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Vibration Control and Separation of a Device Scanning an
Elastic Plate

Shueei-Muh Lin1 and Min-Jun Teng2

Abstract: The control and separation of a scanning device moving along an ar-
bitrary trajectory on an elastic plate is investigated. The system is a moving mass
problem and is difficult to analyze directly. A semi-analytical method for the mov-
ingmass model is presented here. Without vibration control, the separation of a
vehicle from a plate is likely to happen. The mechanism of separation of a vehi-
cle from a plate is studied. Moreover, the effects of several parameters on vibra-
tion separation and the critical speed of system are studied. An effective control
methodology is proposed for suppressing vibration and separation This model is
applied to simulate a system containing a device scanning a plate. Due to the com-
plexity of the moving-mass model, it is usually approximated by the moving-load
model in most literature. The analytical solution of the moving-load model is also
derived here and compared to the proposed models.

Keywords: movingmass model, plate, critical speed, separation, semi-analytical
solution, vibration control.

Nomenclature

C viscous damping of foundation
Cc viscous damping of moving mass
c dimensionless damping constant of foundation, CL2

1

√
ρh/D

cc dimensionless damping constant of moving mass, CcL1
√

ρh/D/L2
D bending rigidity of plate, Eh3/[12(1-µ2)]
E Young’s modulus
Fc excitation force due to the moving mass
fc dimensionless excitation force due to the moving mass, FcL3

1/D
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g acceleration of gravity
ḡ ratio of weight and bending rigidity of plate, ρhL3

1g/D
Gg control parameter
h thickness of plate
K spring constant of the Winkler foundation
k dimensionless spring constant of the Winkler foundation, KL4

1/D
Kc spring constant of moving mass
kc dimensionless spring constant of moving mass, KcL3

1/DL2
L1,L2 lengths of the plate in the x- and y- directions, respectively
Mc moving mass
mc mass ratio of moving mass and plate, mc = Mc/ρhL1L2
r aspect ratio, L1/L2
t time variable
vcritical dimensionless critical speed
W transverse displacement of plate
Wc transverse displacement of moving mass
w dimensionless transverse displacements, W/L1
wc dimensionless transverse displacements of moving mass, Wc/L1
ws dimensionless static transverse displacements of plate
x,y,z principal frame coordinates of plate
xc,yc,zc principal frame coordinates of moving mass
ηc dimensionless principal frame coordinate of moving mass, zc/L1
µ Poisson’s ratio
ωmn natural frequency of plate
ξ ,ζ dimensionless principal frame coordinates of plate, x/L1,y/L1
ξc,ζc dimensionless principal frame coordinates of moving mass, xc/L1,yc/L1
ζ k damping ratio
ρ mass density
τ dimensionless time, t

√
D/ρh/L2

1
∇2 Laplace’s operator

1 Introduction

The problem of moving mass has many engineering applications, most notably in
the design of railroad tracks for high-speed train, roadways and airport runways for
aircraft, bridges and elevated roadways for moving vehicles [Beskou and Theodor-
akopoulos, 2011], computer storage disk drives [Huang and Mote Jr., 1996] high
speed precision machining [Esen, 2013] and the motion of moving beams [Lin,
(2009a, 2009b, 2011)].

This problem is generally simulated using two models: (1) the moving-load model,
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and (2) the moving-mass model. The major difference is that the inertial effects of
the moving body are incorporated into the model formulations in the movingmass
model, but not in the moving-load model Due to the complexity of the moving-mass
model, the majority of studies available in the literature only consider the vertical
translational component of the moving mass acceleration in the full term formu-
lation of the problem, neglecting the other convective acceleration terms leading
to error Akin and Mofid [1989] investigated a beam with moving mass and found
that the moving-load model causes an error of 2∼80%. In addition, Nikkhoo et
al. [2007] found for an Euler–Bernoulli beam, ignoring the convective terms in the
formulation could lead to a remarkable error for mass velocities greater than a so-
called critical velocity. Intuitively, for plate problems with more convective terms,
this could be even more important.

In the moving-load model, Gbadeyan and Oni [1995] investigated the dynamic
behavior of beams and rectangular plates under moving loads Huang and Thambi-
ratnam [2001] investigated deflection response of plate on Winkler foundation in
response to moving accelerated loads. Kim [2004] investigated the buckling and
vibration of a plate on an elastic foundation subjected to in-plane compression and
moving loads. Lee and Yhim [2004] investigated the dynamic response of compos-
ite plates subjected to multi-moving loads based on a third order theory. Moving
velocities made greater contributions to the dynamic responses of the composite
plates for higher speed. Moreover, the dynamic resistance for plates made of com-
posite materials was excellent and stable. Wu [2005] proposed the approximated
method predicting the dynamic responses of a two-dimensional rectangular plate
undergoing a transverse moving line load by using the one-dimensional equivalent
beam model. Au and Wang [2005] investigated sound radiation from forced vibra-
tion of rectangular orthotropic plates under moving loads. Based on the Rayleigh
integral and the dynamic response of the plate, the acoustic pressure distributions
around the plate were obtained in the time domain. Law et al. [2007] investigated
the dynamic identification of moving loads from a vehicle traveling on top of a
beam-slab type bridge deck using numerical and experimental studies. Elliott et al.
[2007] described the location tracking of a moving load with an unknown, harmon-
ically varying magnitude on a plate using a distributive sensing method. Using this
method, the actual position of forces moving at various speeds can be determined to
within 2% error at speeds less than 3.2 m/s. Malekzadeh et al. [2009, 2010] studied
the dynamic response of thick laminated rectangular and annular sector plates sub-
jected to moving load by using a three-dimensional hybrid numerical method. The
hybrid method is composed of a series solution, layerwise theory and the differ-
ential quadrature method in conjunction with the finite difference method. Sheng
and Wang [2011] investigated the response and control of functionally graded lami-
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nated piezoelectric shells under thermal shock and movement loadings. They found
that the maximum value of the displacement increases with increase in velocity of
moving loads until a critical speed, and then decrease after this critical speed Zhang
et al. [2011] proposed an approximate solution for the dual-duct simply supported
rectangular plate subjected to a moving load using a stepped plate approximation
theory. Martı’nez-Rodrigo and Museros [2011] studied the optimal design of pas-
sive viscous dampers for controlling the resonant response of orthotropic plates
under high-speed moving loads. They found that for a particular set of auxiliary
beams, there exist optimum parameters of passive viscous dampers that minimized
the plate resonance.

