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Particle-based Simulations of Flows with Free Surfaces
Using Hyperbolic-type Weighting Functions
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Abstract: In this paper, we present the application of the particle-based simula-
tions to complicated fluid flow problem with free surfaces. The particle approach
is based on the MPS (Moving Particle Simulation) method using hyperbolic-type
weighting function to stabilize the spurious oscillatory solutions for solving the
Poisson equation with respect to the pressure fields. The hyperbolic-type weight-
ing function is constructed by differentiating the characteristic function based on
neural network framework. The weighting function proposed herein is collaterally
applied to the kernel function in the SPH-framework. Numerical results demon-
strate the workability and validity of the present MPS approach through the dam-
breaking flow problem.

Keywords: Particle method, MPS, hyperbolic-type weighting function, neural
network, Laitone’s approximate solutions, dam-breaking flow.

1 Introduction

The numerical fluid flow simulations have been successfully performed by many
researchers with the use of finite difference method and finite element method based
on grid/mesh-based frameworks [Stein, Borst and Hughes (2004)]. Numerical dif-
ficulties have been experienced in the solution of the Navier-Stokes equations at
higher Reynolds numbers. In particular, it is well known that the centered finite
difference and standard Galerkin finite element formulations lead to spurious os-
cillatory solutions for flow problem at high Reynolds number regimes. To over-
come such spurious oscillations, various upwind/upstream-based schemes (in other
words, Petrov-Galerkin method) have been consistently presented in both frame-
works. On the other hand, in the framework of particle-based methodology, the
appropriate choice of the weighting function (or kernel function) is indispensable
in order to affect the behavior of the numerical solutions.
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There have been proposed various weighting functions (or kernel functions) in the
gridless-based/meshless-based methods, such as SPH (Smoothed Particle Hydro-
dynamics) method [Lucy (1977); Gingold and Monaghan (1977)], MPS method
[Koshizuka and Oka (1996)], MLPG (Meshless Local Petrov-Galerkin) method
[Atluri and Zhu (1998); Lin and Atluri (2001); Avila and Atluri (2009); Avila, Han
and Atluri (2011)], and LMFE (Lagrangian Meshless Finite Element) method [Idel-
sohn, Storti and Oñate (2001); Idelsohn, Oñate and Pin (2003); Idelsohn, Oñate and
Pin (2004)], to simulate effectively complicated fluid flow problems. Some reviews
of meshfree/particle methods and their applications have been presented excellently
by Li and Liu [Li and Liu (2002)].

