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Non Probabilistic Solution of Fuzzy Fractional
Fornberg-Whitham Equation

S. Chakraverty1,2 and Smita Tapaswini1

Abstract: Fractional Fornberg-Whitham equation has a vast application in physics.
There exist various investigations for the above problem by considering the vari-
ables and parameters as crisp/exact. In practice, we may not have these parameters
exactly but those may be known in some uncertain form. In the present paper,
these uncertainties are taken as interval/fuzzy and the authors proposed here a new
method viz. that of the double parametric form of fuzzy numbers to handle the un-
certain fractional Fornberg-Whitham equation. Using the single parametric form of
fuzzy numbers, original fuzzy fractional Fornberg-Whitham equation is converted
first to an interval based fuzzy differential equation. Next this equation is trans-
formed to crisp form by applying the proposed double parametric form of fuzzy
numbers. Finally it has been solved using homotopy perturbation method (HPM).
Present method performs very well in terms of computational efficiency. The reli-
ability of the method is shown by obtaining an approximate numerical solution for
different cases. Results are given in term of plots and are also compared in special
cases.

Keywords: Triangular fuzzy number, Gaussian fuzzy number, r−cut, Double
parametric form of fuzzy number, fuzzy fractional Fornberg-Whitham equation,
HPM.

1 Introduction

Fractional order differential equations have become an important research area due
to its wide range of application in science and engineering. Many important works
have been reported regarding fractional calculus in the last few decades. Several
excellent books related to this have also been written by different authors repre-
senting the scope and various aspects of fractional calculus such as in [Podlubny
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(1999); Miller and Ross (1993); Oldham and Spanier (1974); Samko et al. (1993);
Kiryakova (1993)]. These books also give an extensive review on fractional deriva-
tive and its applications which may help the reader for understating the basic con-
cepts of fractional calculus and its application. Most fractional differential equa-
tions do not have exact analytic solutions. As regards, many authors have developed
various numerical methods to solve fractional differential equations [Li (2014);
Chen et al. (2014); Pang et al. (2014)].

Study of travelling wave problem plays a very important role in many areas of
physics. The Fornberg-Whitham equation is a type of traveling wave solutions
called kink-like or antikink like wave solutions. This equation is analyzed by vari-
ous authors [Abidi and Omrani (2010); Lu (2011); Fornberg and Whitham (1978);
Nuseir (2012); He et al. (2010); Zhou and Tian (2009); Zhou and Tian (2008);
Mahmoudi and Kazemian (2012); Sakar and Erdogan (2013); Sakar and Erdogan
(2012); Merdan et al. (2012)]. Abidi and Omrani (2010) applied homotopy analysis
method for solving the Fornberg–Whitham equation and compared with Adomian’s
decomposition method. Variational iteration method is used by Lu (2011) to obtain
the approximate solution of Fornberg–Whitham equation. Fornberg and Whitham
(1978) studied numerical and theoretical study of Fornberg–Whitham equation. A
new exact solution of modified Fornberg-Whitham equation is obtained by Nuseir
(2012). Bifurcation theory and the method of phase portraits analysis are done
by He et al. (2010) for the study of modified Fornberg–Whitham equation. Zhou
and Tian (2009) investigated a new travelling wave solution viz. periodic and soli-
tary wave solution. Also Zhou and Tian (2008) used bifurcation method to study
the solution of Fornberg–Whitham equation. The homotopy analysis method is
successfully implemented by Mahmoudi and Kazemian (2012) to obtain an ap-
proximate analytical solution. Sakar and Erdogan (2013) compared the solution
obtained by the homotopy analysis method and Adomian’s decomposition method
for the solution of time fractional Fornberg–Whitham equation. Sakar and Er-
dogan (2012) used variational iteration method for the solution of time-fractional
Fornberg–Whitham equation. Differential transformation method is used by Mer-
dan et al. (2012) to obtain numerical solution. Behera and Chakraverty (2013)
successfully applied homotopy perturbation method to obtain the numerical solu-
tion of fractionally damped beam equation. Fractional B-Spline method was imple-
mented by Jafari et al (2013) to get the numerical solution of fractional differential
equations. Also Jafari et al. (2013) applied homotopy analysis method for solving
fractional Abel differential equation. We may observe from the above cited papers
that the parameters and initial conditions are considered as crisp in their investi-
gations. But in actual practice, rather than the particular value, only uncertain or
vague estimates about the variables and parameters are known. Because those are
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found in general by some observation, experiment or experience. So, to handle
these uncertainties and vagueness, one may use fuzzy parameters and variables in
the governing differential equations.