In the moving-mass model, Gbadeyan and Dada [2006] took the finite difference
method to solve the moving mass problem. Their study presented that the maxi-
mum shearing forces, bending and twisting moments occurred almost at the same
time. Also, the values of the maximum deflections were higher for Mindlin plates
than for non-Mindlin plates. Wu [2007] proposed the finite moving mass element
method and studied the influence of moving-load-induced inertia force, Coriolis
force and centrifugal force on the dynamic behavior of inclined plates subjected to
moving loads. He concluded the effects of Coriolis force and centrifugal force were
perceptible only in the case of higher moving-load speed. Rofooei and Nikkhoo
[2009] derived the constitutive equation of motion for a thin rectangular plate with
a number of piezo patches bonded on its surface under the excitation of a mov-
ing mass. Eigenfunction expansion was used to transform the equation of motion
into a number of coupled ordinary differential equations. A classical closed-loop
optimal control algorithm was employed to effectively suppress the resonant dy-
namic response of the system. Ghafoori and Asghari [2010] used the finite element
method based on the first-order shear deformation theory and the Newmark di-
rect integration method to study the dynamic behavior of composite plate Their
research presented that the most sensitive lamination to the inertia of moving mass
was [45/45/45/45] lamination so that the moving mass analysis gave poor results
in the moving-load model Eftekhari and Jafari [2012] proposed the methodology
composed of the Ritz method, differential quadrature method, integral quadrature
method and Newmark time integration scheme to study the transient response of
rectangular plates subjected to linearly varying inplane stresses and moving masses.
Amiri et al. [2013] took into account the moving mass inertia effect all the con-
vective terms of its out-of-plane acceleration components for the Mindlin plate.
The eigenfunction expansion method transformed the governing equation into a set
of ordinary differential equations and then solved by using the matrix-exponential
based solution method. Their results showed, for moderately thick plates, there
was the remarkable differences between the results in the Mindlin plate theory and
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the classical plate theory. Esen [2013] used the finite element method to study the
transverse vibration of rectangular thin plates under a moving mass. The literature
presented that the vibration effect of the change in velocity was more significant
when compared to the change in mass.

So far, little research has been devoted to the investigation of separation and vi-
bration control of plate in the moving-mass model. This study is investigates the
control and separation of a concentrated mass moving along an arbitrary trajectory
on a plate. The semi-analytical solutions for these systems are presented. More-
over, the effects of several parameters on the separation and vibration control are
investigated also.

2 Moving mass model

2.1 Governing Equation and Boundary Conditions

   

(a)                                                                        (b) 

 

(c) 

 
Figure 1: Geometry and coordinate system of a simply-supported plate subjected
to a moving mass.

A concentrated mass moves along an arbitrary trajectory on a rectangular isotropic
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elastic plate, as shown in Figure 1a. The governing equation is

D∇
4W +C

∂W
∂ t

+KW +ρh
∂ 2W
∂ t2 = Fc (Wc,xc,yc, t) (1)

The excitation forcing due to the moving mass is

Fc (x,y, t) = Mc

(
g− d2Wc (t)

dt2

)
δ (x− xc (t))δ (y− yc (t)) (2)

Considering all the out-of-plane translational acceleration components of the mov-
ing mass, and observing the full contact condition between the moving mass and
plate, Eq. (2) is expanded as:

d2Wc (t)
dt2 =


(

dxc
dt

)2
∂ 2

∂x2 +2 dxc
dt

dyc
dt

∂ 2

∂x∂y +2 dxc
dt

∂ 2

∂x∂ t

+
(

dyc
dt

)2
∂ 2

∂y2 +2 dyc
dt

∂ 2

∂y∂ t +
d2xc
dt2

∂

∂x +
d2yc
dt2

∂

∂y +
∂ 2

∂ t2

W (3)

The simply supported boundary conditions are

At y = 0:

W = 0 (4)

∂ 2W
∂y2 +µ

∂ 2W
∂x2 = 0 (5)

At y = L2:

W = 0 (6)

∂ 2W
∂y2 +µ

∂ 2W
∂x2 = 0 (7)

At x = 0:

W = 0 (8)

∂ 2W
∂x2 +µ

∂ 2W
∂y2 = 0 (9)

At x = L1:

W = 0 (10)

∂ 2W
∂x2 +µ

∂ 2W
∂y2 = 0 (11)
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In terms of the dimensionless parameters in the nomenclature, the corresponding
dimensionless governing equation is

∇
4w+ c

∂w
∂τ

+ kw+
∂ 2w
∂τ2 = fc (wc,ξc,ζc,τ) (12a)

where

fc (wc,ξc,ζc,τ) = mc

(
ḡ− d2wc (τ)

dτ2

)
δ (ξ −ξc (τ))δ (ζ −ζc (τ)) (12b)

and

d2wc (τ)

dτ2 =


(

dξc
dτ

)2
∂ 2

∂ξ 2 +2 dξc
dτ

dζc
dτ

∂ 2

∂ξ ∂ζ
+2 dξc

dτ

∂ 2

∂ξ ∂τ

+
(

dζc
dτ

)2
∂ 2

∂ζ 2 +2 dζc
dτ

∂ 2

∂ζ ∂τ
+ d2ξc

dτ2
∂

∂ξ
+ d2ζc

dτ2
∂

∂ζ
+ ∂ 2

∂τ2

wc. (12c)

The dimensionless boundary conditions are

At ζ = 0:

w = 0 (13)

