal MLPG-Eshelby
Method”. The domain integrals in Eq. (75) are performed over the solution domain
without any singular gaps.

The second MLPG-Eshelby method is formulated by choosing uMIX as the trial
function and δxMIX as the test functions, and labeled as the “Mixed MLPG Eshelby
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method”. The domain integrals in Eq. (75) can be simplified by evaluating the
constant terms, as

n

∑
i=1

δx(i)
∫ Xi+li

Xi−li
ρ0b(X)dX =

n

∑
i=2

(P(i−1)li−1δF(i−1)+P(i)liδF(i))

+
n

∑
i=2

(P(i)+P(i−1))

2
(δx(i)−δx(i−1)− liδF(i)− li−1δF(i−1))

=
n

∑
i=2

(P(i)+P(i−1))

2
(δx(i)−δx(i−1))+

n

∑
i=2

(P(i)−P(i−1))

2
(liδF(i)− li−1δF(i−1))

(84)

It is interesting that no interpolation is involved in Eq. (84) other than evaluating
the nodal values, including the displacement gradients and stresses. Essentially Eq.
(84) becomes a “Particle” method which is computationally efficient. In addition,
the second order term in δF(i) can be omitted and the system can be written as,

n

∑
i=2

(P(i)+P(i−1))

2
(δx(i)−δx(i−1)) =

n

∑
i=1

δx(i)
∫ Xi+li

Xi−li
ρ0b(X)dX (85)

4.3 Numerical results

The bar is fixed at the left hand end and subjected to four loading conditions

i) uniform tension with zero body force (constant stress), as
b(X) = 0 and P(Xn) = 1

ii) constant body force as gravity load (linear stress), as
b(X) = 1 and P(Xn) = 0

iii) linear body force as centrifugal force (second order nonlinear stress) , as
b(X) = X and P(Xn) = 0

iv) second order body force (third order nonlinear stress) , as
b(X) = X2 and P(Xn) = 0

The bar is discretized regularly into 10 sub-domains, or irregularly with maximum
30% random variation from the regular sub-domains. All nodal coordinates are
listed in Table 1.

The normalized relative displacement errors are shown in Figs. 3-6 for the regu-
lar sub-domains, and in Figs. 7-10 for the irregular sub-domains. The numerical
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Table 1: Node coordinates of a bar

Node# 1 2 3 4 5 6 7 8 9 10 11 

Regular sub-domains 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Irregular sub-domains 0.0 0.115 0.211 0.307 0.417 0.505 0.582 0.672 0.781 0.902 1.0 

results show that the “Primal MLPG Eshelby Method” and the “Mixed MLPG Es-
helby Method” pass the patch test and are quite stable.
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Figure 3: Normalized relative displacement errors of a bar under uniform tension
(regular sub-domains)
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Figure 4: Normalized relative displacement errors of a bar under gravity load (reg-
ular sub-domains)
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Figure 5: Normalized relative displacement errors of a bar under centrifugal force
(regular sub-domains)
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Figure 6: Normalized relative displacement errors of a bar under second order body
force (regular sub-domains)
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Figure 7: Normalized relative displacement errors of a bar under uniform tension
(irregular sub-domains)
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Figure 8: Normalized relative displacement errors of a bar under gravity load (ir-
regular sub-domains)
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Figure 9: Normalized relative displacement errors of a bar under centrifugal force
(irregular sub-domains)
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Figure 10: Normalized relative displacement errors of a bar under second order
body force (irregular sub-domains)
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