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Abstract: This work presents a new analytical method to transform exact solu-
tions of linear diffusion equations into exact ones for nonlinear advection-diffusion
models. The proposed formulation, based on Bäcklund transformations, is em-
ployed to obtain velocity fields for the unsteady two-dimensional Helmholtz equa-
tion, starting from analytical solutions of a heat conduction type model.
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1 Introduction

The Bäcklund transformations allow finding exact solutions of nonlinear PDEs by
solving auxiliary linear ones. Although this application fully justify the relevance
of all methods based on Cole-Hopf, Darboux and Bäcklund transformations [Zwill-
inger (1997); Polyanin and Zaitsev (2004)], there are some underlying principles
behind these procedures, which seems to be even more important.

When one defines material derivatives in order to account for advection terms in
transport equations, it is implicitly assumed that there exists a path followed by
each molecule of the fluid along time, which is described by parametric equations.
This point of view often induces to choose some specific variables as candidates for
solutions to a given problem. It occurs that some of these choices eventually gen-
erates nonlinearities which otherwise would not necessarily appear in alternative
formulations.

For instance, the Helmholtz equation can be viewed as an advection diffusion
model where the solid interfaces acts as sources of vorticity. However, If the ki-
netic energy is chosen as the unknown variable instead of the vorticity function,
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the interfaces would be considered as sinks, so the physical interpretation of the
corresponding scenario would be essentially analogous. Nevertheless, from the
operational point of view, the last interpretation is advantageous, because advec-
tion terms are not expected to arise in a hydrodynamic model based on kinetic
energy. Consequently, the resulting equation should be a linear model whose so-
lutions could be mapped into ones of the original problem by applying nonlinear
operators.

The only practical limitation of this approach is that it ever produces only particular
solutions of the original problem. However, this is not a serious limitation, once
the subspace of solutions can be easily generalized using symmetries admitted by
the own target equation.

This work shows that Bäcklund-type transformations are more than mapping pro-
cedures. Behind these transformations arises a systematic method to obtain new
dependent variables, which furnishes a useful point of view for simplifying the
way of reasoning about modeling and solving nonlinear problems. In what follows
it will be showed that exact solutions of the Helmholtz equation can be obtained by
factorization and mapping into a linear diffusion model, whose auxiliary dependent
variable represents a function of the kinetic energy.

2 Bäcklund transformations for the Helmholtz equation

The unsteady two-dimensional Helmholtz equation is given by
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where ω is the vorticity, u and v are the components of the velocity vector and ν is
the kinematic viscosity. This equation can be factorized into the following system
of first order PDEs:
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where q(x,y,t) is an unknown function. Indeed, differentiating (2) respect to x and
(3) respect to y, adding the resulting equations and rearranging terms it yields
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After applying the continuity equation for incompressible flows the derivatives in
the last term of the left hand side cancel, so equation (1) is obtained by recognizing
that the first term in (4) is the time derivative of the vorticity function. Naturally,
this is equivalent to apply the curl over the Navier-Stokes equations, provided that
the derivatives of the arbitrary function q, which absorbs the pressure field, belongs
to the null space of the divergent operator. Differentiating now equation (3) respect
to x and (2) respect to y, subtracting the results and cancelling the cross derivatives,
a differential constraint is achieved:
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This constraint will be employed to specify q(x,y,t). The first term is null due to
the continuity equation and the second is promptly recognized as ω2. Therefore,
rewriting (5) in terms of the stream function, it becomes possible to express q(x,y,t)
as a function of this dependent variable:
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Notice that (6) can be written as(
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The left hand side of (7) is the divergence of a product, so equation (7) reduces to
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Once the expression between brackets is identified as the gradient of the kinetic
energy per unit mass, the left hand side is recognized as the laplacian of this new
dependent variable. Thus, equation (8) becomes

1
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From this result the definition of q(x,y,t) is readily obtained:

q =−1
2

∇Ψ.∇Ψ+h (10)

In this equation h(x,y,t) is any harmonic function, e.g., an arbitrary solution of the
two dimensional Laplace equation. In this case, the general solution of the Laplace
equation is given by

h = a(x+ i y, t)+b(x− i y, t) (11)
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Here a and b denote arbitrary functions. Replacing (10) in (2) and (3) it results

∂v
∂ t

+uω = ν
∂ω

∂x
−u

∂u
∂y
− v

∂v
∂y

+
∂h
∂y

(12)

and

−∂u
∂ t

+uω = ν
∂ω

∂y
+u

∂u
∂x

+ v
∂v
∂x
− ∂h

∂x
(13)

Substituting the definition of the vorticity function it yields
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Regrouping terms it becomes possible to identify the pressure field in the Navier-
Stokes equations:
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erefore, prescribing the differential constraint (5) is equivalent to state that the pres-
sure is a harmonic function. In what follows it will be showed that when the har-
monic function is neglected in equation (10), a diffusion model for the kinetic en-
ergy per unit mass is obtained. This auxiliary model allows finding exact solutions
to the Helmholtz equations which reproduce the main features of viscous flows.