∂ 2w
∂ζ 2 +µ

∂ 2w
∂ξ 2 = 0 (14)

At ζ =1/r:

w = 0 (15)

∂ 2w
∂ζ 2 +µ

∂ 2w
∂ξ 2 = 0 (16)

The other two edges are also simply supported along the y direction:

At ξ = 0:

w = 0 (17)

∂ 2w
∂ξ 2 +µ

∂ 2w
∂ζ 2 = 0 (18)

At ξ = 1:

w = 0 (19)

∂ 2w
∂ξ 2 +µ

∂ 2w
∂ζ 2 = 0 (20)
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2.2 Semi-analytical solution

From Eq. (12c) the absolute acceleration d2wc/dτ2 includes the Coriolis acceler-
ations

{
2 dξc

dτ

∂ 2wc
∂ξ ∂τ

,2 dζc
dτ

∂ 2wc
∂ζ ∂τ

}
and time-dependent coefficients{ξc (τ) ,ζc (τ)}. Be-

cause the force fc of Eq. (12b) includes the product of the unknown variable wc

and the time-dependent coefficients, this system composed of Eqs. (12)-(20) is im-
plicit and very difficult to solve directly The semi-analytical methodology is pre-
sented. First, using the approximated acceleration method, the implicit system is
transformed into an explicit system. Secondly, the analytical solution of the trans-
formed system can be derived by using the mode superposition method. Finally,
error due to transformation must be near zero. The details are demonstrated below

2.2.1 Approximated acceleration method

It is assumed that the overall dynamic behavior of the general system is composed
of the behaviors of several time subintervals. The overall dynamic performance of
the system is derived step by step. If each time subinterval ∆τ is very small, the
absolute acceleration can be linearly approximated as

d2wc

dτ2 ≈
[

d2wc (ξc (τi) ,ζc (τi) ,τi)

dτ2 +λ (τ− τi)

]
∆
=

d2w̄c (τ)

dτ2 ,

f or τi < τ < τi +∆τ = τi+1

(21)

The approximated absolute acceleration is defined as d2w̄c/dτ2 When the unknown
parameter λ is correctly chosen the error of the acceleration at τ = τi+1 approaches
zero, i.e.,

Error (τi+1) =

∣∣∣∣d2wc (τi+1)

dτ2 − d2w̄c (τi+1)

dτ2

∣∣∣∣< ε → 0. (22)

It should be noted that if λ is correctly chosen the approximate acceleration d2w̄c

(τi+1)/dτ2 is calculated via Eq. (21). Substituting Eq. (21) into the governing
equation (12), the transformed system is obtained:

∇
4w+ c

∂w
∂τ

+ kw+
∂ 2w
∂τ2 = f̄c (wc,ξc,ζc,τ) , for τi < τ < τi+1 (23)

where f̄c (wc,ξc,ζc,τ) = mc
(
ḡ−d2w̄c/dτ2

)
δ (ξ −ξc)δ (ζ −ζc)

The implicit governing equation (12) becomes an explicit equation (23). Next, the
analytical solution method is proposed and the absolute acceleration d2wc(τi+1)/dτ2

can be determined. By using the bisection method, an accurate value for parameter
λ can be found to satisfy the minimum error condition (22).
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2.2.2 Mode superposition method

The dynamic solution and the forcing term of Eq. (23) are respectively assumed to
be

w =
∞

∑
m=1

∞

∑
n=1

Tmn (τ)sinmπξ sinnπrζ , (24a)

and

f̄c (ξ ,ζ ,τ) =
∞

∑
m=1

∞

∑
n=1

F̃mn (τ)sinmπξ sinnπrζ , (24b)

where F̃mn (τ) = 4mc
(
ḡ−d2w̄c/dτ2

)
sinmπξc sinnπrζc

Substituting Eq. (24) into the governing equation (23) obtains

d2Tmn

dτ2 + c
dTmn

dτ
+
(
ω

2
mn + k

)
Tmn = F̃mn (τ) , for τi < τ < τi+1, (25)

where ω2
mn =

(
m4 +2m2 (nr)2 +(nr)4

)
π4

Further, the solutions of Eq. (25) are derived as follows [34]:

Tmn(τ) = e−ζkωk(τ−τi)

[
cosωdk(τ− τi)+

ζkωk

ωdk
sinωdk(τ− τi)

]
Tmn(τi)

+
1

ωdk
e−ζkωk(τ−τi) sinωdk(τ− τi)

dTmn(τi)

dτ

+
1

ωdk

∫
τ

τi

e−ζkωk(τ−χ) sinωdk(τ−χ)F̃mn(χ)dχ,

dTmn(τ)

dτ
=−

[
(ζkωk)

2

ωdk
+ωdk

]
e−ζkωk(τ−τi) sinωdk(τ− τi)Tmn(τi)

+
1

ωdk
e−ζkωk(τ−τi) [ωdk cosωdk(τ− τi)−ζkωk sinωdk(τ− τi)]

dTmn(τi)

dτ

+
1

ωdk

∫
τ

τi

e−ζkωk(τ−χ) [ωdk cosωdk(τ−χ)−ζkωk sinωdk(τ−χ)] F̃mn(χ)dχ,
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d2Tmn(τ)

dτ2

=

[
(ζkωk)

2

ωdk
+ωdk

]
e−ζkωk(τ−τi) [ζkωk sinωdk(τ− τi)−ωdk cosωdk(τ− τi)]Tm(τi)

− e−ζkωk(τ−τi)

ωdk


[
ζkωkωdk +(ζkωk)

2
]

cosωdk(τ− τi)

+
[
ζkωk +(ωdk)

2
]

sinωdk(τ− τi)

 dTm(τi)

dτ
+ F̃mn(τ)

− 1
ωdk

∫
τ

τi

e−ζkωk(τ−χ)


[
ζkωkωdk +(ζkωk)

2
]

cosωdk(τ−χ)

+
[
ζkωk +(ωdk)

2
]

sinωdk(τ−χ)

 F̃mn(χ)dχ.