The SPH methods for solving compressible fluid flows with gravity have been
firstly developed in the field of astrophysics, and applied successfully to a wide
variety of complicated physical problems [Liu and Liu (2003)]. In the SPH-based
framework, Lucy [Lucy (1977)] has used the bell-shaped function which satisfied
some properties for the smoothing function to simulate the evolution of rotating
protostar. The Gaussian kernel function without a compact support has been sig-
nificantly proposed by Monaghan et al. [Gingold and Monaghan (1977); Mon-
aghan (1988); Monaghan (1992)] to solve numerically the astrophysical compli-
cated problems. Grenier et al. [Grenier, Antuono, Colagrossi, Touzé and Alessan-
drini (2009)] have presented a Gaussian kernel with a compact support to simu-
late the multi-fluid flows including free surface. Monaghan and Lattanzio [Mon-
aghan and Lattanzio (1985)] have also presented the smoothing kernel based on
the cubic spline functions, and higher-order spline functions have been widely
adopted by many researchers [Morris, Fox and Zhu (1997); Cummins and Rud-
man (1999); Colagrossi and Landrini (2003); Tartakovsky, Meakin, Scheibe and
West (2007); Koukouvinis, Anagnostopoulos and Papantonis (2013)]. The MPS
method known as an incompressible fluid flow solver has been widely applied to
the problem of breaking wave with large deformation, the fluid-structure interaction
problem, and so forth. However, the standard MPS approach leads to the above-
mentioned unphysical numerical oscillation of pressure fields which are described
by the discretized Poisson equation. In the MPS-based framework, Koshizuka et al.
[Koshizuka, Tamako and Oka (1995)] have firstly proposed a set of second-order
polynomials as the kernel function to simulate numerically the collapse of a water
column, namely the dam-breaking flow problem. Then, for the formulation of a
standard MPS method, Koshizuka and Oka [Koshizuka and Oka (1996)] have pro-
posed a kernel function with singularity, namely the function of inverse proportion
with respect to the distance between two particles. The standard kernel function
with singularity has been mainly used by some researchers [Liu, Koshizuka and
Oka (2005); Khayyer and Gotoh (2009); Tanaka and Masunaga (2010); Khayyer
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and Gotoh (2012)]. We have proposed the MPS formulation using logarithmic-
type weighting function to improve slightly the singularity of the kernel func-
tion [Kakuda, Obara, Toyotani, Meguro and Furuichi (2012); Kakuda, Nagashima,
Hayashi, Obara, Toyotani, Katsurada, Higuchi and Matsuda (2012)]. Recently, a
set of second-/third-order polynomial kernels without the singularity has been stud-
ied in the MPS-framework [Shakibaeinia and Jin (2010); Kondo and Koshizuka
(2011); Lee, Park, Kim and Hwang (2011); Shakibaeinia and Jin (2012)] as with
the application of the above-mentioned SPH-strategy. Atluri and Zhu [Atluri and
Zhu (1998)] have developed the MLPG approach based on the local symmetric
weak form and the moving least squares for solving accurately potential prob-
lems, and the approach was extended to deal with the problems for incompressible
Navier-Stokes equations [Lin and Atluri (2001)] in fluid dynamics. Both Gaus-
sian and spline weighting functions with the compact support have been effec-
tively employed in the MLPG methodology. Avila and Atluri [Avila and Atluri
(2009)] have presented efficiently various numerical solutions of the non-steady,
two-dimensional Navier-Stokes equations by using the MLPG method coupled
with a fully implicit pressure-correction approach. They have also proposed a novel
MLPG-mixed finite volume method for solving the steady-state Stokes flow in-
volving complex phenomena between eccentric rotating cylinders [Avila, Han and
Atluri (2011)]. Valuable overviews of the MLPG method involving applications
to fluid flows have been presented in detail by Sladek et al. [Sladek, Stanak, Han,
Sladek and Atluri (2013)]. A group of Idelsohn et al. [Idelsohn, Storti and Oñate
(2001); Idelsohn, Oñate and Pin (2003); Idelsohn, Oñate and Pin (2004)] has devel-
oped expertly the LMFE method for solving incompressible fluid flows with free
surfaces and applied to complex problems including the dam-breaking flow and
fluid-structure interactions. They have used the polynomial interpolation functions
based on the Galerkin finite element formulation.

The purpose of this paper is to propose a hyperbolic-type weighting function to
formulate the particle method based on the MPS. The hyperbolic-type weighting
function with the compact support is constructed by differentiating the character-
istic function (i.e., sigmoid function) based on neural network framework [Rumel-
hart, Hinton and Williams (1986); Funahashi (1989)]. And also, the weighting
function has the form similar to Laitone’s approximate solutions for a solitary
wave [Laitone (1960)], which are often used for comparative studies [Ramaswamy
(1990); Hansbo (1992); Radovitzky and Ortiz (1998); Duarte, Gormaz and Nate-
san (2004); Nithiarasu (2005)]. The weighting function which has the property of
Dirac delta function is concomitantly applied to the smoothing kernel function in
the SPH-framework. The workability and validity of the present MPS approach are
demonstrated through the dam-breaking flow problem [Martin and Moyce (1952);
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Hirt and Nichols (1981); Ramaswamy and Kawahara (1987)], and compared with
experimental data and other numerical ones.

Throughout this paper, the summation convention on repeated indices is employed.
A comma following a variable is used to denote partial differentiation with respect
to the spatial variable.

2 Statement of the problem and the standard MPS formulation

Let Ω be a bounded domain in 2D/3D Euclidean space with a piecewise smooth
boundary Γ. The unit outward normal vector to Γ is denoted by nnn. And also, ℑ

denotes a closed time interval.

The motion of an incompressible viscous fluid flow is governed by the following
Navier-Stokes equations :

Dui

Dt
=− 1

ρ
p,i +νui, j j + fi in ℑ×Ω (1)

Dρ

Dt
= 0 in ℑ×Ω (2)

where ui is the velocity vector component, ρ is the density, p is the pressure, fi is
the external force, e.g., gravity, ν is the kinematic viscosity, and D/Dt denotes the
Lagrangian differentiation. In addition to Eq. 1 and Eq. 2, we prescribe the initial
condition ui(xxx,0) = u0

i , where u0
i denotes the given initial velocity, and the Dirichlet

and Neumann boundary conditions.

