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Construction of an Edge Finite Element Space and a
Contribution to the Mesh Selection in the Approximation

of the Second Order Time Harmonic Maxwell System

J. E. Sebold1, L. A. Lacerda2 and J. A. M. Carrer3

Abstract: This work is concerned with the development of the so-called Whit-
ney and Nédélec edge finite element method for the solution of the time-harmonic
Maxwell equations. Initially, the second order time harmonic Maxwell systems,
as well as their variational formulation, are presented. In the sequence, Whitney
and Nédélec element spaces, whose functions present continuous tangential com-
ponents along the interface are built of adjacent elements. Then, numerical exper-
iments validate the performance of Whitney and Nédélec first order elements in a
two-dimensional domain. The discrete dispersion relation for the elements shows
that the numerical phase velocity can be used as an error estimator. Consequently,
it becomes possible to define an initial parameter to the mesh refinement that, by
its turn, can make the phase difference negligible.

Keywords: Numerical Methods in Engineering, Finite elements, Maxwell equa-
tions, Wave Propagation, Computational Electromagnetism.

1 Introduction

In a numerical formulation, if one needs to directly represent a vector quantity in
a discretized form, the alternative when using nodal basis functions is the sepa-
rate treatment of each component of the vector field, which individually reduces to
scalar functions.

Arises from this fact a dificulty related with the continuity of the discretized vector
quantity across adjacent elements in the finite element mesh. For instance, in a
common side of adjacent elements, nodes are shared and since the approximation
is performed component by component, this approach results in continuity of all
components of the vector quantity across the elements. However, if each element
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belongs to a different material domain, the imposed continuity produces a fisically
incorrect solution. Such solutions are obtained since the nodal basis functions ap-
proach do not guarantee the continuity of the interpolation function derivatives be-
tween adjacent elements.

Along time, novel approaches were conceived to overcome this problem. Among
them, one may highlight the development of techniques characterized by the use of
another variety of finite elements as an alternative to the original nodal approach.
Such alternatives were introduced in the works of Whitney (1957) and Nédélec
(1980).

Despite using edge vectors sets in a completely different context to the finite ele-
ment method developed in this work, Whitney pioneered the use of polynomials
vector space to generate such sets Monk (2003b). These edge vectors or zero or-
der elements in the context of the finite element method are an approximation by
function with constant tangential components at the element edges. Such type of
elements are commonly referred in the literature as Whitney elements.

Later on, Jean-Claude Nédélec presented some families of nonconforming finite
elements in R3. In fact, it will be shown that one of these families constitute con-
forming elements in H(curl,Ω) = {uuu ∈ (L2(Ω))2;∇×uuu ∈ (L2(Ω))2}. The use of
these elements in the approximation fo Maxwell and Elasticity equations were pre-
sented in Nédélec (1980). This innovative variety of finite element is knowns as
vector finite element or Nédélec element.

The Sobolev spaces H(curl,Ω) play a central role in the variational theory of
Maxwell’s equations since, according to Monk (2003b) this space corresponds to
the space of finite energy solutions. In this sense, it can be guaranteed the exis-
tence, uniqueness and regularity of physically significant discrete solutions Green-
leaf et al. (2007). Thus, it is convenient to take this finite element space to retrieve
a subspace class of suitable finite elements for the Maxwell’s equations system.

Another feature of this space is the choice of the finite element discretization, which
is necessary for the continuity of the tangential components of the field E across ad-
jacent elements. Moreover, there is no obligation for the normal vector components
being continuous.

Vectorial finite elements can be used in complex geometries and also in the pres-
ence of discontinuous electromagnetic properties. In the case of Maxwell’s equa-
tions, the electric permittivity ε may be discontinuous across the surface of a do-
main Ω of R3, but the tangential component of the electric field EEE is continuous
across this surface, thus it is necessary that the tangential component of the ap-
proximation field EEEh is also continuous. Choosing the Nédélec elements which
guarantees an approximation H(curl)-conforming, it can be seen that the tangen-
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tial component of the field approximation EEEh is continuous on the surface, even in
the case where two adjacent elementsin the mesh have different material properties.
In addition, edge finite elements have many interesting and challenging mathemat-
ical properties Monk (2003b); Ainsworth (2003); Jin (2002); Monk (2003a).

Another relevant issue is the dispersion relation for the edge finite elements. Sev-
eral authors have considered the dispersive behaviour of the finite element method.
Christon (1999) considered the dispersive behaviour of a variety of finite element
methods for the wave equation, presenting numerical comparisons of the discrete
phase and group velocities with exact values. Monk and Parrot (1994) consid-
ered the dispersive behaviour of fisrt order triangular finite elements for Maxwell’s
equations, while refining meshes. Monk and Cohen (1998) conducted a dispersion
analysis for Nédélec type elements for time dependent Maxwell’s equations using a
mass matrix lumping on tensor products in two and three dimensional meshes. Ih-
lenburg and Babuška (1997) studied the dispersive properties of higher order finite
elements for the Helmholtz equation in one dimension, obtaining estimates for the
approximation to the fifth order in which ωh < 1. Numerical evidences led to the
conjecture that elements of order p provide an approximation of order 2p in disper-
sion relation when the mesh size parameter h tends to zero. Monk (2003a) showed
proof of convergence of the Nédélec finite elements applied to a cavity problem
with Maxwell’s equations.The cavity was assumed to be a Lipschitz polyhedron,
modelled with a rectangular non-uniform mesh. Ainsworth (2003) demonstrated
that the numerical dispersion relation displays three different behaviours depend-
ing on the order of the method in relation to the mesh parameter and to the wave
number. These behaviours are described as: Oscillation Phase, Transition Zone
and Super-Exponential Decay. Ainsworth and Coyle (2001) studied a hierarchi-
cal basis functions set for the Galerkin discretization of H(curl,Ω) space for both
hybrid meshes containing quadrilaterals and triangles with a non-uniform arbitrary
polynomial order.

In this work, it is shown a second order time-harmonic Maxwell system problem
with its approximation with edge finite elements. From the numerical results a dis-
persion relation analysis is performed using the numerical phase velocity, allowing
the selection of an edge size parameter for a uniform quadratic elements mesh.

2 Surface Differential Operators

2.1 Surface Cross Product

Let uuu= (u1(x,y),u2(x,y)) e vvv= (v1(x,y),v2(x,y)) be vectors in a surface S. Surface
cross product it is defined by

uuu× vvv = u2(x,y)v1(x,y)−u1(x,y)v2(x,y) (1)
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This definition is motivated by the fact that, given two vectors uuu,vvv ∈ R3 such that
uuu = (u1,u2,0) and vvv = (v1,v2,0), one has

uuu× vvv = (u2v1−u1v2)kkk, (2)

where kkk is the unit vector in the direction of the z axis.