(26)

where ω2
k =

(
ω2

mn + k
)
, 2ζkωk = c and ωdk = ωk

√
1−ζ 2

k

In summary, if parameter λ of Eq. (21) in the domain {τi,τi+1} satisfies the mini-
mum error condition (22), accurate time functions

{
Tmn,dTmn/dτ,d2Tmn/dτ2

}
can

be obtained via Eq. (26). Substituting these back into Eq. (24) will determine the
displacement in the domain {τi,τi+1}. Moreover, the overall dynamic behavior can
be determined step by step. When the time subinterval ∆τ approaches to zero, the
overall accurate solution is successfully determined [Lin, 201].

Table 1: Convergence of the proposed method [ḡ = 0.1ζc = 0.5, r= 1, c = cc = k =
kc=0].

number of w(0.5,0.5,τ (ξc = 1))/ws (0.5,0.5)
time mc = 0.1, ξc = 0.5τ mc = 0.2, ξc = τ

subintervals number of terms(M×N) number of terms(M×N)
(6×6) (8×8) (10×10) (10×10) (14×14) (18×18)

1000 0.0693 0.0693 0.0686 0.0632 0.0614 0.0613
2000 0.0692 0.0690 0.0686 0.0630 0.0610 0.0608
3000 0.0692 0.0690 0.0686 0.0630 0.0610 0.0609
4000 0.0691 0.0690 0.0686 0.0630 0.0610 0.0609
5000 0.0691 0.0690 0.0686 0.0630 0.0610 0.0609

Without the loss of generality, assume a concentrated mass moving from x = 0 to
x = L1with constant speed dξc/dτ = v. Table 1 verifies the effect of the num-
ber of time subintervals and the number of terms (M×N) of Eq. 24) on the
numerical result of the response ratio w(0.5,0.5,τ (ξc = 1))/ws (0.5,0.5)where
w(0.5,0.5,τ (ξc = 1))is the dynamic displacement at ξ g ζ g 0.5 when the concen-
trated mass moves to the position ξc = 1 ws (0.5,0.5) is the static displacement
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at the center of plate, ξ g ζ g 0.5, subjected to the same concentrated weight at
ξc = ζc = 0.5 Szilard [1974] presented the displacement of a s-s-s-s plate subjected
to a concentrated load, shown in Figure 1b, as

ws (ξ ,ζ ) =
4

π4 mcḡ
∞

∑
m=1

∞

∑
n=1

sin(mπξc)sin(nπrζc)[
m2 +(nr)2

]2 sin(mπξ )sin(nπrζ ) (27)

The numerical result determined by the proposed method converges very rapidly.
Even when the number of subintervals is only one thousand, the difference be-
tween the present displacement and the converged displacement is less than 0.29%
. However, when the mass ratio and the moving speed are increased, more modes
are required for the accurate results.

Table 2: Comparison of dynamic amplification factors, wmax (0.5,0.5,τ)/ws

(0.5,0.5), of a simply supported 2(m) × 2(m) × 17(cm) aluminum plate by the
proposed method compared to the method of Nikkhoo and Rofooei [2012] when
the concentrated mass moves at a constant speed along a trajectory parallel to the
plate edge, i.e., ζc (τ) = 0.5, from ξc = 0 to ξc = 1. [E= 731 × 1010 pa, ρ =
2700 kgm−3, µg= 0.33c = cc = k = kc=0, r= 1.0, and the moving speed V = βv

′
,

v
′
= 2L1/T1 in which T1 is the first period of vibration of the plate].

mc β =V/v
′ wmax (0.5,0.5,τ)/ws (0.5,0.5)

proposed [Nikkhoo and Rofooi, 2012]

0.15

0.2 1.11 1.12
0.3 1.47 1.47
0.4 1.61 1.62
0.5 1.63 1.64
0.6 1.70 1.72

0.30

0.2 1.22 1.22
0.3 1.54 1.54
0.4 1.64 1.65
0.5 1.73(*) 1.89
0.6 1.83(*) 2.03

*: separation

Table 2 demonstrates the comparison of dynamic amplification factors (DAF), wmax
(0.5,0.5,τ)/ws (0.5,0.5), of a simply supported 2(m) × 2(m) × 17(cm) aluminum
plate by the presented method versus the results from Nikkhoo and Rofooei [34]
when the concentrated mass moves at a constant speed along a parallel trajectory
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to the plate edge, i.e., ζc (τ) = 0.5, from ξc = 0 to ξc = 1. The dynamic ampli-
fication factor is the ratio of the plate’s absolute maximum dynamic deflection to
its maximum static response at the plate’s center point. If the mass ratio mc and
the moving speed v are small, the results determined by the presented method and
Nikkhoo and Rofooei [2012] are very consistent. However, for larger mass ratio
mc and the moving speed, the difference between the approaches is significant. By
the presented method, the separation phenomenon is found.

2.3 Mechanism of Separation and Factors

2.3.1 Critical condition of separation

The mechanism of a vehicle separating from a plate is described in the following.
If there is no guide keeping the vehicle in connection with the plate as shown in
Figure 1a, the vehicle may separate from the plate when the interacting contact
force fc changes from compressive to tensional. When compressive or positive
contact force fc exists, the vehicle will move along the plate. However, when nor-
mal contact force fc is decreased to be zero, the vehicle will separate from the plate.
Therefore, the critical condition of separation is ‘ fc (τ) = 0’.