In this stage, let us briefly describe the standard MPS as one of the meshfree particle
methods [Koshizuka and Oka (1996)]. The particle interaction models of the MPS
as illustrated in Fig. 1(a) are prepared with respect to differential operators, namely
gradient, divergence and Laplacian. The incompressible viscous fluid flow is cal-
culated by a semi-implicit algorithm, such as SMAC (Simplified MAC) scheme
[Amsden and Harlow (1970)].

The particle number density n at particle i with the neighboring particles j is defined
as

< n >i= ∑
j 6=i

w(|rrr j− rrri|) (3)

in which w denotes the following kernel function (or weighting function) with the
compact support as shown in Fig. 1(b)

w(r) =

{re

r
−1 (0 < r < re)

0 (re ≤ r)
(4)
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where re is ad hoc influence radius as shown in Fig. 1(a).

The model of the gradient vectors at particle i between particles i and j is weighted
with the kernel function and averaged as follows:

< ∇∇∇φ >i=
d
n0 ∑

j 6=i
[

φ j−φi

|rrr j− rrri|2
(rrr j− rrri)w(|rrr j− rrri|)] (5)

where d is the number of spatial dimensions, φi and φ j denote the scalar quantities
at coordinates rrri and rrr j, respectively, and n0 is the constant value of the particle
number density. The Laplacian model at particle i is also given by

< ∇∇∇
2
φ >i=

2d
n0λ

∑
j 6=i
(φ j−φi)w(|rrr j− rrri|) (6)

where λ is an ad hoc coefficient.

The Poisson equation for solving implicitly the pressure field at particle i is given
as follows:

< ∇∇∇
2 p >i=−

ρ

∆t2
< n∗ >i −n0

n0 (7)

where < n∗ >i denotes the particle number at particle i.

(a) Particle interaction models (3D) (b) Profiles of weighting functions
Figure 1: Particle interaction models and weighting functions
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3 Construction of the hyperbolic-type weighting function

For the MPS formulation, the appropriate choice of a weighting function is a key
factor in the particle-based simulations. If the distance r between the coordinates rrri

and rrr j is very close, then there is a possibility that the computation fails suddenly
with unphysical numerical oscillations. Therefore, in order to stabilize such spuri-
ous oscillations generated by the above-mentioned standard MPS strategy, we have
used the following logarithmic-type weighting function as shown in Fig. 1(b), and
also considered the reduction of ad hoc influence radius, re, for solving the pressure
fields [Kakuda, Obara, Toyotani, Meguro and Furuichi (2012)].

w(r) =

{
ln(

re

r
) (0 < r < re)

0 (re ≤ r)
(8)

The common logarithmic-type weighting function is also similar to the profile of
the weighting function presented by Kondo and Koshizuka to stabilize the pressure
calculations [Kondo and Koshizuka (2011)](see Fig. 1(b)).

However, we propose newly the following hyperbolic-type weighting function in-
stead of the logarithmic-type weighting function which has a singularity.

w(r) =

θ

sech2(
κr
re

)− sech2(κ)

1− sech2(κ)
(0≤ r < re)

0 (re ≤ r)

(9)

where θ and κ denote ad hoc parameters. In Fig. 1(b) and Fig. 2, we show also the
profiles of Eq. 9 for the parameters κ and θ = 1, in which R = r/re.

The hyperbolic-type weighting function with the compact support is constructed by
differentiating the characteristic function based on neural network framework. In
the following, we shall describe the derivation of the function.

In the field of neural networks, the input-output relationship known as the back-
propagation is represented by inputs U j, output Vj and the characteristic function h
as follows:

Vj = h(U j) (10)

U j =
n

∑
i=1

Si jwi j + I j−Tj (11)

where Si j are j-th input values as shown in Fig. 3, wi j are the connection weights, I j

is the bias value and Tj denotes threshold. The sigmoid function (see Fig. 4(a)) has
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Figure 2: Profiles of Eq. 9 for the parameters κ and θ = 1

been mainly used as the continuous characteristic function h [Rumelhart, Hinton
and Williams (1986); Funahashi (1989)].

h(v) =
1
2
(1+ tanh(

v
2k

)) (12)

By differentiating with respect to the variable v of Eq. 12, we obtain the form as
follows (see Fig. 4(b)):

h′(v) =
1
4k

sech2(
v

2k
) (13)

In order to relate the particle-based formulation and Eq. 13, we put as follows:

v = r , k =
re

2κ
(14)

and also assume the following weighting function to satisfy the compact support
property (if r/re = 1, then w = 0, i.e, w(r)/r=re = 0.) [Liu and Liu (2003)]:

w(r) = a0 +
a1κ

2re
sech2(

κr
re

) (15)