2.2 Surface Gradient

Let S be a surface with smooth boundary and unit normal vector nnn. For a scalar
function φ ∈ H1(S) the surface gradient ∇Sφ ∈ L2

t (S) is defined as:

∇Sφ = (nnn×∇φ)×nnn (3)

where L2
t (S) = {uuu = (u1(x1,x2),u2(x1,x2)) ∈ (L2(S))2; nnn ·uuu = 0 on S}.

2.3 Surface Scalar Rotational

One can denote the surface scalar rotational by ∇S× : L2
t (S) −→ H1(S)′, where

H1(S)′ is the dual of H1(S), i.e., if g ∈ H1(S)′, then g : H1(S) −→ R. Thus, if
uuu ∈ L2

t (S), the surface scalar rotational according to Boffi and Perugia (1999), is
given by:

∇S×uuu =
∂u2

∂x1
− ∂u1

∂x2
, ∀ uuu ∈ L2

t (S) (4)

2.4 Surface Vector Rotational

If S denotes a Lipschitz domain in the plane xy, Reddy (1986), then for a given
scalar function φ = φ(x,y), defined on S, one can denote and define the suface
vector rotational, respectively, by:

∇S× : H1(S)−→ L2
t (S) (5)

and

∇S×φ = ∇Sφ ×nnn =

(
∂φ

∂y
,−∂φ

∂x

)
∀ f ∈ H1(S). (6)

Note that equation (6) is nothing more than the product between the rotation matrix
and the φ gradient.

Teorema 2.1 (Divergence Theorem, Kaplan (1970)) : Let Ω ⊂ R2 be a domain,
with Lipschitz boundary Γ, and with nnn the unit outward normal vector, Reddy
(1986). Let FFF ∈ (C1(Ω̄))2 be a vectorial field. Hence,∫

Ω

∇S ·FFF dΩ =
∫

Γ

FFF ·nnn dΓ (7)
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2.5 Surface Divergence

One can denote the surface divergence by the operator ∇S· : L2
t (S)−→ H1(S)′ and

define it as

∇S · vvv = ∇S× (nnn× vvv) ∀ vvv ∈ L2
t (S) (8)

Here, (nnn×vvv) means a 90 degrees rotation of the vetor vvv = (v1,v2) on a surface, i.e.,
(nnn× vvv) = (−v2,v1). Furthermore, using the identity ∇S · (vvvφ) = ∇Sφ · vvv+φ∇S · vvv
and the Theorem 2.1, the operator ∇S· satisfy the following identity:∫

S
∇S · vvvφ dΩ =−

∫
S

vvv ·∇Sφ dΩ ∀ φ ∈ H1(S) e ∀ vvv ∈ L2
t (S) (9)

The Finite Element Method is based on the variational formulation or weak for-
mulation of boundary value problems. Thus, the following theorem is very useful
in the variational formulation of the second order time harmonic Maxwell system,
which will be discussed below.

Teorema 2.2 (Two Dimensional Stokes Theorem) Let S⊂R2 be a bounded Lip-
schitz domain and unit tangent vector ttt to boundary Γ. if vvv ∈ (C1(S̄))2 and w ∈
C1(S̄),then∫

S
(∇S× vvv)w dΩ =

∫
S

vvv ·∇S×w dΩ+
∫

Γ

ttt · vvvw dΓ (10)

Proof: Given vvv = (v1,v2) ∈ (C1(S̄))2 e w ∈C1(S̄). Consider also nnn = (n1,n2), unit
outward normal vector. Let uuu∈ (C1(S̄))2 be a vectorial field such that uuu=(u1,u2)=
(wv2,−wv1). Note that vvvw = (−u2,u1). Thus, if ttt = (−n2,n1) is the vetor unit
tangent vector to nnn = (n1,n2), then uuu ·nnn = vvvw · ttt. Now, using equations (4) and (6),
we obtain ∇S×vvv= ∂v2

∂x1
− ∂v1

∂x2
and ∇S×w=

(
∂w
∂x2

,− ∂w
∂x1

)
. Therefore, (∇S×vvv)w=

w ∂v2
∂x1
−w ∂v1

∂x2
and vvv ·∇S×w= v1

∂w
∂x2
−v2

∂w
∂x1

. Thus, ∇S ·uuu= (∇S×vvv)w−vvv ·∇S×w.
Using Theorem 2.1 on uuu, we obtain (10).

3 Second Order Time Harmonic Maxwell System

The electromagnetic field in R3 is characterized by four vector functions of position
and time: the electric field E, the displacement vector D, the magnetic field H

and the magnetic induction B. The basic laws of the electromagnetic field are
expressed by the Maxwell’s equations, Jackson (1999), Soares et al. (2008), in a
system with four vector functions including the density of electric charge ρ and the
electric current density J. In many systems involving electromagnetic waves the
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time changes are of the cosine form and can be expressed by e−iω0t , consequetly
the time-dependent problem can be reduced to the time harmonic Maxwell system,
as discussed below. If the radiation has temporal frequency ω0, where ω0 > 0, the
real part(Re) of the time harmonic fields ẼEE, H̃HH, D̃DD, B̃BB are related to the fields E, D,
H and B, respectively, by

E(x,y,z, t) = Re(e−iω0t ẼEE(x,y,z)) (11)

H(x,y,z, t) = Re(e−iω0tH̃HH(x,y,z)) (12)

D(x,y,z, t) = Re(e−iω0tD̃DD(x,y,z)) (13)

B(x,y,z, t) = Re(e−iω0t B̃BB(x,y,z)) (14)

Note that the same relation holds for ρ and J.

Lemma 3.1 : If Re(A1e−iω0t) = Re(A2e−iω0t) for all t, then A1 = A2.

Proof: Suppose A1 6= A2. Consider that A1 = a + bi and A2 = c + di, where
a,b,c,d ∈ R. By hypotesis Re(A1e−iω0t) = Re(A2e−iω0t) for all t, thus for t =
0, one has Re(A1) = Re(A2). Consider now t = π/2ω0, so one has Im(A1) =
Im(A2)(imaginaries parts), which contradicts the choice A1 6= A2. Therefore, A1 =
A2.