2.3.2 Effect of parallel trajectory

Consider a concentrated mass moves at a constant speed along a parallel trajectory
to the plate edge, i.e., ζc = 0.5 and ξc = vτ from ξc = 0 to ξc = 1. One investigates
the influence of the moving speed v and the aspect ratio (L1/L2) r on two dy-
namic responses {w(0.5,0.5,τ), w(ξc,ζc,τ)} where w(0.5,0.5,τ) is the dynamic
displacement at the center of plate and w(ξc,ζc,τ) is the dynamic displacement
of the vehicle position. From Figure 2a when the aspect ratio r= 0.5 and moving
speed v=0.5 if the coordinate of vehicle ξc is increased from ξ c=0, the vibration
responses are increased. When the vehicle moves to ξc = 0.5, the maximum re-
sponses {wmax (0.5,0.5,τ), wmax (ξc,ζc,τ)} occur. For v = 1.0 when the vehicle
moves to ξc = 0.43, the maximum responses occur. In addition, for v = 2.0 when
ξc = 0.7, the maximum response wmax (ξc,ζc,τ) occurs. However, the maximum
response wmax (0.5,0.5,τ) happens at ξc = 0.75. Obviously, the higher the moving
speed v is, the larger the maximum responses are. Moreover, for higher speed v
= 2.0, when the vehicle moves to ξc = 0.9235, the vehicle will separate from the
plate. In other words, for the aspect ratio r = 0.5 if the moving speed is increased
to v = 2.0 separation will occur.

Furthermore, in Figure 2b with aspect ratio r= 1 and v=2.0 when the concentrated
mass moves from ξc = 0 to ξc = 1, separation will not occur. This differs to the
plate with r =0.5 as shown in Figure 2a. The reason is that the plate with r=0.5 is
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                                                  (a)                                                                        (b)  

 

    (c) 

 
Figure 2: Influence of moving speed v and aspect ratio r on response ratio
w/ws (0.5,0.5) when a concentrated mass moves at a constant speed along a trajec-
tory parallel to the plate edge, i.e., ζc (τ) = 0.5 from ξc = 0 to ξc = 1 [mc = 0.1,
ḡ = 0.1, ξc (τ) = vτ , c = cc = k = kc=0; (a): r= 0.5, (b): r= 1.0, (c): r= 2.0].
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more flexible than the plate with r =1. Moreover, if moving speed v is increased
to the value of 3, the vehicle will separate from the plate at ξc = 0.9526 Finally, in
Figure 2c with the aspect ratio r= 2 though the moving speed is increased to v=5,
separation will not occur. Finally, if the moving speed v is increased to the value
of 10, the vehicle will separate from the plate at ξc = 0.6921 It is concluded from
Figure 2 that the effect of moving speed v on the maximum responses is significant.
When the moving speed is over the critical speed, the moving mass will separate
from the plate. Also, the larger the aspect ratio r is, the higher the critical speed
vcritical is.

2.3.3 Effect of diagonal trajectory

Consider a concentrated mass moving at a constant speed along a diagonal tra-
jectory from {ξc,ζc} = {0,0} to {ξc,ζc} = {1,1/r}, i.e., ξc (τ) = v1τ, ζc (τ) =
(v1/r)τ . We investigate the influence of the moving speed v1 on two dynamic re-
sponses {w(0.5,0.5,τ), w(ξc,ζc,τ)} and separation From Figure 2b where v=1.0
or 2.0, the moving mass does not separate from plate However, when the speed
increased to 3.0, the moving mass will separate from plate at the 0.9526 position.
Figure 3 shows when v = 2 or 3 and the vehicle moves to ξc = 0.9575 or 0.8858,
it will separate from the plate. Further, it is observed from Figures 2b and 3 with
aspect ratio r=1 and moving speed v=2, separation will occur along a diagonal
trajectory instead of a parallel to the plate edge. This demonstrates the effects of
aspect ratio r and moving trajectory on critical speed are significant. A detailed
investigation follows.

2.3.4 Effects of aspect ratio and mass ratio

Figure 4 demonstrates the relationship among the aspect ratio r, the concentrated
mass ratio mc and the critical speed vcritical . It shows the larger the aspect ratio r
is, the higher the critical speed vcritical . However, the larger the concentrated mass
mc is, the lower the critical speed vcritical . Moreover, if aspect ratio r is small, the
critical speed of a diagonal trajectory is lower than that of a trajectory parallel to
the plate edge. On the other hand, if the aspect ratio r is large, the critical speed of
a diagonal trajectory is higher than that of a parallel one. At the critical aspect ratio
rcritical , the critical speeds are same. Note the larger the mass mc is, the smaller the
critical aspect ratio rcritical .

2.3.5 Effect of foundation

Figure 5 demonstrates the influence of the spring and damping constants {k,c} of
foundation on the critical speed vcritical when the concentrated mass moves at a
constant speed along a trajectory parallel to the plate edge, i.e., ζc (τ) = 0.5, from
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Figure 3: Influence of moving speed v on response ratio w/ws (0.5,0.5) when a
concentrated mass moves at a constant speed along a diagonal trajectory from
{ξc,ζc} = {0,0} to {ξc,ζc} = {1,1} [mc = 0.1, ḡ = 0.1ξc (τ) = v1τ; ζc (τ) =
(v1/r)τ„ r= 1, c = cc = k = kc=0].

 

Figure 4: Influence of moving mass mcand aspect ratio ron critical speed v1,critical
when a concentrated mass moves at a constant speed. [ḡ = 0.01 c = cc =
k = kc=0; solid line: along the trajectory parallel to the plate edge, ξc (τ) =
v1τ; ζc (τ) = 0.5; dashed line: along the diagonal trajectory ξc (τ) = v1τ; ζc (τ) =
v2τv1/v2 = r].
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Figure 5: Influence of the spring constant k and damping coefficientc on the critical
speed when a concentrated mass moves at a constant speed along a trajectory par-
allel to the plate edge, i.e., ζc (τ) = 0.5 from ξc = 0 to ξc = 1 [mc = 0.1, ḡ = 0.1,
r=1].

ξc = 0 to ξc = 1 We find the spring constant k is smaller than the value of 105 and the
critical speed vcritical is almost constant. Further, the critical speed vcritical increases
greatly with the spring constant k Moreover, the larger the damping coefficientsc,
the higher the critical speed vcritical .