3 Diffusion model for the kinetic energy

Equation (6) can be recast in terms of the kinetic energy per mass unit, defined as
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Isolating the first derivatives of the vorticity function from (2) and (3), namely
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and substituting these expressions in equation (6) it yields
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The former result is obtained after replacing the first derivatives of the stream func-
tion by the corresponding components of the velocity vector. Cancelling terms,
neglecting the harmonic function and multiplying by ν it yields
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The time derivatives can be written in terms of f, since
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The remaining first order terms in (22) cancel each other. Once
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there are no advection terms in the auxiliary model, a result which was yet expected.
Hence, equation (22) becomes
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Here the nonlinear term is the square of the vorticity function. Thus, equation (26)
can be regarded as an inhomogeneous diffusion model with a “source” of vorticity:
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This equation can be converted into a linear model because the vorticity function
may be expressed in terms of the new dependent variable. In order to carry out this
mapping, it is important to observe that
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Therefore, it becomes possible to define the vorticity as a nonlinear operator applied
over f. By performing a dot product by the gradient of the stream function, it yields
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The nonlinear term in (31) is obtained when the laplacian operator is applied over
a function of the dependent variable:
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A direct comparison with (31) furnishes an ordinary differential equation from
which g(f) is defined:

g′′ (f)
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Solving for g(f), it results
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Once f=0 at the boundaries (Γ), due to the classical no slip and no penetration con-
ditions (u=v=0 at Γ equation (33) is accompanied by a first kind boundary condition
in g, which prescribes the value g=c0/c1 at Γ.

The function defined by equation (38) determines the change of variable to be em-
ployed to transform any solution of the unsteady diffusion equation (33) into a
solution of (31). Thus, once obtained an exact solution g of the diffusion equation,
f can be immediately obtained from (38), and the first order linear equation defined
by (28) still must be solved in order to find the stream function:
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In this equation the vorticity is obtained from (30):
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Therefore, the stream function can be obtained by direct integration respect to the
spatial variables. It is also possible to avoid the integration by finding the velocity
field from equation (39). Once ∇ψ = (-v,u), the components of the velocity vector
are explicitly defined after finding f:
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Hence, it becomes possible to plot the velocity field instead of integrating (41) and
(42) to obtain the stream function.
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4 Solving the diffusion model

The auxiliary model can be readily solved by standard techniques. A suitable solu-
tion for problems in infinite media, such as flow around obstacles, is easily obtained
via integral transforms. For instance, applying the Fourier transform in x over equa-
tion (33) it yields
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∂y2 (43)

In this equation, h denotes the Fourier transform of g respect to x, and s the cor-
responding independent variable in frequency domain. Applying now the Fourier
transform in y, we obtain
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In this equation m is the double Fourier transform of g. Equation (44) can be
solved by direct integration. Indeed, dividing both sides by m and multiplying by
dt, it results
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Once each infinitesimal contribution in both sides of equation (45) are equal, the
corresponding sums over m and t are also equivalent. Hence, equation (44) can be
treated as an ordinary separable one. Therefore, integrating the left hand side in m
and the right hand side in t, the following implicit solution in frequency domain is
obtained:
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In this equation c(r,s) denotes an arbitrary function of its arguments, which belongs
to the null space of the time derivative. Isolating m in (46) it results
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Applying now the inverse Fourier transform in r, we recover h(s,y):

h = b(s,y)∗yF−1
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Here b(s,y) is an arbitrary function, *y denotes convolution respect to y and F−1
r

stands for the inverse Fourier transform in r. The former result can be recast as
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Finally, applying the inverse Fourier transform in s, an explicit solution for g is
obtained

g = F−1
s e−νs2t∗xa(x,y)∗yF−1

r e−νr2t (50)

Since the inverse transforms are known, namely
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Since the inverse transforms are known, namely and Hence, function g can be writ-
ten in the form

g =
∫ ∫ a

(x,y)
e
−(x−X)2−(y−Y )2

4νt

4πν t
dXdY , (53)