Applying the curl operator ∇× in the equation (11), one obtains ∇×E= Re(∇S×
e−iω0t ẼEE). In particular, from Faraday’s Law of electromagnetic induction it can be
noted that ∇×E= Re(iω0e−iω0t B̃BB). It follows from Lemma 3.1 that ∇× ẼEE = iω0B̃BB.
Likewise, similar conclusions can be found for the other equations (I1.a), Jackson
(1999). So, the time harmonic Maxwell system can be written

∇× ẼEE = iω0B̃BB (15)

∇× H̃HH =−iω0D̃DD+ J̃JJ (16)

∇ · D̃DD = ρ̃ (17)

∇ · B̃BB = 0 (18)

In heterogeneous and isotropic materials, the most common in practice and where
the domain of the electromagnetic field is composed of different materials, the time
harmonic fields are subject to constitutive laws, Macedo (1988), linked fields ẼEE to
D̃DD, H̃HH to B̃BB and J̃JJ to ẼEE by ẼEE = 1/εD̃DD, H̃HH = 1/µB̃BB and J̃JJ = σ ẼEE + JJJa, where ε , µ

and σ are position functions called electric permittivity, magnetic permeability and
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medium conductivity, while JJJa is the applied current density. In vacuum or in the
air, according to Colton and Kress (1983), we can further define the time harmonic
electric and magnetic fields can be further defined according to

EEE = ε
1/2
0 ẼEE and HHH = µ

1/2
0 H̃HH (19)

The relative permeability and permittivity by their turn, are respectively defined as
εr = 1/ε0(ε +(iσ/ω0)) and µr = µ/µ0. After substituting the constitutive relation
H̃HH = 1/µB̃BB in (15), the constitutives relations J̃JJ = σ ẼEE + JJJa and ẼEE = 1/εD̃DD in (16)
and using (19), the first order time harmonic Maxwell system obtained; it is written
as:{

∇×EEE− iω0
√

ε0µ0µrHHH = 000
−iεrω0

√
ε0µ0EEE−∇×HHH =−JJJaµ

1/2
0

(20)

Eliminating HHH in (20), and then multiplying the resulting expression by−iµr
√

ε0µ0
the second order time harmonic Maxwell system is obtained:

−ω
2
εrEEE +∇×µ

−1
r ∇×EEE = FFF (21)

where ω = ω0
√

ε0µ0 and FFF = iκµ
1/2
0 JJJa. Note that equation (21) is consistent with

the surface differential operator (4) and (6), i.e.,

−ω
2
εrEEE +∇S×µ

−1
r ∇S×EEE = FFF (22)

4 Description of Edge Finite Elements Space

This section discuss the discretization of time harmonic Mawell system. Let M
be a partition of Ω in quadrilaterals such that the non-empty intersection between
different elements is either an edge or a vertex. Each element K ∈M is the image
of a reference element K̂ = (−1.1)2 via a differentiable bijection FFFK : K̂ −→ K.
A finite element, according with Ciarlet (1978), is represented by a triple (K,P,Σ)
where K represents the geometry of the element(a quadrilateral for instance), P
represents spaces of functions defined over K, usually a polynomial, and Σ is a
set of linear functionals on P. On the other hand, the finite element reference is
the triple (K̂, P̂, Σ̂), where K̂ is the the domain of FFFK geometry, P̂ is a space of
functions defined on K̂, usually a space of polynomials, and Σ̂ is a set of linear
functionals on P̂.

4.1 Degree of Freedom

An element α ∈ Σ (or Σ̂) is called degree of freedom. A degree of freedom is
generally associated with some geometric entity of K (or K̂) as a vertex or an edge
(see figure 1(a) and 1(b)).
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It is said that the finite element (K,P,Σ) is unisolvent if ∀ ppp∈P, α(ppp) = 0, ∀ α ∈
Σ, which implies that ppp≡ 000. In addition, a finite element is said to be H(curl,Ω)-
conforming if to any α ∈ Σ defined only over the edge γ , α(ppp) = 0, ∀ ppp ∈ P, which
now implies nnn× ppp = 0 on the edge γ . In other words, if ppp1, ppp2 ∈P are, respectively,
interpolants of the geometric elements K1 and K2 that share the same edge, then ppp1
and ppp2 has the same tangential components.

One way to ensure continuity between two elements with the same interface, is to
consider the degrees of freedom on an edge γγγ as the weighting moments of the
tangential component of a field ÊEE ∈ Ep, where

Ep =
{

ÊEE = (Ê1, Ê2); E1 = span{Sp,p+1} e E2 = span{Sp+1,p}
}

(23)

where Sp,q represents the monomials set of degree less than or equal to p in x̂ and
of degree less than or equal to q in ŷ, i.e. Sp,q = {x̂iŷ j : 0≤ i≤ p; 0≤ j ≤ q}. The
degrees of freedom at the edges of the reference element are defined the by linear
functional αγ ∈ P̂′

αγ(uuu) =
∫

γγγ

(ttt ·uuu)φ ds ∀ φ ∈ Pk−1(γγγ) k = 1, ..., p+1 (24)

where ttt is the unit tangent vector to the edge, P̂′ denotes the dual space P̂ and Pk−1
represents the polynomials space with degree less or equal to k−1. The edges have
a total of 4(p+ 1) degrees of freedom. Degrees of freedom within the reference
element are defined by the linear functional αint ∈ P̂′

αint(uuu) =
∫

K̂
(uuu ·φφφ) dK̂ ∀ φφφ =

[
φ1
φ2

]
(25)

where φ1 ∈ Sk−2,k−1 and φ2 ∈ Sk−1,k−2. One has a total of 2p(p+ 1) degrees of
freedom within the reference element K̂.

An edge finite element (P,K,Σ) on the physical domain K is built from the ref-
erence element (P̂, K̂, Σ̂) as follows: Let EEE = (E1,E2) be a vector field. The mth

degree of freedom on the edge γ is given by the linear mapping

EEE −→
∫

γ

vmEEE ·dxxx,

where the weighting function vm is chosen to coincide with the mth Legendre poly-
nomial, Lm(t), when the edge γ is parametrized by t ∈ (−1,1). In particular, let γ

be an oriented edge of an element in the mesh with endpoints xxxva e xxxvb , where the
indices va e vb correspond to adjacent vertices in the quadrilateral element. Now,
the parameterization on the edge can be presents as follows:

xxx(t) = (x(t),y(t)) =
1
2
(1− t)xxxva +

1
2
(1+ t)xxxvb with t ∈ (−1,1) (26)
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Hence, according to Kaplan (1970), one has∫
γ

vmEEE ·dxxx =
∫ 1

−1
Lm(t)

(
E1

dx
dt

+E2
dy
dt

)
dt =

∫ 1

−1
Lm(t)EEE ·χχχγdt, (27)

where χχχγ = (dx
dt ,

dy
dt ) is the tangent vector on the edge γ .