2.3.6 Effect of nonconstant moving speed

We investigate the effects of three different movements on the dynamic response
ratio w(ξc,ζc,τ)/ws (0.5,0.5) when the concentrated mass moves along a parallel
trajectory to the plate edge and the required time from ξc = 0 to ξc = 1, is ‘T ’. The
three movements are described as the following:

1. The first moving speed is constant, dξc/dτ = v0. The corresponding position
of the vehicle is ξc (τ) = v0τ and the required time period to cross the plate
from ξc = 0 to ξc = 1, is T = 1/v0.

2. The second moving speed is dξc/dτ = vs0 [1− sin(πτ/T )]. The correspond-
ing position of vehicle is ξc (τ) = vs0 [τ +(T/π)(cos(πτ/T )−1)]. The cor-
responding parameter vs0 = 1/ [T (1−2/π)]
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3. The third moving speed is dξc/dτ = v̄s0 sin(πτ/T ). The corresponding po-
sition of vehicle is ξc (τ) = v̄s0 (T/π) [1− cos(πτ/T )]. The corresponding
parameter v̄s0 = π/2T .

From Figure 6a with T =1 the vibration response of the third movement is the
smoothest and that of the second movement is the worst. For the second move-
ment when the vehicle moves to ξc = 0.9593, the vehicle will separate from the
plate. In Figure 6b with T = 0.5 the vibration response of the second movement
is the worst. When the vehicle moves to ξc = 0.9868, it will separate from the
plate. This shows that if the moving speed dξc/dτ = v̄s0 sin(πτ/T ), the vibration
response can be significantly suppressed.

 

      (a)                                                              (b) 

 
Figure 6: Influence of the different movements dξc/dτby the response ratio
w(ξc,ζc,τ)/ws (0.5,0.5) when a concentrated mass moves at a constant speed
along a trajectory parallel to the plate edge, i.e., ζc (τ) = 0.5 from ξc = 0 to ξc = 1.
[mc = 0.1, ḡ = 0.1, c = cc = k = kc=0, r=1 vs0 = 1/ [T (1−2/π)] v̄s0 = π/2T ; (a)
T=1/v=1, (b): T=1/v =0.5].

3 Active Control of moving mass

Based on the above facts, there exists the phenomenon of separation and significant
vibration response when there is no active control. For suppressing vibration and
preventing separation the following active control law is presented.
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3.1 Governing Equation and Boundary Conditions

Consider a scanning device is supported by spring and damper and moving on a
plate. This can be expressed as a mass-spring-damper model moving on a plate
as shown in Figure 1b. In addition to the x-y movement in the horizontal plane,
z-direction movement is considered. In other words, the supporting displacement
ηc is time-dependent. The dimensionless governing equation is the same as Eq.
(12a) excepting the contact force:

fc =

[
mc

(
ḡ− d2wc

dτ2

)
− cc

(
dwc

dτ
− dηc

dτ

)
− kc (wc−ηc)

]
δ (ξ −ξc)δ (ζ −ζc) .

(28)

The associated boundary conditions are the same as Eqs. (13-2). This model is
applied to simulate the system of a device scanning a plate.

3.2 Solution method

In a similar approach, the time variable t is divided into n sections and the dynamic
performance of the system is derived step by step. The contact force is approxi-
mated by

fc ≈ f̃c (ξ ,ζ ,τ) =

[
mc

(
ḡ− d2w̃c

dτ2

)
− cc

(
dw̃c

dτ
− dηc

dτ

)
− kc (w̃c−ηc)

]
(29)

where

d2wc

dτ2 ≈
d2w̃c

dτ2 =

[
d2wc (τi)

dτ2 +λ (τ− τi)

]
, (30a)

dwc (τ)

dτ
≈ dw̃c (τ)

dτ
=

dwc (τi)

dτ
+

(
d2wc (τi)

dτ2 −λτi

)
(τ− τi)+

1
2

λ
(
τ

2− τ
2
i
)
,

(30b)

and

wc (τ)≈ w̃c (τ) =wc (τi)+

[
dwc (τi)

dτ
− τi

(
d2wc (τi)

dτ2 −λτi

)
− 1

2
λτ

2
i

]
(τ− τi)

+
1
2

(
d2wc (τi)

dτ2 −λτi

)(
τ

2− τ
2
i
)
+

1
6

λ
(
τ

3− τ
3
i
)
.
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(30c)

The dynamic solution and the forcing term of Eq. (23) are the same as Eq. (24)
where

F̃mn(τ)=4
[

mc

(
ḡ−d2w̃c

dτ2

)
−cc

(
dw̃c

dτ
−dηc

dτ

)
−kc (w̃c−ηc)

]
sinmπξc (τ)sinnπrζc (τ)

(31)

Except Eqs. (30, 31), the solution method is the same as the moving mass system.

3.3 Control Law

For suppression of vibration the following control law is assumed:

dηc (τ)

dτ
=

dηc (τi)

dτ
+G

d2wc (τi)

dτ2 (τ− τi)

and

ηc (τ) = ηc (τi)+
dηc (τi)

dτ
(τ− τi)+G

d2wc (τi)

dτ2

[
1
2
(
τ

2− τ
2
i
)
− τi (τ− τi)

]
. (32)

The velocity of scanner foundation dηc (τ)/dτ is proportional to the acceleration
of the scanner device position. If the control parameter G is positive, velocity is
increased with acceleration. Conversely, if parameter G is negative, velocity is de-
creased with acceleration. The scanner device moves at a constant speed along a
trajectory parallel to the plate edge from ξc = 0 to ξc = 1 The effect of control
parameter G on the dynamic response is investigated and plotted in Figure 7. It
shows when the control parameter G = −2000, the vibration of the scanner de-
vice approaches zero demonstrating this control law is effective. Further, Figure 8
demonstrates the influence of the spring constant kc and the damping coefficient cc

on the suppression of vibration. It is found that the effect of the spring constant kc

on the suppression of vibration displacement is significant, but that of the damping
coefficient cc negligible.