As such, both uncertainty and fractional differential equations play a vital role
in real life problems. Some recent contributions to the theory of fuzzy differen-
tial equation and fuzzy fractional differential equations can be found in [Khas-
tan et al. (2011); Bede et al. (2007); Jafari et al. (2012); Malinowski (2013);
Akin et al. (2013); Agarwal et al. (2010); Arshad and Lupulescu (2011a); Ar-
shad and Lupulescu (2011b); Jeong (2010); Wang and Liu (2011); Allahviranloo
et al. (2012); Khodadadi and Celik (2013); Mohammed (2011); Salahshour et
al. (2012); Salah et al. (2013); Behera and Chakraverty (2014); Ahmad et al.
(2013); Allahviranloo et al. (2013); Tapaswini and Chakraverty (2013); Ghaemi et
al. (2013)]. The concept of fuzzy fractional differential equation was introduced
recently by Agrawal et al. (2010). Arshad and Lupulescu (2011a) proved some
results on the existence and uniqueness of solutions of fuzzy fractional differential
equations based on the concept of fuzzy differential equations of fractional order
introduced by Agrawal et al. (2010). Arshad and Lupulescu (2011b) investigated
the fractional differential equation with the fuzzy initial condition. Jeong (2010)
discussed existence and uniqueness results for fuzzy fractional di?erential equa-
tions with in?nite delay. Boundary value problem for fuzzy fractional differential
equations with finite delay has been solved by Wang and Liu (2011). They es-
tablished the existence of a solution by contraction mapping principle. Based on
Riemann–Liouville H-differentiability, Allahviranloo et al. (2012) studied explicit
solutions of fuzzy/uncertain fractional differential equations. Variational iteration
method is applied by Khodadadi and Celik (2013) for the solution of fuzzy frac-
tional differential equations. Mohammed et al. (2011) applied differential trans-
form method for solving fuzzy fractional initial value problems. Salahshour et
al. (2012) developed Riemann-Liouville differentiability by using Hukuhara dif-
ference called Riemann-Liouville H-differentiability and solved fuzzy fractional
differential equations by Laplace transforms. Recently Salah et al. (2013) applied
homotopy analysis transform method for the solution of fuzzy fractional heat equa-
tion. In Salah et al. (2013), the authors have solved fuzzy fractional differential
equation by solving lower and upper bound problems separately to get the solution
bounds. Behera and Chakraverty (2014) successfully applied HPM method to find
uncertain impulse response of imprecisely defined fractional order mechanical sys-
tem. Zadeh’s Extension Principle is used by Ahmad et al. (2013) for the solution
of fuzzy fractional differential equations. Allahviranloo et al. (2013) solved the
fuzzy fractional differential equations under generalized fuzzy Caputo derivative.
Numerical solution of fuzzy arbitrary order predator-prey system is obtained by
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Tapaswini and Chakraverty (2013). Ghaemi et al. (2013) solved a fuzzy fractional
kinetic equation of acid hydrolysis reaction.

HPM is found to be a powerful tool for the analysis of linear and non-linear physi-
cal problems. HPM was first developed by He (1999; 2000) and then many authors
applied this method to solve various linear and non-linear functional equations of
scientific and engineering problems. The solution is considered as the sum of in-
finite series, which converges rapidly. In the homotopy technique (in topology), a
homotopy is constructed with an embedding parameter p ∈ [0,1] which is consid-
ered as a “small parameter”. Very recently homotopy perturbation method has been
applied to a wide class of physical problems [Chen and Jiang (2010); Yazdi (2012);
Abolarin (2013); Tapaswini and Chakraverty (2013a); Tapaswini and Chakraverty
(2013b)].

In the present analysis, HPM is used for the numerical solution of uncertain nonlin-
ear fractional Fornberg-Whitham Equation subject to fuzzy initial condition. Un-
certainty in the initial condition is defined in term of triangular and Gaussian fuzzy
numbers. Literature review reveals that fuzzy fractional differential equations are
always converted to two crisp fractional differential equations in general to obtain
the solution bounds. But in this paper, a new approach is proposed based on a dou-
ble parametric form of fuzzy numbers as defined in Definition 2.4 where fractional
fuzzy differential equation has been converted to a single crisp parametric fractional
differential equation. Finally the corresponding single crisp parametric fractional
differential equation may be solved by any known numerical method symbolically
to obtain the solution in the double parametric form. Then substituting the para-
metric values one may obtain the final solution bounds.

This paper is organized as follows. In Section 2, some basic preliminaries related
to the present investigation are given. HPM is applied with the proposed technique
in Section 3 to solve fuzzy fractional Fornberg-Whitham equation. In Section 4,
uncertain solutions for different type of fuzzy initial condition are given. Next nu-
merical results and discussions are presented. Finally in the last section conclusions
are drawn.

2 Preliminaries

In this section, we present some notations, definitions and preliminaries which are
used further in this paper [Zimmermann (2001); Jaulin et al. (2001); Hanss (2005);
Ross (2004)].

Definition 2.1 Fuzzy number

A fuzzy number Ũ is a convex normalised fuzzy set Ũ of the real line R such that

{µŨ(x) : R→ [0, 1], ∀ x ∈ R}
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where, µŨ is called the membership function of the fuzzy set and it is piecewise
continuous.

Definition 2.2 Triangular fuzzy number

A triangular fuzzy number Ũ is a convex normalized fuzzy set Ũ of the real line R
such that

1. there exists exactly one x0 ∈ R with µŨ(x0) = 1 (x0is called the mean value
of Ũ), where µŨ is called the membership function of the fuzzy set,

2. µŨ(x) is piecewise continuous.

We denote an arbitrary triangular fuzzy number as Ũ = (a, b, c). The membership
function µŨ of Ũ is then defined as follows

µŨ(x) =


0, x≤ a
x−a
b−a , a≤ x≤ b
c−x
c−b , b≤ x≤ c
0, x≥ c

Definition 2.3 Gaussian fuzzy number

Let us now define an arbitrary asymmetrical Gaussian fuzzy number,
↔
U =(m,σl, σr).