Consequently, we obtain the form of Eq. 9 by solving the coefficients a0 and a1
from the conditions of the compact support and w(r)/r=0 = θ .
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Figure 3: Neuron model

(a) Sigmoid functions (b) Profiles of Eq. 13
Figure 4: Sigmoid functions and profiles of Eq. 13

4 Application to the kernel function in SPH

The smoothing function of Eq. 13 has the property of Dirac delta function as
the length re or k approaches to zero shown in Fig. 4(b). Therefore, the above-
mentioned hyperbolic function can be also applied to the construction of the kernel
function with other properties, namely the normalization/unity and the compact
support properties, and so forth [Liu and Liu (2003)].

In one-dimensional (1D) space, the form of Eq. 15 can be written by using the
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normalization/unity condition as follows:

2
∫ 2re

0
{a0 +

a1κ

2re
sech2(

κr
re

)}dr = 1 (16)

And also, for the smoothing function W to have the compact support condition
W (R,re)/R=2 = 0, we have as follows:

a0 +
a1κ

2re
sech2(2κ) = 0 (17)

Solving Eq. 16 and Eq. 17, the coefficients a0 and a1 are obtained as

a0 =−
a1κ

2re
sech2(2κ) , a1 =

1
tanh(2κ)−2κ sech2(2κ)

(18)

As a result, we find the smoothing kernel function as follows:

W (R,re) =
a1κ

2re
{sech2(κR)− sech2(2κ)} (0≤ R < 2) (19)

Similarity, we can derive the coefficient a1 in the kernel function of Eq. 19, respec-
tively, for 2D space (see Fig. 5)

a1 =
1

πre[
1
κ
{2κ tanh(2κ)− ln(cosh(2κ))}−2κ sech2(2κ)]

(20)

and for 3D space

a1 =
1

2πr2
e [

1
κ2 L − 8κ

3
sech2(2κ)]

(21)

in which

L = 4κ
2{tanh(2κ)−1}−4κ ln(e−4κ +1)+Li2(−e−4κ)+

π2

12
(22)

where Li2(x) denotes the polylogarithm function [Olver, Lozier, Boisvert and Clark
(2010)].
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Figure 5: Profiles of the kernel function and its derivative for 2D space

5 Numerical examples

In this section we present numerical results obtained from applications of the above-
mentioned MPS method to incompressible viscous fluid flow problems, namely
dam-breaking flow problem involving free surface and gravity. Some experimental
data have been presented in the dam-breaking flow or the collapse of a liquid col-
umn [Martin and Moyce (1952); Koshizuka, Tamako and Oka (1995); Cruchaga,
Celentano and Tezduyar (2007)]. The dam-breaking flow problem has been ex-
tensively used to verify the applicability and validity of the numerical methods.
The initial velocities are assumed to be zero everywhere in the interior domain.
In 2D/3D simulations, we set the CFL condition umax∆t/lmin ≤ C, where C is the
Courant number. The kernel size for the particle number density and the gradi-
ent/Laplacian models is re = 4.0l0, in which l0 is the distance between two neigh-
boring particles in the initial state, and we use different parameters, κ , for ve-
locity and pressure calculations, respectively. Recently, the Poisson equation for
solving accurately the pressure field at particle i is also presented by Kondo and
Koshizuka [Kondo and Koshizuka (2011)]. In this case, we set l0 = 0.008m and
also (β ,γ) = (0.5,0.05).

5.1 2D dam-breaking flow simulation

Let us consider 2D simulation using the improved approach for flow in the dam-
breaking problem. Fig. 6 shows the geometry and the initial state of particles for
the dam-breaking flow problem. In this two-dimensional simulation, we set 1,632
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particles in the initial configuration with the kinematic viscosity of 1.0×10−6m2/s,
and also κ = 2 or 3 and κ = 4 for velocity and pressure calculations, respectively.
The standard MPS method leads to irregular pressure distributions from early times
(see, Fig. 7(a)), while the present behaviors as shown in Fig. 7(c) and (d) are im-
proved as well as the results of Fig. 7(b) [Kakuda, Obara, Toyotani, Meguro and
Furuichi (2012)]. The present behaviors for κ = 2 in Fig. 7(c) are similar to the
results obtained by using MPS method with logarithmic-type weighting function.
The particle and pressure behaviors for κ = 2 at different time are also shown in
Fig. 8. Fig. 9 shows the comparisons with the time histories of the pressure at
particles A and B as shown in Fig. 6(b). We can see from Fig. 9 that the pressure
behaviors at particles A and B are smoother and higher than the standard MPS cal-
culations. Fig. 10 shows the time evolutions of the leading-edge of the water using
present approach and standard MPS method through comparison with experimental
data [Martin and Moyce (1952)], in which T = t

√
2g/L. The agreement between

the present results and the experimental data appears satisfactory.