Let FK be a mapping of the reference element to the physical element K, FK : K̂ −→
K, defined by

FK(x̂xx) = JK x̂xx+bbb, (28)

where JK is an invertible square matrix and bbb is a translation vector. Note that FK

is a differentiable bijection, and that the Jacobian matrix transformation is given
by dFK = JK . It comes from the covariant transformation, Kaplan (1970), that the
tangent vectors χχχ and τττ are related by

χχχ(((xxx))) = JK(x̂xx)τττ(((κκκ)))

Therefore, equation (27) can be represent by:∫ 1

−1
Lm(t)EEE · (JKτττ)dt

By using the mapping Fγ , restricted to reference edge γ and with m = k, one has∫ 1

−1
Lk(t)EEE · (JKτττ)dt =

∫ 1

−1
Lk(s)JT

K EEE · τττds

Note that the electric field ÊEE on a reference element K̂ is related to the electric field
EEE, defined on physical element K by the covariant transformation, Kaplan (1970)

EEE(xxx)|K = J−T
K ÊEE(x̂xx), xxx = FFFK(x̂xx). (29)

Similarly, the global basis function φφφ i, j, corresponding to the local basis function
φ̂φφ i, j on the reference element, is defined by

φφφ i, j(xxx)|K = J−T
K φ̂φφ i, j(x̂xx), xxx = FFFK(x̂xx). (30)

The degrees of freedom on the edges ensures that (K,P,Σ) is H(curl,Ω)-conforming;
complementing them with the degrees of freedom inside of element, it is ensured
that (K,P,Σ) is unisolvente (see Theorem 5 of Nédélec (1986)).
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4.2 Hierarchical Basis Functions

Let P̂ = Ep be the space of polynomials associated with the edge finite element
of order p on the reference element K̂. Let {Lk}p

k=0 be the Legendre orthogonal
polynomials set, which are given by the Rodrigues formula, Olver et al. (2010),
Zhang et al. (2014),

Lk(κ) =
1

2kk!
d(k)

dκk

[
(κ2−1)k

]
0≤ k ≤ p (31)

Furthermore, the set {lk}p+1
k=0 is defined as follows: lk(κ) =

1
2
(1+ξkκ), k = 0,1,

lk(κ) = 1
||Lk−2||

∫
κ

−1 Lk−2(t) dt, k = 2, ..., p+1
(32)

where ξ0 = −1, ξ1 = 1 and ||Lk−2||2 = 2
2k−3 , Harari et al. (1996). Note that, by

the orthogonality of Legendre polynomials, one has lk(−1) = lk(1) = 0, whenever
k > 1. The set{lk}p+1

k=0 is used for setting hierarchical basis function, which are
useful for adaptivefinite element methods, Adjerid (2002). Using the functions Lk
and lk, the basis functions associated to the degrees of freedom at the edges are
defined as:{

φφφ
γ

i, j,1(x̂xx) = Li(x̂)l j(ŷ)eee1

φφφ
γ

i, j,2(x̂xx) = l j(x̂)Li(ŷ)eee2
i = 0, ..., p; j = 0,1 (33)

where eee1 = (1,0) and eee2 = (0,1) denote the canonical basis of R2 and x̂, ŷ are the
coordinates of x̂xx. Basis functions associated with the degrees of freedom inside of
an element are complementary functions on (33) when using lk with k ≥ 2:

{
φφφ

int
i, j,1(x̂xx) = Li(x̂)l j(ŷ)eee1

φφφ
int
i, j,2(x̂xx) = l j(x̂)Li(ŷ)eee2

i = 0, ..., p; j = 2, ..., p+1, (34)

Inspite of the representations (33) and (34) be well simplified, a notation to differ-
entiate the "edges functions" were used. This classification takes into account the
edges of a quadrilateral reference element:

φφφ
γ1
i (x̂xx) = Li(x̂)l0(ŷ)eee1; φφφ

γ2
i (x̂xx) = Li(x̂)l1(ŷ)eee1;

φφφ
γ3
i (x̂xx) = Li(ŷ)l0(x̂)eee2; φφφ

γ4
i (x̂xx) = Li(ŷ)l1(x̂)eee2,

(35)

Thus, the basis function associated with the edges satisfy∫
γγγ l

(ttt ·φφφ γ j
i )Lkds = δl jδik||Li||2 with j = 1,2,3,4 (36)
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where δ is the Kronecker delta. Similarly, the basis functions associated to the
inside of an element satisfies∫

K̂
Lm(x̂)ln(ŷ)φφφ int

i, j,1 · eee1dx̂dŷ = δmiδn j||Li||2||l j||2∫
K̂

Lm(ŷ)ln(x̂)φφφ int
i, j,2 · eee2dx̂dŷ = δmiδn j||Li||2||l j||2

(37)

4.3 Basis Function for Whitney Elements (p = 0)

An emphasis on the definition of Ep for the case p = 0, implies S0,1 = {1, ŷ} and
S1,0 = {1, x̂}; therefore:

E0 =
{

ÊEE = (Ê1, Ê2); Ê1 = span{1, ŷ} and Ê2 = span{1, x̂}
}

(38)

For Whitney elements each edge presents only one degree of freedom(see equation
(24)), thus we can define the basis functions can be defined as:

φφφ
γ1
0 (x̂xx) = L0(x̂)l0(ŷ)eee1; φφφ

γ2
0 (x̂xx) = L0(x̂)l1(ŷ)eee1;

φφφ
γ3
0 (x̂xx) = L0(ŷ)l0(x̂)eee2; φφφ

γ4
0 (x̂xx) = L0(ŷ)l1(x̂)eee2,

(39)

Zero-order functions can be characterized by the fact that they have free divergent,
i.e., ∇S ·φφφ γi

0 = 0, and also for having constant tangential component on each edge
γγγ i, Jin (2002). Figure 1(a) shows the degrees of freedom distributed on the edges
of the reference element.