The membership function µŨ of Ũ may be written as follows

µŨ(x) =
{

exp[−(x−m)2/2σ2
l ] for x≤ m

exp[−(x−m)2/2σ2
r ] for x≥ m

∀ x ∈ R

where, the modal value is denoted as m and σl, σr denote the left-hand and right-
hand spreads (fuzziness) corresponding to the Gaussian distribution.

For symmetric Gaussian fuzzy number the left-hand and right-hand spreads are
equal i.e. σl = σr = σ . So the symmetric Gaussian fuzzy number may be written
as Ũ = (m, σ , σ) and corresponding membership function may be defined as

µU(x) = exp{−γ(x−m)2} ∀ x ∈ R

where, γ = 1/2σ2.

Definition 2.4 Single parametric form of fuzzy numbers

The triangular fuzzy number Ũ = (a, b, c) can be represented by an ordered pair of
functions through r− cut approach viz. [u(r), ū(r)] = [(b−a)r+a, − (c−b)r+c]
where, r ∈ [0, 1].
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Similarly, for symmetric Gaussian fuzzy number U = (m, σ , σ) in parametric
form is written as

U = [u(r), ū(r)] =

[
m−

√
−(loge r)

γ
, m+

√
−(loge r)

γ

]
.

The r−cut form is known as parametric form or single parametric form of fuzzy
numbers.

It may be noted that the lower and upper bounds of the fuzzy numbers satisfy the
following requirements

1. u(r) is a bounded left continuous non-decreasing function over [0,1]

2. ū(r) is a bounded right continuous non-increasing function over

3. u(r)≤ ū(r), 0≤ r ≤ 1.

Definition 2.5 Double parametric form of fuzzy number

Using the parametric form as discussed in Definition 2.3 we have Ũ = [u(r), ū(r)].
Now one may write this as crisp number with double parametric form as Ũ(r, β ) =
β (ū(r)−u(r))+u(r) where r and β ∈ [0, 1].

Definition 2.6 Fuzzy arithmetic

For any two arbitrary fuzzy number x̃ = [x(r), x̄(r)], ỹ = [y(r), ȳ(r)] and scalar k,
the fuzzy arithmetic is defined as follows,

1. x̃ = ỹ if and only if x(r) = y(r) and x̄(r) = ȳ(r)

2. x̃+ ỹ = [x(r)+ y(r), x̄(r)+ ȳ(r)]

3. x̃× ỹ =
[

min
(
x(r)× y(r),x(r)× ȳ(r), x̄(r)× y(r), x̄(r)× ȳ(r)

)
,

max
(
x(r)× y(r),x(r)× ȳ(r), x̄(r)× y(r), x̄(r)× ȳ(r)

) ]

4. kx̃(r) =
{

[kx̄(r) ,k (r)] ,k < 0
[k (r) ,kx̄(r)] ,k ≥ 0

3 Double parametric based fuzzy fractional Fornberg-Whitham equation

First we convert the fuzzy fractional Fornberg-Whitham equation in-to an interval
based fuzzy fractional Fornberg-Whitham equation using single parametric form
of fuzzy numbers. Then the interval based differential equation is reduced to crisp
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differential equation by using double parametric form of fuzzy numbers. Next, we
have applied HPM to obtain the solution in double parametric form.

Let us now consider the fuzzy fractional Fornberg-Whitham equation

Dα
t ũ(x, t)+Dxũ(x, t)+Dũ(x, t)Dxũ(x, t)

= Dũ(x, t)Dxxxũ(x, t)+3Dxũ(x, t)Dxxũ(x, t)+Dxxt ũ(x, t),
(1)

where, t > 0, 0 < α ≤ 1, x > 0, with fuzzy initial condition

ũ(x,0) = δ̃e
1
2 x

where Dα
t = ∂ α

∂ tα is the Caputo derivative of order α ∈ (0,1]. ũ(x, t), t and x are
uncertain fluid velocity, time and spatial coordinate respectively.

Here the initial condition has been taken as fuzzy with an idea that the condition
may actually be uncertain viz. due to the error in observation or experiment etc.
where we may take the error or uncertainty in term of fuzzy triangular or Gaussian
membership functions. As such, this will make the governing differential equation
as uncertain and the corresponding outcome or the output (result) will be in uncer-
tain form. This way we may have the actual essence of the uncertainty. So, we
need to have efficient methods to handle these problems.

According to the single parametric form we may write the above fuzzy fractional
Fornberg- Whitham equation (Eq. (1)) as

[Dα
t u(x, t;r), Dα

t ū(x, t;r)]+ [Dxu(x, t;r), Dxū(x, t;r)]

+ [u(x, t;r)Dxu(x, t;r), ū(x, t;r)Dxū(x, t;r)]

= [u(x, t;r)Dxxxu(x, t;r), ū(x, t;r)Dxxxū(x, t;r)]

+3 [Dxu(x, t;r)Dxxu(x, t;r), Dxū(x, t;r)Dxxū(x, t;r)]

+ [Dxxtu(x, t;r),Dxxt ū(x, t;r)] ,

(2)

subject to fuzzy initial condition

[u(x,0;r), ū(x,0;r)] =
[
δ (r), δ̄ (r)

]
e

1
2 x.