4 Applicability of the moving-load model

This theory refers to the Appendix (moving load model). It is well known that
separation cannot be studied using the moving load model. Figure 9 compares the
vibration displacements at the moving position in the moving-load and moving-
mass models. From Figure 9a and 9b with aspect ratio r=1, the displacements
w(ξc,ζc,τ) in the two models are almost consistent at the initial part of trajectory.
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Figure 7: Influence of control gain G on the suppression of vibration when a
concentrated mass moves at a constant speed along a trajectory parallel to the
plate edge, i.e., ζc (τ) = 0.5 from ξc = 0 to ξc = 1. [cc = 5kc = 5„c = k = 0,
mc = 0.1ḡ = 0.1„ξc (τ) = 2τ r= 1].

 

Figure 8: Influence of the spring constant kc and the damping coefficient cc on
the suppression of vibration when a concentrated mass moves at a constant speed
along a trajectory parallel to the plate edge, i.e., ζc (τ) = 0.5, from ξc = 0 to ξc = 1.
[G =−10, c = k = 0mc = 0.1„ḡ = 0.1ξc (τ) = 2τ„ r= 1].
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But the difference gradually increases with the coordinates of the vehicle, ξ c. For
r=1 or 2, when the vehicle moves with the speed of v = 3 or 10, it will separate from
the plate at ξ c =0.9526 or 0.6921, respectively Note, the larger the aspect ratio r
and the moving speed v are, the greater their difference between the displacements
w(ξc,ζc,τ) of the two models. This shows the moving mass problem may be ac-
curately approximated by the moving load model only when the moving speed v is
very slow and at the initial part of the trajectory.

 

              (a)                                                                (b) 

 
Figure 9: Influence of moving speed v and aspect ratio r on the response ra-
tio w/ws (0.5,0.5) when a concentrated mass moves at a constant speed v along
a trajectory parallel to the plate edge, i.e., ζc (τ) = 0.5, from ξc = 0 to ξc = 1
[c = cc = k = kc=0, mc = 0.1, ḡ = 0.1, ξc (τ) = vτ; (a): r= 1, (b): r= 2; solid line:
moving mass model; dashed line: moving load model].

5 Conclusion

The moving mass problem may be accurately approximated by the moving load
model with constraints of low moving speed v and only at the initial part of the
trajectory. Separation cannot be studied by using the moving-load model. An ef-
fective control methodology for the suppression of vibration of a device moving
on a plate is proposed in this work and the effects of several parameters on the
separation and the vibration control of system are discovered as follows:
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1. For a diagonal or parallel trajectory the larger the aspect ratio r is, the higher
the critical speed vcritical .

2. For a diagonal or parallel trajectory the larger the concentrated mass mc is,
the lower the critical speed vcritical .

3. If the aspect ratio r is small, the critical speed of a diagonal trajectory is lower
than that of a parallel one. But if the aspect ratio r is large, the critical speed
of a diagonal trajectory is higher compared to a parallel trajectory.

4. If the spring constant k of the Winkler foundation is smaller than the value
of 105, critical speed vcritical is almost constant. At the same time, the larger
the damping coefficientsc is, the higher the critical speed vcritical .

5. If varying moving speed such as dξc/dτ = v̄s0 sin(πτ/T ) is considered, vi-
bration response can be significantly suppressed.

6. The effect of the spring constant kc on the suppression of vibration displace-
ment is significant but the effect of the damping coefficient cc is negligible.

References

Akin, J. E.; Mofid, M. (1989): Numerical solution for response of beams with
moving mass. Journal of Structural Engineering, vol. 115, no. 1, pp. 120–31.

Amiri, J. V.; Nikkhoo, A.; Davoodi, M. R.; Hassanabadi, M. E. (2013): Vibra-
tion analysis of a Mindlin elastic plate under a moving mass excitation by eigen-
function expansion method. Thin-Walled Structures, vol. 62, pp. 53-64.

Au, F. T. K.; Wang, M. F. (2005): Sound radiation from forced vibration of rectan-
gular orthotropic plates under moving loads. Journal of Sound and Vibration, vol.
281, pp. 1057–1075.

Beskou, N. D.; Theodorakopoulos, D. D. (2011): Dynamic effects of moving
loads on road pavements: A review. Soil Dynamics and Earthquake Engineering,
vol. 31, pp. 547567.

Eftekhari, S. A.; Jafari, A. A. (2012): Vibration of an initially stressed rectangular
plate due to an accelerated traveling mass. Scientia Iranica A, vol. 19, no. 5, pp.
1195-1213.

Elliott, M. T.; Ma, X.; Brett, P. N. (2007): Tracking the position of an unknown
moving load along a plate using the distributive sensing method. Sensors and Ac-
tuators A, vol. 138, pp. 28–36.



Vibration Control and Separation of a Device Scanning an Elastic Plate 211

Esen, I. (2013): A new finite element for transverse vibration of rectangular thin
plates under a moving mass. Finite Elements in Analysis and Design, vol. 66, pp.
26–35

Gbadeyan, J. A.; Oni, S. T. (1995): Dynamic behaviour of beams and rectangular
plates under moving loads. Journal of Sound and Vibrations, vol. 182, no. 5, pp.
677–695.

Gbadeyan, J. A.; Dada, M. S. (2006): Dynamic response of a Mindlin elastic
rectangular plate under a distributed moving mass. International Journal of Me-
chanical Sciences, vol. 48, pp. 323–340.

Ghafoori, E.; Asghari, M. (2010): Dynamic analysis of laminated composite
plates traversed by a moving mass based on a first-order theory. Composite Struc-
tures, vol. 92, no. 8, pp. 1865–1876.

Huang, M. H.; Thambiratnam, D. P. (2001): Deflection response of plate on
Winkler foundation to moving accelerated loads. Engineering Structures, vol. 23,
no. 9, pp. 1134–1141.