4.4 Basis Function for Nédélec Elements (p = 1)

The space of polynomials associated with the Nédélec elements of order p = 1 on
the reference element K̂ is defined as

E1 =
{

ÊEE = (Ê1, Ê2); Ê1 = span{S1,2} and Ê2 = span{S2,1}
}
, (40)

where

S1,2 = {1, ŷ, ŷ2, x̂, x̂ŷ, x̂ŷ2} e S2,1 = {1, x̂, x̂2, ŷ, ŷx̂, ŷx̂2} (41)

and E1 is constructed by increasing the space E0 – Hierarchical basis. Furthermore,
we note that there are four new basis functions on edges that are generated by the
elements x̂, x̂ŷ ∈ S1,2 and ŷ, ŷx̂ ∈ S2,1, which will be added to the edges together
with the basis functions for elements of Whitney.
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γ1

γ2

γ3 γ4

(1, 1)(−1, 1)

(−1,−1) (1,−1)

(a)

γ1

γ2

γ3 γ4

(1, 1)(−1, 1)

(−1,−1) (1,−1)

(b)

Figure 1: (a) Degrees of freedom for Whitney elements. The arrows indicate the
zero-order moment of the tangential field ÊEE. Note that the direction of the tangent
remains in the anti-clockwise around the element; (b) The arrows indicate the de-
grees of freedom of the elements of order p = 1 distributed on the edges. The black
squares in the interior of the element represent the degrees of freedom necessary
for a quadrilateral.

Unlike the basis functions for Whitney elements, here interior basis functions gen-
erated by elements x̂, ŷ2, x̂ŷ2 ∈ S1,2 and ŷ, x̂2, ŷx̂2 ∈ S2,1 are also taken into account.
Figure 1(b) shows the distribution of degrees of freedom on the quadrilateral ele-
ment.

Note that, the elements of order p= 1 are provided degrees of freedom on the edges
and inside the element. Thus, the basic functions of these elements are organized
as follows:

1. Basis function in the edges:

φφφ
γ1
0 (x̂xx) = L0(x̂)l0(ŷ)eee1; φφφ

γ2
0 (x̂xx) = L0(x̂)l1(ŷ)eee1;

φφφ
γ3
0 (x̂xx) = L0(ŷ)l0(x̂)eee2; φφφ

γ4
0 (x̂xx) = L0(ŷ)l1(x̂)eee2

φφφ
γ1
1 (x̂xx) = L1(x̂)l0(ŷ)eee1; φφφ

γ2
1 (x̂xx) = L1(x̂)l1(ŷ)eee1;

φφφ
γ3
1 (x̂xx) = L1(ŷ)l0(x̂)eee2; φφφ

γ4
1 (x̂xx) = L1(ŷ)l1(x̂)eee2

(42)

Note that the first four basis functions of the edge are the same basic functions for
elements of order p = 0. The basis functions in (42) are built using the weight
function vk = Lk, satisfying (36).
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2. Basis functions inside φφφ
int
i, j,1 and φφφ

int
i, j,2, with i = 0,1 and j = 2:

φφφ
intx
0,2,1(x̂xx) = L0(x̂)l2(ŷ)eee1; φφφ

intx
1,2,1(x̂xx) = L1(x̂)l2(ŷ)eee1;

φφφ
inty
0,2,2(x̂xx) = L0(ŷ)l2(x̂)eee2; φφφ

inty
1,2,2(x̂xx) = L1(ŷ)l2(x̂)eee2

(43)

Basis functions in (43) are constructed in order to satisfy (37).

5 Numerical Tests

Now, in order to illustrate the performance of Whitney-Nédélec edge finite ele-
ments, the problem of the propagation of a plane wave through of a square domain
Ω = (0,1)2 with boundary Γ is analysed. Suppose Ω in the vacuum, thus ε = ε0
and µ = µ0.

Consider the electric field EEE ∈ H(curl,Ω) and the following boundary value prob-
lem

−ω
2
(

1+
iσ µω0

ω2

)
EEE +∇S×∇S×EEE = FFF ∀ xxx = (x1,x2) ∈Ω (44)

nnn×EEE = 0 on Γ, (45)

where ω is a fixed frequency and nnn = (n1,n2) is the normal vector to Γ.

The Finite Element Method is based on the variational formulation or weak for-
mulation of boundary value problems. Before starting the discretization of the sec-
ond order system (44), an appropriate variational formulation must be stated, e.g.
Monk (2003b); Reddy (1986); Kreyszig (1978). First, it is important to note as that
Maxwell’s equations involve complex functions in harmonic regime, the field must
be adapted to complex spaces. For example, the inner product (L2(Ω))2 is now de-
fined by (uuu,vvv)L2 =

∫
Ω

uuu ·vvv dΩ. For the variational formulation the procedure is done
as follows: (a) multiply (44) by φφφ ∈H0(curl,Ω) = {xxx∈H(curl,Ω); nnn×xxx= 0}; (b)
integrates on Ω the result of the multiplication; (c) apply the Theorem 2.2 choosing
w = ∇S×EEE and vvv = φφφ . Thus,

−ω
2
((

1+
iσ µω0

ω2

)
EEE,φφφ

)
L2

+(∇S×EEE,∇S×φφφ)L2 = (FFF ,φφφ)L2 (46)

for all φφφ ∈ H0(curl,Ω). If the conductivity σ > 0 in Ω, then can be written (46) as
a sesquilinear form that will be coercive H0(curl,Ω), Monk (1991). This ensures
that (46) has a unique solution for any ω and FFF ∈ (L(Ω))2. However, if σ = 0 in
Ω, then (46) will have no solution to an infinite discrete set of ω values, which are
called resonances. In this case, the sesquilinear form defined by the left side in (46)
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will not be coercive, Monk (1991). To avoid this problem, the use of Fredholm
theory to provides the conditions that will ensure the existence and uniqueness of
a solution, Monk (2003b). Consequently, for any value imposed to σ a solution to
(46) can be find.

Assuming FFF = 000 the variational formulation (46) becomes the following problem:
Find EEE ∈ H(curl,Ω) such that

(∇S×EEE,∇S×φφφ)L2 = ω
2(EEE,φφφ)L2 ∀ φφφ ∈ H0(curl,Ω) (47)

nnn×EEE = f on Γ, (48)

where f : Ω −→ C is a continuous and smooth function. Choosing the function
f (xxx) = n2Ẽ1(xxx)− n1Ẽ2(xxx) in (48), where (Ẽ1, Ẽ2) = (−10πeiκκκ·xxx,10πeiκκκ·xxx) is a
plane wave propagating in the direction of the wave vector κκκ = 10π(1,1), and
ω = 10

√
2π , one has ẼEE = (Ẽ1, Ẽ2) the exact solution to (47)-(48).