Using the double parametric form (as discussed in Definition 2.4), Eq. (2) can be
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expressed as

{β (Dα
t ūα

t (x, t;r)−Dα
t u(x, t;r))+Dα

t u(x, t;r)}
+{β (Dxū(x, t;r)−Dxu(x, t;r))+Dxu(x, t;r)}
+{β (ū(x, t;r)Dxū(x, t;r)−u(x, t;r)Dxu(x, t;r))+u(x, t;r)Dxu(x, t;r)}=
{β (ū(x, t;r)Dxxxū(x, t;r)−u(x, t;r)Dxxxu(x, t;r))+u(x, t;r)Dxxxu(x, t;r)}
+3{β (Dxū(x, t;r)Dxxūxx(x, t;r)−Dxu(x, t;r)Dxxu(x, t;r))+Dxu(x, t;r)Dxxu(x, t;r)}
+{β (Dxxt ū(x, t;r)−Dxxtu(x, t;r))+Dxxtu(x, t;r)} ,

(3)

subject to the fuzzy initial condition

{β (ū(x,0;r)−u(x,0;r))+u(x,0;r)}=
{

β
(
δ̄ (r)−δ (r)

)
+δ (r)

}
e

1
2 x where, r, β ∈

[0, 1].

Let us now denote {β (Dα
t ū(x, t;r)−Dα

t u(x, t;r))+Dα
t u(x, t;r)}= Dα

t ũ(x, t;r,β ),

{β (Dxū(x, t;r)−Dxu(x, t;r))+Dxu(x, t;r)}= Dxũ(x, t;r,β ),

{β (ū(x, t;r)Dxū(x, t;r)−u(x, t;r)Dxu(x, t;r))+u(x, t;r)Dxu(x, t;r)}
= ũ(x, t;r,β )Dxũ(x, t;r,β ),

{β (ū(x, t;r)Dxxxū(x, t;r)−u(x, t;r)Dxxxu(x, t;r))+u(x, t;r)Dxxxu(x, t;r)}
= ũ(x, t;r,β )Dxxxũ(x, t;r,β ),

{β (Dxū(x, t;r)Dxxū(x, t;r)−Dxu(x, t;r)Dxxu(x, t;r))+Dxu(x, t;r)Dxxu(x, t;r)}
= Dxũ(x, t;r,β )Dxxũ(x, t;r,β ),

{β (Dxxt ū(x, t;r)−Dxxtu(x, t;r))+Dxxtu(x, t;r)}= Dxxt ũ(x, t;r,β )

{β (ū(x,0;r)−u(x,0;r))+u(x,0;r)}= ũ(x,0;r,β ) and
{

β
(
δ̄ (r)−δ (r)

)
+δ (r)

}
=

δ̃ (r,β ).

Substituting these in Eq. (3) we get

Dα
t ũ(x, t;r,β )+Dxũ(x, t;r,β )+ ũ(x, t;r,β )Dxũ(x, t;r,β )

= ũ(x, t;r,β )Dxxxũ(x, t;r,β )

+3Dxũ(x, t;r,β )Dxxũ(x, t;r,β )+Dxxt ũ(x, t;r,β ),

(4)

with initial condition

ũ(x,0;r,β ) = δ̃ (r,β )e
1
2 x.
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Solving the corresponding crisp differential equation (Eq. (4)) one may get the
solution as ũ(x, t;r,β ). To obtain the lower and upper bounds of the solution in
single parametric form, we put β = 0 and 1 respectively which may be represented
as ũ(x, t ; r, 0) = u(x, t, r) and ũ(x, t;r, 1) = ū(x, t,r).

Solution by HPM [He (1999; 2000)] using proposed methodology
We have applied HPM to solve Eq. (4). According to HPM, we may construct a
simple homotopy for an embedding parameterp ∈ [0,1], as follows

(1− p)Dα
t ũ(x, t;r,β )

+ p

 Dα
t ũ(x, t;r,β )+Dxũ(x, t;r,β )+ ũ(x, t;r,β )Dxũ(x, t;r,β )
−ũ(x, t;r,β )Dxxxũ(x, t;r,β )−3Dxũ(x, t;r,β )Dxxũ(x, t;r,β )
−Dxxt ũ(x, t;r,β )

= 0,
(5)

or

Dα
t ũ(x, t;r,β )

+ p
[

Dxũ(x, t;r,β )+ ũ(x, t;r,β )Dxũ(x, t;r,β )− ũ(x, t;r,β )Dxxxũ(x, t;r,β )
−3Dxũ(x, t;r,β )Dxxũ(x, t;r,β )−Dxxt ũ(x, t;r,β )

]
= 0.

(6)

In the changing process from 0 to 1, viz. for p= 0, Eq. (5) or (6) gives ũα
t (x, t;r,β )=

0 where as for p = 1, we have the original system

Dα
t ũα

t (x, t;r,β )+Dxũ(x, t;r,β )+ ũ(x, t;r,β )Dxũ(x, t;r,β )−ũ(x, t;r,β )Dxxxũ(x, t;r,β )

−3Dxũ(x, t;r,β )Dxxũ(x, t;r,β )−Dxtxũ(x, t;r,β ) = 0
.