In this equation, X and Y denote dummy integration variables. The arbitrary func-
tion a(x,y) is specified by applying an initial condition whose meaning is now dis-
cussed. Suppose that there is a viscous flow around obstacles for t < 0. Then, at t=0
all solid bodies are suddenly removed from the field flow. Hence, the corresponding
vector field would evolve in time and reach a steady state where obstacles no longer
exist. This unperturbed flow is obviously uniform, so the field “forgets” the influ-
ence of the solid bodies. Hence, the arbitrary function a(x,y) describes the shape of
the bodies which were removed at t=0, so equation (33) must be accompanied by
the following initial condition:

g = a(x,y) (t = 0) (54)

For instance, if the only solid body is a thin wire centered at the origin and whose
orientation is perpendicular to the xy plane, the initial condition is approximated
by

g = δ (x)δ (y) (t = 0) (55)

In this case, equation (54) produces the classical two-dimensional Gaussian solu-
tion:

g =
e
−(x2+y2)

4νt

4πνt
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This expression will be employed to generate some preliminary results whose im-
portance is crucial to develop more sophisticated exact solutions, in order to de-
scribe realistic velocity fields.

After obtaining any solution in the form given by (53), it becomes necessary to per-
form an extra convolution in the time variable. This convolution, which is carried
out in order to account for the presence of the solid bodies for t > 0, produces

g =
∫ ∫ ∫

a(x,y)
e
−(x−X)2−(y−Y )2

4ν(t−T )

4πν (t−T )
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Once obtained the final solution to the auxiliary model, function f can be easily
evaluated using equation (38):
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At this point, a simple question about the pressure field may arise. Once the pres-
sure terms were apparently neglected, it seems that no wall effects could be con-
sidered in this formulation. However, function f can be interpreted as the Bernoulli
field pressure, whose reference value at infinity is (c0/c1)

2/3. Therefore, as the ve-
locity field evolves in such a way that the momentum is transferred by advection
and diffusion, the pressure is produced near the wall and propagates, only by diffu-
sion, to an infinite “buffer” which represents the free stream. Moreover, notice that
additional solid interfaces can be easily taken into account by adding to the stream
function any harmonic one containing branches whose shapes describe any extra
obstacle. These additional terms belong to the null space of the laplacian operator
except at the singularities, which not lie in the considered domain. Thus, despite
the nonlinear character of the Helmholtz equation, the extra terms represents only
trivial solutions, and hence can be added to the stream function in order to produce
new exact ones.

5 Results and discussion

The proposed formulation was employed to map exact solutions of the diffusion
model defined by equation (33) into velocity fields describing some basic struc-
tures arising in turbulent wakes. Figure 1 shows the field plot corresponding to a
Gaussian peak given by

g = c0
e
−(x2+y2)

4t

4πνt
(59)
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which represents a single vortex around the origin. In this case, the linear combi-
nation reduces to a one term solution with c0 = 2, t = 1 and ν = 0,01.

Figure 1: Single vortex generated by mapping from a Gaussian function.

Once any linear combination of Gaussian functions are also exact solutions of the
diffusion model, it becomes possible to generate structures analogous to the Kol-
mogorov cascade, by setting appropriate parameters defining the characteristic di-
mension of each component. For instance,

g = 2+3y+1.994711402{e−12.5[(x+1)2+(y−0.5)2] + e−12.5[(x+0.5)2+(y−1)2]

+e−12.5[x2+(y−0.5)2]}
(60)

where the linear term in y represents an uniform flow, generates the wake depicted
in figure 2.
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Figure 2: Wake obtained by mapping a linear combination of Gaussian peaks.

The parameters in equation (44) were chosen arbitrarily, in order to show the capa-
bilities of the method, and stress an important feature of the proposed formulation.
First, the time processing required to produce the maps is virtually negligible, even
in low performance computers (about 10s using Maple V in an AMD Sempron 3100
processor). Moreover, this time processing is roughly proportional to the number
of terms in the linear combination. It is also possible to include fluctuations in the
velocity field by adding high frequency sinusoidal solutions of the diffusion model
in the linear combination defining g. However, in order to determine the parameters
in the linear combination which accounts for turbulence, it becomes necessary to
estimate local values to the Reynolds number [Bodmann, Vilhena, Zabadal, Beck
(2011)], which defines a set of wave numbers for the vorticity along the field.

In future works, our attention will be focused in formulating differential constraints
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to determine dispersion relations for the vorticity function, in order to obtain a
realistic turbulence spectrum for a wide class of velocity fields.
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