Consider that the domain Ω is discretized by a uniform mesh of square elements
of side h, Figure 2, and that uniform p-order elements are used to define the edge
finite elements space VVV hp. The finite element approximation is: Find EEEhp ∈ VVV hp
such that

(∇S×EEEhp,∇S× vvvhp)L2 = ω
2(EEEhp,vvvhp)L2 (49)

for all vvvhp ∈VVV hp∩H0(curl,Ω). Essential boundary conditions are imposed requir-
ing that over all edges γ ⊂ Γ, one has∫

γ

(nnn×EEEhp− f )v ds = 0 (50)

for all v ∈ Pp(γ), where Pp denotes the one-dimensional space of polynomials of
degree at most equal to p in the arc length. Note that, if ttt = (n2,−n1) is the tangent
vector on γ , equation (50) agree with equation (24). The approximation to ẼEE is car-
ried out with Whitney elements and first order Nédélec elements. Some numerical
experiments concerning the solution of the problem can seen in this section. Fig-
ures 3 and 4 highlight the approximation of the real part of the second component
of the exact solution ẼEE to the problem (47)-(48).

6 Mesh parameter selection

In the preceedings section it could be seen that the error of approximation by finite
elements may cause a phase difference and a amplitude difference with respect to
the exact solution, see Figure 4(b). This effect depends not only on the mesh param-
eter h, but also on the temporal frequency ω , see Figures 5(a) and 5(b). This fact
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Figure 2: Example particular mesh used in the numerical experiments, with n2 =
16, being n the number of elements in the base domain, i.e. h = 1/n.

can be analyzed through the study of the dispersive properties of numerical solution
for homegeneous scalar Helmholtz equation in an infinity mesh, Ainsworth (2003).
Aiming to find an expression for the discrete dispersion relation for Whitney and
Nï¿½dï¿½lec Elements, one can consider some relations between the Helmholtz
equation and the equation (44), with σ = 0, i.e.,

−ω
2EEE +∇S×∇S×EEE = 000 (51)

Dispersion relation for this equation can be described when a non-trivial plane wave
solution of the kind EEE(xxx) = αααeiκκκ·xxx is searched for (51), where ααα = (α1,α2). Sub-
stituting this plane wave in (51) one finds

(ω2I +Mκ)ααα = 000, com Mκ =

[
κ2

2 −κ1κ2
−κ1κ2 κ2

1

]
(52)

Considering det(ω2I +Mκ) = 0, the following relation arises

ω = |κκκ| (53)

Equation (53) is the dispersion relation for (51). According to the next lemma so-
lutions to the equation (51) can be obtained from solutions to scalar homogeneous
Helmholtz equation.

Lemma 6.1 Let Ω⊂R2 be a bounded Lipschitz domain. Whenever φ = φ(x1,x2)∈
H1(Ω) present as a solution to the scalar homogeneous Helmholtz equation, the
field defined by EEE = ∇S×φ , will be a solution to the second order time harmonic
Maxwell system

∇S×∇S×EEE = ω
2EEE (54)
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(a) (b)

(c) (d)

Figure 3: Variation along the main diagonal of the exact solution (continuous line)
and of the numerical solution (dashed line) using Whitney elements in the levels:
(a) h = 1/15; (b) h = 1/20; (c) h = 1/40; (d) h = 1/60.

Proof: Applying surface rotational twice over EEE we obtain ∇S × ∇S × EEE =(
− ∂ 3φ

∂x2∂x2
1
− ∂ 3φ

∂ 3x3
2
, ∂ 3φ

∂x1∂x2
2
+ ∂ 3φ

∂ 3x3
1

)
. Thus, one has ∇S×∇S×EEE−ω2EEE = 000.

Lemma 6.1 also shows that discrete solutions to (51) can be obtained from dis-
crete solutions to the Helmholtz equation by simply taking EEEh = ∇S×φh . In fact,
according to the next lemma, the components of a field EEE are solutions of the ho-
mogeneous scalar Helmholtz equation.

Lemma 6.2 Let Ω⊂R2 be a bounded Lipschitz domain. If ẼEE, H̃HH ∈H(curl,Ω) are
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(a) (b)

(c) (d)

Figure 4: Variation along the main diagonal of the exact solution (continuous line)
and of the numerical solution (dashed line) using first order Nédélec elements in
the levels: (a) h = 1/5; (b) h = 1/10; (c) h = 1/30; (d) h = 1/60

solutions to the first-order time harmonic Maxwell system{
∇S×EEE− iκHHH = 000
∇S×HHH + iκEEE = 000

, (55)

then the scalar components of the field ẼEE and H̃HH are solutions to the homogeneous
scalar Helmholtz equation.

Proof: Multiplying the second equation of system (55) by iκ , and then applying
the surface rotational operator in the first equation of system, we can eliminate HHH
from first equation of system to obtain ∇S×∇S×EEE −κ2EEE = 000. Note that, from
identities 3.33 and 3.35 in Kaplan (1970), one has, respectively, ∇S ·EEE = 0 and
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(a) (b)

Figure 5: (a) Variation along the main diagonal (h = 1/20) of the exact solution
(continuous line) and of the numerical solution with first order Nédélec elements
of the first order (dashed line) with ω2 = 200π2 and with (b) ω2 = 800π2.

consequently ∇S×∇S×EEE−κ2EEE = ∇2EEE +κ2EEE. Analogously is shown the same
for the field HHH.

From Lemmas 6.1 and 6.2, it is evident the correlation between Helmholtz equa-
tion and second order time harmonic Maxwell system. Thus, the expression for the
discrete dispersion relation for scalar Helmholtz equation in one dimension can be
used to determine an expression for the discrete dispersion relation for Whitney el-
ements and Nédélec first order elements. In fact, as an example, consider VVV h0 as the
Whitney elements space built on a uniform mesh(see Figure 2). The components
of the vector function EEEh = (E(1)

h ,E(2)
h ) ∈VVV h0 will be expanded in the form

E(d)
h = ∑

nnn∈Z2

α
(d)
nnn φφφ

(d)
nnn , d = 1,2 nnn = (n1,n2) (56)

where Z is the integer set and

φφφ
(1)
nnn =

[
ψn1(x1)θn2(x2)

0

]
; φφφ

(2)
nnn =

[
0

θn1(x1)ψn2(x2)

]
(57)

Here, ψn is the characteristic function for the interval (nh,nh+h), given by ψn(s) =
1 if s ∈ (nh,nh+ h) and zero otherwise, when θn is the piecewise continuous lin-
ear interpolation function. For n = m− 1,m,m+ 1, θn functions as well as their
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derivatives, θ ′n, are defined by