This is called deformation in topology. Moreover Dα
t ũ(x, t;r,β ) and

Dxũ(x, t;r,β )+ ũ(x, t;r,β )Dxũ(x, t;r,β )− ũ(x, t;r,β )Dxxxũ(x, t;r,β )

−3Dxũ(x, t;r,β )Dxxũxx(x, t;r,β )−DxxT ũxxt(x, t;r,β )

are called homotopic. Next, we can assume the solution of Eq. (5) or (6) as a power
series expansion in p as

ũ(x, t;r,β ) = ũ0(x, t;r,β )+ pũ1(x, t;r,β )+ p2ũ2(x, t;r,β )+ p3ũ3(x, t;r,β )+ · · · ,
(7)

where, ũi(x, t;r,β ) for i = 0, 1, 2, 3, · · · are functions yet to be determined. Sub-
stituting Eq. (7) into Eq. (5) or (6) and equating the terms with the identical powers
ofp, we have

p0 : Dα
t ũ0(x, t ;r,β ) = 0, (8)
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p1 : Dα
t ũ1(x, t;r,β )+Dxũ0(x, t;r,β )+ ũ0(x, t;r,β )Dxũ0(x, t;r,β )

− ũ0(x, t;r,β )Dxxxũ0(x, t;r,β )−3Dxũ0(x, t;r,β )Dxxũ0(x, t;r,β )

−Dxxt ũ0(x, t;r,β ) = 0,

(9)

p2 : Dα
t ũ2(x, t;r,β )+Dxũ1(x, t;r,β )+ ũ0(x, t;r,β )Dxũ1(x, t;r,β )

+ ũ1(x, t;r,β )Dxũ0(x, t;r,β )− ũ0(x, t;r,β )Dxxxũ1(x, t;r,β )

− ũ1(x, t;r,β )Dxxxũ0(x, t;r,β )−3Dxũ0(x, t;r,β )Dxxũ1(x, t;r,β )

−3Dxũ1(x, t;r,β )Dxxũ0(x, t;r,β )−Dxxt ũ1(x, t;r,β ) = 0,

(10)

p3 : Dα
t ũ3(x, t;r,β )+Dxũ2(x, t;r,β )+ ũ0(x, t;r,β )Dxũ2(x, t;r,β )

+ ũ1(x, t;r,β )Dxũ1(x, t;r,β )+ ũ2(x, t;r,β )Dxũ0(x, t;r,β )

− ũ0(x, t;r,β )Dxxxũ2(x, t;r,β ) − ũ1(x, t;r,β )Dxxxũ1(x, t;r,β )

− ũ2(x, t;r,β )Dxxxũ0(x, t;r,β )−3Dxũ0(x, t;r,β )Dxxũ2(x, t;r,β )

−3Dxũ1(x, t;r,β )Dxxũ1(x, t;r,β )

−3Dxũ2(x, t;r,β )Dxxũ.0(x, t;r,β )−Dxxt ũ2(x, t;r,β ) = 0,

(11)

and so on.

Choosing initial approximation ũ(x,0;r,β ) and applying the operator Jα (the in-
verse operator of Caputo derivative Dα) on both sides of Eqs. (8) to (11) one may
obtain the following equations

ũ0(x, t;r,β ) = δ̃ (r,β )ex/2,

ũ1(x, t;r,β ) =− δ̃ (r,β )
2

ex/2 tα

Γ(α +1)
,

ũ2(x, t;r,β ) =− δ̃ (r,β )
8

ex/2 t2α−1

Γ(2α)
+

δ̃ (r,β )
4

ex/2 t2α

Γ(2α +1)
,

ũ3(x, t;r,β ) =− δ̃ (r,β )
32

ex/2 t3α−2

Γ(3α−1)
+

δ̃ (r,β )
8

ex/2 t3α−1

Γ(3α)
−δ̃ (r,β )

8
ex/2 t3α

Γ(3α +1)
,

and so on.

Now substituting these terms in Eq. (7) with p→ 1we get the approximate solution
of Eq. (4) as

ũ(x, t;r,β ) = ũ0(x, t;r,β )+ ũ1(x, t;r,β )+ ũ2(x, t;r,β )+ ũ3(x, t;r,β )+ · · · . (12)

The above series obtained by HPM converges very rapidly and only few terms are
required to get the approximate solutions. The proof may be found in [He (1999;
2000)].
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4 Solution bounds for different fuzzy initial conditions

In this section we have considered different fuzzy initial conditions as discussed
in the following cases to find the uncertain solution bounds for fuzzy fractional
Fornberg-Whitham equation.

Case 1: Triangular fuzzy initial condition viz.

ũ(x,0;r,β ) = {β (0.4−0.4r)+(0.2r+0.8)}ex/2 = δ̃ (r,β )ex/2.

The solution can be written as

ũ(x, t;r,β )={β (0.4−0.4r)+(0.2r+0.8)}ex/2

(
1− 1

2
tα

Γ(α+1) −
1
8

t2α−1

Γ(2α) +
1
4

t2α

Γ(2α+1)

− 1
32

t3α−2

Γ(3α−1) +
1
8

t3α−1

Γ(3α) −
1
8

t3α

Γ(3α+1)

)
(13)

To obtain the solution bounds in single parametric form, we may substitute β = 0
and 1 for lower and upper bounds of the solution respectively. So we get

ũ(x, t;r,0) = u(x, t;r) = (0.2r+0.8)ex/2

(
1− 1

2
tα

Γ(α+1) −
1
8

t2α−1

Γ(2α) +
1
4

t2α

Γ(2α+1)

− 1
32

t3α−2

Γ(3α−1) +
1
8

t3α−1

Γ(3α) −
1
8

t3α

Γ(3α+1)

)
(14)

and

ũ(x, t;r,1) = ū(x, t;r) = (1.2−0.2r)ex/2

(
1− 1

2
tα

Γ(α+1) −
1
8

t2α−1

Γ(2α) +
1
4

t2α

Γ(2α+1)

− 1
32

t3α−2

Γ(3α−1) +
1
8

t3α−1

Γ(3α) −
1
8

t3α

Γ(3α+1)

)
(15)

One may note that in the special case when r = 1 the results (crisp) obtained by
the proposed method are exactly same as that of the solution obtained by Sakar &
Erdogan [17]

Case 2: Gaussian fuzzy initial condition viz.