Huang, F. Y.; Mote Jr. C. D. (1996): Mathematical analysis of stability of spin-
ning disc under rotating, arbitrary large damping forces. ASME Journal of Vibra-
tion and Acoustics, vol. 118, pp. 657–662.

Kim, S. M. (2004): Buckling and vibration of a plate on elastic foundation sub-
jected to in-plane compression and moving loads. International Journal of Solids
and Structures, vol. 41, no. 20, pp. 5647–5661.

Law, S. S.; Bu, J. Q.; Zhu, X. Q.; Chan S. L. (2007): Moving load identifica-
tion on a simply supported orthotropic plate. International Journal of Mechanical
Sciences, vol. 49, pp. 1262–1275.

Lee, S. Y.; Yhim, S. S. (2004): Dynamic analysis of composite plates subjected to
multi-moving loads based on a third order theory. International Journal of Solids
and Structures, vol. 41, pp. 4457–4472.

Lin, S. M. (2009a): Vibration suppression of a moving beam subjected to an active-
control electrostatic force. CMES Computer Modeling in Engineering and Science,
vol. 43, no. 1, pp. 73-90.

Lin, S. M. (2009b): Vibrations of in-plane non-constant inward and outward rotat-
ing beams. CMES Computer Modeling in Engineering and Science, vol. 52, no. 1,
pp. 105-124.

Lin, S.M. (2010): Nonlinear vibration of the double-beams assembly subjected
to a.c. electrostatic force. CMES Computer Modeling in Engineering and Science,
vol. 60, no. 1, pp. 95-114.

Lin, S.M. (2011): In-plane vibration of a beam picking and placing a mass along



212 Copyright © 2014 Tech Science Press CMES, vol.103, no.3, pp.189-213, 2014

arbitrary curved tracking. CMES Computer Modeling in Engineering and Science,
vol. 72, no. 1, pp. 17-35.

Malekzadeh, P.; Fiouz, A. R.; Razi, H. (2009): Three-dimensional dynamic anal-
ysis of laminated composite plates subjected to moving load. Composite Structures,
vol. 90, no. 2, pp. 105–114.

Malekzadeh, P.; Haghighi, M. R. G.; Gholami, M. (2010): Dynamic response of
thick laminated annular sector plates subjected to moving load. Composite Struc-
tures, vol. 92, no. 1, pp. 155–163.

Martı’nez-Rodrigo, M. D.; Museros, P. (2011): Optimal design of passive vis-
cous dampers for controlling the resonant response of orthotropic plates under high-
speed moving loads. Journal of Sound and Vibration, vol. 330, pp. 1328–1351.

Nikkhoo, A.; Rofooei, F. R.; Shadnam, M. R. (2007): Dynamic behavior and
modal control of beams under moving mass. Journal of Sound and Vibrations, vol.
306, pp. 712–724.

Nikkhoo, A.; Rofooei, F. R. (2012): Parametric study of the dynamic response of
thin rectangular plates traversed by a moving mass. Acta Mechanica, vol. 223, no.
1, pp. 15–27.

Rofooei, F. R.; Nikkhoo, A. (2009): Application of active piezoelectric patches in
controlling the dynamic response of a thin rectangular plate under a moving mass.
International Journal of Solids and Structures, vol. 46, pp. 2429–2443.

Sheng, G. G.; Wang, X. (2011): Response and control of functionally graded lam-
inated piezoelectric shells under thermal shock and moving loadings. Composite
Structures, vol. 93, no. 1, pp. 132–141.

Szilard, R. (1974): Theory and analysis of plates: classical and numerical meth-
ods. Prentice-Hall, Inc.

Wu, J. J. (2007): Vibration analyses of an inclined flat plate subjected to moving
loads. Journal of Sound and Vibration, vol. 299, no. 12, pp. 373-387.

Wu, J. J. (2005): Dynamic analysis of a rectangular plate under a moving line
load using scale beams and scaling laws. Computers and Structures, vol. 83, pp.
1464–1658.

Zhang, Q. M.; Wang, X. C.; Liu, H. (2011): Theoretical analysis of load-carrying
characteristics of a simply supported dual-duct rectangular plate under moving
loads. Computers and Mathematics with Applications, vol. 61, pp. 2306–2312.



Vibration Control and Separation of a Device Scanning an Elastic Plate 213

Appendix: Moving load model

The geometry coordinates of the moving-load model are shown in Figure 1b. The
corresponding governing equation is

∇
4w+ c

∂w
∂τ

+ kw+
∂ 2w
∂τ2 = fc (ξ ,ζ ,τ) , (A1)

where fc (x,y, t) = p0δ (ξ −ξc (t))δ (ζ −ζc (t)) in which p0 = PL2
1/DL2. Because

the force is independent to displacement, the phenomenon of separation must not
occur. This implies that the moving-load model is not applicable for the separation
of the system.

Because load fc is independent to displacement w, the dynamic solution and the
forcing term of Eq. (A1) can be expressed as

w =
∞

∑
m=1

∞

∑
n=1

Tmn (τ)sinmπξ sinnπrζ , (A2)

and

fc (ξ ,ζ ,τ) =
∞

∑
m=1

∞

∑
n=1

Fmn (τ)sinmπξ sinnπrζ , (A3)

where Fmn (τ) = 4p0 sinmπξc sinnπrζc.

Substituting Eq. (A2) into the governing equation Eq. (A1) results in

d2Tmn

dτ2 + c
dTmn

dτ
+
(
ω

2
mn + k

)
Tmn = Fmn (τ) (A4)

The solutions of Eq. (A4) are derived as follows:

Tmn(τ) = e−ζkωkτ

[
cosωdkτ + ζkωk

ωdk
sinωdkτ

]
Tmn(0)+ 1

ωdk
e−ζkωkτ sinωdkτ

dTmn(0)
dτ

+ 1
ωdk

∫
τ

0 e−ζkωk(τ−χ) sinωdk(τ−χ)Fmn(χ)dχ

(A5)

Substituting Eq. (A5) back into Eq. (A2) results in the analytical solution.