θm−1(s) =



2−m+
s
h

if s ∈ (mh−2h,mh−h]

m− s
h

if s ∈ (mh−h,mh)

0 otherwise

θ ′m−1(s) =



1
h

if s ∈ (mh−2h,mh−h]

−1
h

if s ∈ (mh−h,mh)

0 otherwise

θm(s) =



1−
(

m− s
h

)
if s ∈ (mh−h,mh]

1+
(

m− s
h

)
if s ∈ (mh,mh+h)

0 otherwise

θ ′m(s) =



1
h

if s ∈ (mh−h,mh]

−1
h

if s ∈ (mh,mh+h)

0 otherwise

θm+1(s) =



−m+
s
h

if s ∈ (mh,mh+h]

2+m− s
h

if s ∈ (mh+h,mh+2h)

0 otherwise

θ ′m+1(s) =



1
h

if s ∈ (mh,mh+h]

−1
h

if s ∈ (mh+h,mh+2h)

0 otherwise

It is noteworthy that the basis functions used in this section are different from the
basic functions used in Section 4. The reason for this change is that the θn functions
are interpolants simplifying and so facilitate the dispersion analysis. However, the
spaces generated by the two basis is the same.

The line integral of a basis function, φφφ
(d)
nnn ∈ VVV h0, taken along edges of a square

element, has the form∫
γ
(a)
mmm

φφφ
(d)
nnn · dxxx =

{
h if mmm = nnn and d = a
0 otherwise

, (58)

where γ
(a)
mmm denotes the edge aligned with the ath coordinate axis starting at the

indexed vertex by mmm. From equation (58), one can calculate the coefficients of EEEh

in (56) as follows: Multiply (58) by α
(a)
nnn and consider nnn = mmm and a = d; then:

α
(a)
nnn =

1
h

∫
γ
(a)
nnn

α
(a)
nnn φφφ

(a)
nnn · dxxx

Using equation (56) in the dth spatial component, the following expression arises:

α
(a)
nnn =

1
h

∫
γ
(a)
nnn

EEEh · dxxx (59)
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Furthermore, consider that a non-trivial discrete solution EEEh satisfies the condition

EEEh(xxx+hnnn) = eihκκκh·nnnEEEh(xxx), (60)

where κκκh = (κ1,κ2) is the discrete wave vector related to a prescribed temporal
frequency ω through of the discrete relation dispersion. Applying a variable change
in (59) and considering translation invariance of the mesh, equation (60), one has

α
(d)
nnn =

1
h

∫
γ
(d)
nnn

EEEh(xxx) · dxxx =
1
h

∫
γ
(d)
000

eihκκκh·nnnEEEh(yyy) · dyyy (61)

consequently,

α
(d)
nnn = eihκκκh·nnnα

(d)
000 ∀nnn ∈ Z2 (62)

Replacing equation (62) in (56), one finds

E(d)
h = α

(d)
000 ∑

nnn∈Z2

eihκκκh·nnnφφφ
(d)
nnn (63)

and thus, decoupling the sum for each component of nnn, it follows that
E(1)

h = α
(1)
000 ∑

n∈Z
eihκ1n

χn(x1) ∑
n∈Z

eihκ2n
θn(x2)

E(2)
h = α

(2)
000 ∑

n∈Z
eihκ2n

χn(x2) ∑
n∈Z

eihκ1n
θn(x1)

(64)

It follows from (60) that

∑
n∈Z

eihκn
θn(s+nh) = eihκn

∑
n∈Z

eihκn
θn(s) ∀ n ∈ Z (65)

Let u ∈H1(Ω) be an analytic solution of the homogeneous scalar Helmholtz equa-
tion in one dimension, defined by u(s) = eiκs. Consider Vh a finite element space.
Note that equation (65) can be seen as a discrete version of u, i.e.,

uh(κ,s) = ∑
n∈Z

eihκn
θn(s) (66)

Hence, the following variational problem can be considered: Find uh ∈Vh such that(
duh

ds
,
dvh

ds

)
L2

= ωh(κ)
2(uh,vh)L2 ∀ vh ∈ Vh (67)

or∫
R

duh

ds
dvh

ds
ds = ωh(κ)

2
∫
R

uhvh ds ∀ vh ∈ Vh (68)
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where ωh(κ)
2 can be calculated by replacing (66) in (68), by defining vh = θm, with

m∈Z, and by noting that θn(s)θm(s) 6= 0 just when s∈ (mh−h;mh+h). By taking
the integral in each of the three plots(n = mh−h,mh,mh+h), one has

ωh(κ)
2 =

(m+1)h

∑
n=(m−1)h

eihκn
∫ (m+1)h

(m−1)h
θ
′
n(s)θ

′
m(s) ds

(m+1)h

∑
n=(m−1)h

eihκn
∫ (m+1)h

(m−1)h
θn(s)θm(s) ds

(69)

After solving the integrals and using the identity 2cos(κh) = eihκ + e−ihκ , the fol-
lowing expression arises:

ωh(κ)
2 =

6
h2

1− cos(hκ)

2+ cos(hκ)
(70)

Furthermore, note that

duh

ds
=

(
eihκ −1

h

)
∑
n∈Z

eihκn
χn(s) (71)

Equation (71) indicates that the function EEEh, defined in (64), can be expressed in
the alternative form, given below

E(1)
h = α1

duh(κ1,x1)

dx1
uh(κ2,x2),

E(1)
h = α2

duh(κ2,x2)

dx2
uh(κ1,x1)

(72)

where α1 = α
(1)
000 /iκ1 and α2 = α

(2)
000 /iκ2 with h−→ 0.