ũ(x,0;r,β ) =
{

β

(
0.2
√
−2loge r

)
+
(

1−0.1
√
−2loge r

)}
ex/2 = δ̃ (r,β )ex/2.
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Again, by applying the proposed procedure, we get the solution as

ũ(x, t;r,β )

=
{

β

(
0.2
√
−2loge r

)
+
(

1−0.1
√
−2loge r

)}
ex/2


1− 1

2
tα

Γ(α+1) −
1
8

t2α−1

Γ(2α)

+1
4

t2α

Γ(2α+1) −
1
32

t3α−2

Γ(3α−1)

+1
8

t3α−1

Γ(3α) −
1
8

t3α

Γ(3α+1)


(16)

Putting β = 0 and 1 in ũ(x, t;r,β ) we get the lower and upper bounds of the fuzzy
solutions respectively as

u(x, t;r,0)=u(x, t;r)

=
(

1−0.1
√
−2loge r

)
ex/2

(
1− 1

2
tα

Γ(α+1) −
1
8

t2α−1

Γ(2α) +
1
4

t2α

Γ(2α+1)

− 1
32

t3α−2

Γ(3α−1) +
1
8

t3α−1

Γ(3α) −
1
8

t3α

Γ(3α+1)

)
(17)

and

ū(x, t;r,1) = ū(x, t;r)

=
(

1+0.1
√
−2loge r

)
ex/2

(
1− 1

2
tα

Γ(α+1) −
1
8

t2α−1

Γ(2α) +
1
4

t2α

Γ(2α+1)

− 1
32

t3α−2

Γ(3α−1) +
1
8

t3α−1

Γ(3α) −
1
8

t3α

Γ(3α+1)

)
(18)

The solution obtained by the proposed method for r = 1 is again found to be exactly
same as that of (crisp result) Sakar and Erdogan (2013)

5 Numerical results and discussions

Numerical results for fuzzy fractional Fornberg-Whitham equation with different
fuzzy initial conditions are computed. Obtained results of the present analysis are
compared with the existing solution of Sakar & Erdogan (2013) in special cases
to show the validation of the proposed analysis. Computed results are depicted in
term of plots.

Triangular and Gaussian fuzzy solutions for Cases 1 and 2 are depicted in Figs. 1
and 2 respectively by varying the time t from 0 to 3 and x = 1 with α = 0.3. Next,
interval solutions for .x = 1 in both the cases have been given in Figs. 3 to 4 for
x = 1 and α = 0.3, 0.7, 0.9, 1. It may be worth mentioning that in both the cases,
present results exactly agree with the solution of Sakar & Erdogan (2013) in special
case of r = 1 Also it is interesting to note from Figs. 3 and 4 that the left and right
bounds of the uncertain fluid velocity that is ũ(x, t) (with particular values of α , r
and x) gradually decreases with the increase of the fractional order α and time t.
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Figs. 5 and 6 show for particular values of r = 0.2 and t = 1, the uncertain fluid
velocity increases with increase in x and decreases with the increase of fractional
orderα .

 

Figure 1: Fuzzy solution for Case 1.

 

Figure 2: Fuzzy solution for Case 2.



84 Copyright © 2014 Tech Science Press CMES, vol.103, no.2, pp.71-90, 2014

 

Figure 3: Interval solutions for Case 1 at x = 1.

 

Figure 4: Interval solutions for Case 2 at x = 1.
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Figure 5: Interval solutions for Case 1 at t = 1.

 

Figure 6: Interval solutions for Case 2 at t = 1.
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6 Conclusions

In this paper double parametric form of fuzzy numbers has been successfully em-
ployed for the solution of fuzzy fractional Fornberg-Whitham equation with trian-
gular and Gaussian fuzzy initial condition using the homotopy perturbation method.
The double parametric form approach is found to be easy and straight-forward. It is
interesting to note in both the examples that the lower solution is equal to the upper
solution when r = 1. Though the solution by HPM is of the form of an infinite
series but it can be written in a closed form. The main advantage of HPM may also
be seen in the process of solution of uncertain differential equations that it has the
capability to achieve exact solution and rapid convergence with few terms.

Acknowledgement: The authors would like to thank the Editor and anonymous
reviewers for their valuable suggestions and comments to improve the paper. Also,
we would like to thank Mr. Diptiranjan Behera, National Institute of Technology
Rourkela for his valuable help. The second author would like to thank the UGC,
Government of India, for financial support under Rajiv Gandhi National Fellowship
(RGNF).

References

Abidi, F.; Omrani, K. (2010): The homotopy analysis method for solving the
Fornberg–Whitham equation and comparison with Adomian’s decomposition method.
Comput. Math. Appl. vol. 59, pp. 2743–2750.