(a) Geometrical configuration (b) Initial state of particles

(c) Pressure color-bar
Figure 6: Dam-breaking flow configuration for 2D simulation

5.2 3D dam-breaking flow simulation

Let us next consider 3D simulation using the improved approach for flow in the
dam-breaking problem. Fig. 11 shows the geometry and the initial state of par-
ticles 75,744 for the dam-breaking flow problem with the kinematic viscosity of
1.0×10−6m2/s. In this approach, we set also κ = 2 or 3 and κ = 4 for velocity and
pressure calculations, respectively. The particle and pressure behaviors for κ = 2
at different time are shown in Fig. 12, and more smoother results are obtained cer-
tainly by means of the present approach. In Fig. 13, we give the comparisons with
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(a) Standard MPS method

(b) MPS using logarithmic-type weighting function [Kakuda, et. al. (2012)]

(c) MPS using hyperbolic-type weighting function with κ = 2/κ = 4

(d) MPS using hyperbolic-type weighting function with κ = 3/κ = 4
Figure 7: Particle and pressure behaviors at time t ≈ 0.19s (left) and 0.26s (right)
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(a) t ≈ 0.09s (b) t ≈ 0.19s

(c) t ≈ 0.26s (d) t ≈ 0.69s

(e) t ≈ 0.79s (f) t ≈ 1.19s
Figure 8: Particle and pressure behaviors for κ = 2/κ = 4 at different time (2D)
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(a) Time histories of the pressure at particle A

(b) Time histories of the pressure at particle B
Figure 9: Comparisons of time histories of the pressure at particles A and B

Figure 10: Comparisons with experimental and other data (2D)
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(a) Geometrical configuration (b) Initial state of particles

(c) Pressure color-bar
Figure 11: Dam-breaking flow configuration for 3D simulation

(a) t ≈ 0.09s (b) t ≈ 0.19s

(c) t ≈ 0.26s (d) t ≈ 0.49s

(e) t ≈ 0.69s (f) t ≈ 0.79s
Figure 12: Particle and pressure behaviors for κ = 2/κ = 4 at different time (3D)
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(a) Time histories of the pressure at particle A

(b) Time histories of the pressure at particle B
Figure 13: Comparisons of time histories of the pressure at particles A and B

(a) Results of 3D simulations (b) Comparisons with 2D and 3D results
Figure 14: Comparisons with experimental and other data
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the time histories of the pressure at particles A and B as shown in Fig. 11(a). The
present results of 3D simulation are qualitatively similar to the behaviors obtained
from 2D approach (see, Fig. 9). Fig. 14 shows the time evolutions of the leading-
edge of the water using present approach and standard MPS method through com-
parison with the experimental data, and also the comparisons with results of 2D
and 3D simulations. The correlation between the present results for κ = 2 and the
experimental data appears satisfactory (see, Fig. 14(a)). The present profiles of
both 2D/3D results for κ = 2 as shown in Fig. 14(b) agree generally well with the
experimental data.

6 Conclusions

We have presented the MPS approach using hyperbolic-type weighting function for
solving numerically 2D/3D incompressible viscous fluid flow of the broken dam
problem with free surfaces. The standard MPS scheme has been widely utilized
as a particle strategy for free surface flow, the problem of moving boundary, and
multi-physics/multi-scale ones. To overcome spurious oscillations in the standard
MPS method, we have proposed to utilize the hyperbolic-type weighting function
and also use ad hoc different parameters, κ , for velocity and pressure calculations,
respectively. The hyperbolic-type weighting function which had the form similar to
Laitone’s approximate solutions has been constructed by differentiating the charac-
teristic function (i.e., sigmoid function) based on neural network framework. The
weighting function with the property of Dirac delta function has been consistently
applied to the smoothing kernel function in the SPH-framework.

As the numerical example, the well-known 2D/3D dam-breaking flow simulations
were carried out and compared with experimental data and other data. The particle
and pressure behaviors at different time have been significantly presented by us-
ing our approach through comparison with the experimental time-evolutions of the
leading-edge of the water. The qualitative agreement between our 2D/3D simula-
tions and experimental data appeared very satisfactory.
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