A non-trivial discrete solution of the form (72) is required, so as to satisfy the
variational formulation presented in (49). Then, for all nnn ∈ Z2, vvvh ∈VVV h0 is chosen
as

vvvh =

[
θ ′n1

(x1)θn2(x2)
0

]
(73)

Using equation (72) combined with (68):

(EEEh,vvvh) = ωh(κ1)
2
α1

2

∏
l=1

∫
R

uh(κl;xl)θnl(xl) dxl (74)
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and

(∇×EEEh,∇× vvvh) = (α1−α2)ω
2
h (κ1)ω

2
h (κ2)

2

∏
l=1

∫
R

uh(κl;xl)θnl(xl)dxl (75)

Thus, equation (49) simplifies to the algebraic equation

α1
(
ωh(κ2)

2−ω
2)−α2ωh(κ2)

2 = 0 (76)

Note that (76) remains the same, regardless the multi-index nnn ∈ Z2. The same
argument applies to the second component, i.e., by selecting

vvvh =

[
0

θn1(x1)θ
′
n2
(x2)

]
(77)

one has

α2
(
ωh(κ1)

2−ω
2)−α1ωh(κ1)

2 = 0

Therefore, equation (49) is reduced to a homogeneous system of two equations and
two variables, α1 e α2. Consequently, the following equivalent condition for the
existence of a non-trivial solution EEEh is obtained:∣∣∣∣ −ω2 +ωh(κ2)

2 −ωh(κ2)
2

−ωh(κ1)
2 −ω2 +ωh(κ1)

2

∣∣∣∣= 0

or:

ω
2 = ωh(κ1)

2 +ωh(κ2)
2 (78)

Expression (78) is the discrete dispersion relation corresponding to the Whitney
elements. By following the same steps, and making appropriate considerations to
the degree p of the interpolation functions, an expression for the general case can
be found; it reads:

ω
2 = ωhp(κ1)

2 +ωhp(κ2)
2 (79)

Using linear interpolants(p = 0 order in the case of Whitney elements) in the
discretization of the homogeneous Helmholtz equation, Babuška and Ihlenburg
(1995), Thompson and Pinsky (1994) and Ainsworth (2003) demonstrated the fol-
lowing expression for relation discrete dispersion

cos(hκ) =
6−2(hωh(κ))

2

6+(hωh(κ))2 with h−→ 0 (80)
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which is the same equation (70), written in terms of ωh(κ). Theorem 1 in Ainsworth
(2003), shows how to build rational expressions for the cosine through Padé approx-
imation, which are related to the order q = p+ 1 of the finite element method for
the approximation of the Helmholtz equation. Such rational functions demonstrate
better accuracy with the growth of the q-order used in interpolants of the discretized
solution. In particular, for p = 1 (first-order Nédélec elements), the cosine rational
expression is:

cos(hκ) =
3(hωh(κ))

4−104(hωh(κ))
2 +240

(hωh(κ))4 +16(hωh(κ))2 +240
with h−→ 0 (81)

The purpose of this section is to show how to select a mesh parameter h, which will
make the difference in phase velocity, between the exact and approximate solution
of the problem (47)-(48), become negligible. With this purpose, consider that the
numerical phase velocity C is defined according to the p-order of the edge finite
elemens used, as:

C =
ωhp(κ)

κ
(82)

Note that equations (80) and (81) can be expressed in terms of ωhp(κ), i.e.

ωh0(κ)
2 =

6
h2

(
1− cos(hκ)

2+ cos(hκ)

)
(p = 0) (83)

and

ωh1(κ)
2 =

1
h2

(
16cos(hκ)+104+

√
α

6−2(cos(hκ))

)
(p = 1) (84)

respectively, where α = (16cos(hκ)+104)2−4(cos(hκ)−3)(cos(hκ)−1). Fig-
ure 6(a) depicts the comparison between the exact phase velocity c = ω/|κκκ| of the
continuous problem(consider c = 1, see equation (53)) and the numerical phase ve-
locity when expressions (83) and (84), are substituted, in equation (82). Figure 6(b)
depicts a closer view of Figure 6(a) that estimates, for example, the largest possible
value of the parameter h so that the estimated phase error is less than 0.01%. To
do so, simply observe the points where the velocity curves reach the value 1.0001,
i.e., κh≈ 0,05 and κh≈ 0,62 for Whitney and Nédélec elements, respectively.

The estimates obtained for h are validated by means of the numerical experiments
made in earlier section. By adapting use κκκ = (10π,10π), then κ1 = κ2 = 10π ,
and thus the recommended values are: h ≈ 0,05

10π
≈ 1

629 (Whitney elements) and
h≈ 0,62

10π
≈ 1

51 (Nédélec elements).
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In fact, for h ≤ 1
51 the phase difference in the experiment with Nédélec elements

becomes negligible within the error suggested(0.01%). This shows that the disper-
sive effects caused by numerical approximation carried out with Whitney(p = 0)
and Nédélec(p = 1) elements can be controlled according to the choice of initial
parameter h estimated.

Equations (83) and (84) are employed to show the phase velocity approximation
for a fixed κ and an increasing n. This is shown in Figures 7(a) and 7(b) for three
different κ values. As expected, it is clear that improving the approximation for
c = 1 requires smaller h values for larger frequency numbers, in a similar way
followed by the approximate with edge finite element, see Figures 5(a) and 5(b).
Therefore, we can characterize the error in the phase velocity can be characterized
as error estimator in the edge finite element approximation.

(a) (b)

Figure 6: (a) Numerical phase velocity for Whitney and Nédélec elements, and
phase velocity c = 1.; (b) Closer view Figure 6(a)

7 Conclusion

In this work the edge finite elements space of zero-order and first-order, known
by Whitney elements and Nédélec elements, respectively, were described, further-
more, the hierachical basis function set to each finite element studied were built.
A brief presentation of the second order time harmonic Maxwell system was also
presented, together with some numerical experiments concerned with its solutions.
Note that some interesting results in the approximation were found: The results
revealed phase differences between the approximate and the exact solutions when
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(a) (b)

Figure 7: (a) Error between the phase velocity of the continuous problem and the
numerical phase velocity for Whitney elements; (b) Nédélec elements of first order.
The number of elements in the mesh is given by n2, where the mesh parameter is
h = 1/n. (see Figure 2).

a fixed wave vector and a fixed temporal frequency. Another aspect that deserves
attention is the presence of an amplitude difference when the frequency is changed.
Two lemmas, which show a clear relationship between the scalar homogeneous
Helmholtz equation and the second order time harmonic Maxwell system were
presented, turning possible to adapt the dispersive effects, caused by finite ele-
ment approximation of the Helmholtz equation, for the second order time harmonic
Maxwell system approximation. The goal arises in the search of the proper mesh
parameter, which provides quantitative information about the level of mesh refine-
ment and necessary approximation in order to control the dispersive effects. For
simplicity, this analysis was restricted to plane waves propagating with an angle of
45 degrees with the horizontal (as in the numerical experiments presented). Note
that plane waves propagating in other directions presents no additional difficulties.
Due to the numerical experiments it was observed that the error in the approxima-
tion by edge finite element have a strong correlation with the phase velocity error
from the analyzed problem. This evidence suggests that the numerical phase veloc-
ity defined from the discrete relation dispersion can be used as an error estimator
in the approximation of the second order time harmonic Maxwell system by edge
finite element method.
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