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MLPG Refinement Techniques for 2D and 3D Diffusion
Problems

Annamaria Mazzia1, Giorgio Pini1 and Flavio Sartoretto2

Abstract: Meshless Local Petrov Galerkin (MLPG) methods are pure meshless
techniques for solving Partial Differential Equations. One of pure meshless meth-
ods main applications is for implementing Adaptive Discretization Techniques. In
this paper, we describe our fresh node–wise refinement technique, based upon es-
timations of the “local” Total Variation of the approximating function. We numer-
ically analyze the accuracy and efficiency of our MLPG–based refinement. Solu-
tions to test Poisson problems are approximated, which undergo large variations
inside small portions of the domain. We show that 2D problems can be accurately
solved. The gain in accuracy with respect to uniform discretizations is shown to be
appreciable. By extending our procedure to 3D problems, we prove by experiments
that good improvements in efficiency can be obtained.
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1 Introduction

Meshless methods supply nowadays a good alternative over Finite Element (FE)
methods in many real–world problems, e.g. when meshing is a time–consuming
and cumbersome task [Gerace, Erhart, Kassab, and Divo (2013)].

Meshless Petrov Galerkin (MLPG) methods [Atluri (2004)] are true meshless, wide-
ly used methods.

In this paper we report about our numerical experiments on devising and imple-
menting MLPG–based, refinement strategies for solving diffusion problems.

Adaptive discretization strategies for classical Finite Element (FE) methods were
proposed since this method was in its infancy, e.g. by Sewell (1972). Among
the devised strategies, the well explored Zienkiewicz-Zhu Superconvergent Patch
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Recovery (ZZ-SPR) [Zienkiewicz and Zhu (1992)] works for high order FEM
and structural problems (relatively small number of nodes in meshes) [Babuska,
Strouboulis, and Upadhyay (1997)]. In our work, we deal with non–structural prob-
lems, requiring a large number of discretization nodes. ZZ-SPR is not apt in such
context.

Raising the degree p of FE elements, called p-refinement, is an adaptive strategy
used in structural mechanics. Recently, fracture treatment with XFEM were pro-
posed via enrichment of the trial basis [Gordeliy and Peirce (2013)]. Such strategy
is not apt to MLPG methods, were trial functions are usually non–poynomial ones
[Atluri (2004)].

The most common adaptive refinement strategy called h-refinement is performed
by reducing the average nodal spacing in areas of high gradient.

Combination of the two strategies, the so–called h− p–methods, were proposed
for FE methods [Schwab (1998)]. Dealing with meshless methods, we restrict to
h–refinements.

Micchelli (1986) demonstrated that multiquadric surface interpolation is always
solvable, for distinct data sets. Although any grid may be used, experience shows
that different node distributions produce different results. Therefore, a given global
error can be obtained with different number of nodes and positions, as pointed out
by Roque, Madeirab, and Ferreira (2014).

Babuska, Strouboulis, and Upadhyay (1997) introduced the notions of local error
and pollution error. They point out that local estimations do not account for errors.
That is why one labels the values used to trigger refinement/coarsening of meshes as
error “indicators”, rather than “estimators”. Babuska, Strouboulis, and Upadhyay
(1997) state that benchmarks are not sufficient to devise better error indicators:
local measures do not take into consideration pollution (i.e. global, near–field)
error. On the other hand numerical experiments are the only key to attain meshless
methods improvement, since no comprehensive convergence theory is available for
them. On the other hand, Babuska himself, corroborated by his co–authors, states in
[Babuska, Banerjee, and Osborn (2005)] that non–standard numerical methods for
the solution of differential equations are often based on heuristic ideas, and verified
by numerical experiments. Along this way, in this paper we provide efficiency
estimations of our refinement indicators, adapted after Babuska, Strouboulis, and
Upadhyay (1997).

Verfürth (2013) suggests that the main goal of adaptive methods is to “place more
grid-points where the solution is less regular”. Regularity is an analytical prop-
erty which is hardly well represented by numerical methods. Since we deal with
regular solutions, we guess that “less regular” should be changed into “more twist-
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ing”. Working on this idea, we use the Total Variation, an indicator for refining a
discretization.

This paper is organized as follows. Section 2 summarizes main concepts about
MLPG techniques. Section 3 describes our refinement procedure and attached is-
sues. Section 4 gives detailed information about suitable test problems. Section 5
describes and anlyzes distinguished numerical results. Section 6 draws our main
conclusions.

2 Meshless techniques

2.1 Weak formulation

Let us consider the dimensionless steady–state diffusion equation on the domain Ω

−∇ ·∇u(x) = f (x), (1)

where f is a given source function, x being any point in Ω.

Dirichlet and Neumann boundary conditions are imposed on the domain boundary
∂Ω = Γ:

u = ū on Γu,

∇u ·n≡ q = q̄ on Γq,
(2)

being Γq∪Γu = Γ, Γq∩Γu = /0; the vector n is the outward unit normal to Γ.

In order to approximate the solution of our problem, a set of discretization nodes
xi, i = 1, . . . ,N, must be given. A set of trial functions φi, and a set of test functions
τi are enrolled, each one being “centered” on node xi.