Abolarin, O. E. (2013): New improved variational homotopy perturbation method
for Bratu-type problems. American J. Comput. Math., vol. 3, pp. 110-113.

Agarwal, R. P.; Lakshmikantham, V.; Nieto, J. J. (2010): On the concept of
solution for fractional differential equations with uncertainty. Nonlinear Analy.:
Theory, Methods Appl., vol. 72, pp. 2859–2862.

Ahmad, M. Z.; Hasan, M. K.; Abbasbandy, S. (2013) Solving fuzzy fractional
differential equations using Zadeh’s extension principle. Sci. World J., vol. 2013,
pp. 1-11.

Akin, O.; Khaniyev, T.; Oruc, O.; Turksen, I. B. (2013): An algorithm for the
solution of second order fuzzy initial value problems. Expert Syst. Appl., vol. 40,
pp. 953-957.

Arshad, S.; Lupulescu, V. (2011): On the fractional differential equations with
uncertainty. Nonlinear Anal.: Theory, Methods Appl., vol. 74, pp. 3685-3693.

Arshad, S.; Lupulescu, V. (2011): Fractional differential equation with the fuzzy
initial condition. Elect. J. Diff. Equ., vol. 2011, pp. 1–8.



Non Probabilistic Solution of Fuzzy Fractional Fornberg-Whitham Equation 87

Allahviranloo, T.; Gouyandeh, Z.; Armand, A. (2013): Fuzzy fractional dif-
ferential equations under generalized fuzzy Caputo derivative. J. Intelligent Fuzzy
Syst., vol. 26, pp. 1481-1490.

Allahviranloo, T.; Salahshour, S.; Abbasbandy, S. (2012) Explicit solutions of
fractional differential equations with uncertainty. Soft Comp., vol. 16, pp. 297-302.

Bede, B.; Rudas, I.; Bencsik, A. (2007): First order linear fuzzy differential equa-
tions under generalized differentiability. Inf. Sci., vol. 177, pp. 1648-1662.

Behera, D.; Chakraverty, S. (2013): Numerical solution of fractionally damped
beam by homotopy perturbation method. Cent. Eur. J. Phys., vol. 11, pp. 792-798.

Behera, D.; Chakraverty, S. (2014): Uncertain impulse response of imprecisely
defined half order mechanical system. Annals Fuzzy Math. Inf., vol. 7, pp. 401-
419.

Chen, Y.; Han, X.; Liu, L. (2014): Numerical solution for a class of linear system
of fractional differential equations by the Haar wavelet method and the convergence
analysis. Comput. Model. Eng. Sci., vol. 97, pp. 391-405.

Chen, A.; Jiang, G. (2010): Periodic solution of the Duffing-Van der Pol oscillator
by homotopy perturbation method. Int. J. Comput. Math., vol. 87, pp. 2688-2696.

Fornberg, B.; Whitham, G. B. (1978): A numerical and theoretical study of cer-
tain nonlinear wave phenomena. Phil. Trans. Royal Soc. London A., vol. 289, pp.
373–404.

Ghaemi, F.; Yunus, R.; Ahmadian, A., Salahshour, S.; Suleiman, M.; Saleh,
S.F. (2013): Application of fuzzy fractional kinetic equations to modelling of the
acid hydrolysis reaction. Abst. Appl. Analy., vol. 2013, pp. 1-19.

Hanss M. (2005): Applied Fuzzy Arithmetic: An Introduction with Engineering
Applications. Springer-Verlag, Berlin.

He, J. H. (1999): Homotopy perturbation technique. Computer Methods in Appl.
Mech. Eng. vol. 178, pp. 257-262.

He, J. H. (2000): A coupling method of homotopy technique and perturbation
technique for nonlinear problems. Int. J. Non-Linear Mech., vol. 35, pp. 37-43.

He, B.; Meng, Q.; Li, S. (2010): Explicit peakon and solitary wave solutions for
the modified Fornberg-Whitham equation. Appl. Math. Comput., vol. 217, pp.
1976-1982.

Jafari, H.; Khalique, C. M.; Ramezani, M.; Tajadodi, H. (2013) Numerical
solution of fractional differential equations by using fractional B-spline. Cent. Eur.
J. Phys. doi: 10.2478/s11534-013-0222-4.

Jafari, H.; Saeidy, M.; Baleanu, D. (2012): The variational iteration method for



88 Copyright © 2014 Tech Science Press CMES, vol.103, no.2, pp.71-90, 2014

solving n-th order fuzzy differential equations. Cent. Eur. J. Phys., vol. 10, pp.
76-85.

Jafari, H.; Sayevand, K.; Tajadodi, H.; Baleanu, D. (2013) Homotopy analysis
method for solving Abel differential equation of fractional order. Cent. Eur. J.
Phys., doi: 10.2478/s11534-013-0209-1.

Jaulin, L.; Kieffer, M.; Didrit, O.; Walter, E. (2001): Applied Interval Analysis.
Springer, France.

Jeong, J. U. (2010): Existence results for fractional order fuzzy di?erential equa-
tions with infinite delay. Int. Math. Forum., vol. 5, pp. 3221 – 3230.

Khastan, A.; Nieto, J. J.; Rodríguez-López, R. (2011): Variation of constant
formula for first order fuzzy differential equations. Fuzzy Sets Syst., vol. 177, pp.
20–33.

Kiryakova, V. S. (1993): Generalized Fractional Calculus and Applications. Long-
man Scientific & Technical. Longman House: Burnt Mill, Harlow England.

Khodadadi, E.; Celik, E. (2013): The variational iteration method for fuzzy frac-
tional differential equations with uncertainty. Fixed Point Theory Appl., vol. 2013,
pp. 1-7.

Li, B. (2014): Numerical solution of fractional Fredholm-Volterra integro-differential
equations by means of generalized hat functions method. Comput. Model. Eng.
Sci., vol. 99, pp. 105-122.

Lu, J. (2011): An analytical approach to the Fornberg–Whitham type equations
by using the variational iteration method. Comput. Math. Appl. vol. 61, pp.
2010–2013.

Mahmoudi, Y.; Kazemian, M. (2012): Some notes on homotopy analysis method
for solving the Fornberg-Whitham equation. J. Basic Appl. Sci. Res. vol. 2, pp.
2985-2990.

Malinowski, M. T. (2013): Some properties of strong solutions to stochastic fuzzy
differential equations. Inf. Sci., vol. 252, pp. 62-80.

Merdan, M.; Gokdogan, A.; Yıldırım A.; Mohyud-Din, S.T. (2012): Numerical
simulation of fractional Fornberg-Whitham equation by differential transformation
method. Abstract Appl. Anal., vol. 2012, pp. 1-8.

Miller, K. S.; Ross, B. (1993): An Introduction to the Fractional Calculus and
Fractional Differential Equations. John Wiley and Sons, New York.

Mohammed, O. H.; Fadhel, F. S.; Abdul-Khaleq, F. A. (2011): Differential
transform method for solving fuzzy fractional initial value problems. J. Basrah
Res. (Sci.). vol. 37, pp. 158-170.



Non Probabilistic Solution of Fuzzy Fractional Fornberg-Whitham Equation 89

Nuseir, A. S. (2012): New exact solutions to the modified Fornberg-Whitham equa-
tion. Taiw. J. Math., vol. 16, pp. 2083-2091.

Oldham, K. B.; Spanier, J. (1974): The Fractional Calculus, Academic Press,
New York.

Pang, G.; Chen, W.; Sze, K. Y. (2014): Differential quadrature and cubature
methods for steady-state space-fractional Advection-Diffusion equations. Comput.
Model. Eng. Sci., vol. 97, pp. 299-322.

Podlubny, I. (1999): Fractional Differential Equations. Academic Press, New
York.

Ross, T. J. (2004): Fuzzy Logic with Engineering Applications. John Wiley & Sons
New York.

Samko, S. G.; Kilbas, A. A.; Marichev, O. I. (1993): Fractional integrals and
Derivatives-Theory and Applications. Gordon and Breach Science Publishers Lang-
horne.

Sakar, M. G.; Erdogan, F. (2013): The homotopy analysis method for solving
the time fractional Fornberg–Whitham equation and comparison with Adomian’s
decomposition method. Appl. Math. Modell. vol. 37, pp. 8876-8885.

Sakar, M. G.; Erdogan, F.; Yildirim, A. (2012) Variational iteration method for
the time-fractional Fornberg–Whitham equation. Comput. Math. Appl., vol. 63,
pp. 1382–1388.

Salahshour, S.; Allahviranloo, T.; Abbasbandy, S. (2012): Solving fuzzy frac-
tional differential equations by fuzzy laplace transforms. Comm. Non. Sci. Num.
Simul., vol. 17, pp. 1372-1381.

Salah, A.; Khan, M.; Gondal, M.A. (2013): A novel solution procedure for fuzzy
fractional heat equations by homotopy analysis transform method. Neu. Comp.
Appl., vol. 23, pp. 269–271.

Tapaswini, S.; Chakraverty, S. (2013): Numerical solution of fuzzy arbitrary
order Predator-prey equations. Appl. Appl. Math.: An Int. J., vol. 8, pp. 647 – 672.

Tapaswini, S.; Chakraverty, S. (2013): Numerical solution of uncertain beam
equations using double parametric form of fuzzy numbers. Appl. Comput. Intell.
Soft Comput., vol. 2013, pp. 1-8.

Tapaswini, S.; Chakraverty, S. (2013): Numerical solution of fuzzy quadratic
Riccati differential equation. Coupled Syst. Mech., vol. 2, pp. 255-269.

Wang, H.; Liu, Y. (2011): Existence results for fractional fuzzy differential equa-
tions with finite delay. Int. Math. Forum., vol. 6, pp. 2535-2538.

Yazdi, A. A. (2012): Homotopy perturbation method for nonlinear vibration anal-



90 Copyright © 2014 Tech Science Press CMES, vol.103, no.2, pp.71-90, 2014

ysis of functionally graded plate. J. Vib. Acoust., vol. 135, pp. 021012-1-6.

Zhou, J.; Tian, L. (2009): Periodic and solitary wave solutions to the Fornberg-
Whitham equation. Math. Prob. Eng., vol. 2009, pp. 1-10.

Zhou, J.; Tian, L. (2008) A type of bounded traveling wave solutions for the
Fornberg-Whitham equation. J. Math. Anal. Appl., vol. 346, pp. 255–261.

Zimmermann, H. J. (2001): Fuzzy Set Theory and its Application. Kluwer aca-
demic publishers, London.