The approximation has the form

ũ(x) =
N

∑
i=1

ûi φi(x). (3)

Let us set apart for a moment the problem of imposing boundary conditions. The
MLPG formulation relies upon restricting to a suitable piece of subdomain Ωi ⊂Ω,
whose boundary is Γi = ∂Ωi, the standard, weak approximation of the weighted eq.
(1). One obtains the set of equations∫

Ωi

(∇ũ) · (∇τi)dΩ−
∫

Γ
(u)
i

(∇ũ ·n)τi dΓ =
∫

Ωi

f τi dΩ+
∫

Γ
(q)
i

q̄τi dΓ, i = 1, . . . ,N.

These equations are called Local Weak Forms (LWF). The piece of subdomain
boundary Γ

(u)
i = Γi ∩ Γu is the intersection of the i-th local integration domain
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boundary with Dirichlet boundary. Analogously, Γ
(q)
i = Γi∩Γq is the intersection

of the i-th local integration domain boundary with Neumann boundary. Integrals
on Γi\(Γ(u)

i ∪Γ
(q)
i ), the portion of Γi lying inside Ω give null contribution, since

for simplicity, without diminishing the range of applicability of our methods, we
assume τi = 0 on Γi.

We use MLS approach in order to interpolate u. The functions φi(x) are the MLS
“shape” functions [Lancaster and Salkauskas (1981)]. We exploited either quadratic
(identified in the sequel by B = 2) or cubic polynomial (B = 3) basis [Mazzia and
Sartoretto (2010)]. Recall that MLPG unknowns are the coefficients ûi of the lin-
ear combination (3). Now, MLS shape functions φi(x), are not interpolating, i.e.
they do not possess the Kronecker delta property φi(x j) = δi j [Fries and Matthies
(2004)]. In order to obtain the ũ(xi) approximation values, a recovery step is nec-
essary, e.g. by applying an MLS reconstruction.

The boundary conditions on a Dirichlet node xi are set by replacing the j-th LWF
in (2.1) with ũi = u(xi). On the other hand, when xi is a Neumann boundary node,
the i-th equation in system (2.1) is obtained by imposing the corresponding Neu-
mann conditions via ũi values.

There are many Meshless Petrov–Galerkin (MLPG) methods [Atluri (2004); Fries
and Matthies (2004)], each one is identified by a peculiar pair of trial and test func-
tion spaces. Following our previous works (Mazzia, Pini, and Sartoretto, 2012;
Mazzia and Sartoretto, 2010), we consider MLPG methods where the trial func-
tions are MLS shape functions generated by suitable Radial Basis Functions (RBF),
while the test functions are Tensor Product Functions (TPF) (see the sequel).

2.2 Finite dimensional spaces

Each MLS weight function associated to a discretization node is obtained by using
a single 1D, “generator” function. Assume g1(t) is a given, 1D differentiable, com-
pact supported, generator function. A RBF associated to node xi is devised by suit-
ably setting a support radius ri and considering the ensuing function g1

(
‖x−xi‖2

ri

)
.

We performed many numerical experiments by using several types of 1D genera-
tor functions. We considered cubic and quartic spline, and exponential functions,
like in [Belytschko, Krongauz, Organ, Fleming, and Krysl (1996)]. Our numerical
results suggested that the best effectiveness is obtained by the Gaussian generator
after [Lu, Belytschko, and Gu (1994)], i.e.

g1(t) =


exp(−(σt)2)− exp(−σ2)

1− exp(−σ2)
0≤ t ≤ 1

0 t ≥ 1,
(4)
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where σ is a parameter controlling the function shape. In the sequel, we assume
σ = 4.

Concerning test functions, we exploited polynomial generators after [Liu (2009)]

g2(t) =

{
1− t2, 0≤ t ≤ 1,
0, t ≥ 1.

(5)

To each node, xi, we associate the TPF

τi(x,y) = g2(|x− xi|/η
(x)
i ) ·g2(|y− yi|/η

(y)
i ), (6)

by suitably choosing the η
(∗)
i factors. For simplicity, we assume η

(x)
i = η

(y)
i = η̄i,

hence the support of τi(x) is a square centered at xi, whose “radius” (half side–
length) is ηi.

2.3 Radiuses identification

A crucial step for obtaining an accurate MLPG scheme is the identification of the
trial basis radiuses ri, and the test basis ones ρi, i = 1, . . . ,N [Mazzia and Sartoretto
(2010)].

For each node we sort in ascending order its distances from its n(N), neighbors, n(N)

integer value must be identified.

Assume an irregular discretization I is given. For each node xi in I we compute
the n(N) = 7 closest nodes to xi, and we sort their distances in ascending order
d(1)

i ≤ d(2)
i ≤ . . .≤ d(7)

i .

(a) If dk = d, k = 1, . . . ,4, we assume that the node distribution around the i-th node
is “practically uniform”. We set ri = βd, ρi = αd, α , β being parameters to
be tuned. See the sequel for details.

(b) Otherwise we set

ri = βd(7)
i , ρi = αd(7)

i . (7)

The parameters α and β were identified by numerical experiments: They fall in not
too large ranges [Mazzia and Sartoretto (2010)]. Typical intervals are

0.5≤ α ≤ 1.5, 1.0≤ β ≤ 5.0, α < β . (8)

Throughout this paper we assume α = 1. This setting proved suitable for all test
problems shown in the sequel.
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Concerning 3D problems, we perform step (a) on six points, in place of four, i.e.
“local uniformity” corresponds to d(k)

i = d for k = 1, . . . ,6. Note that there are
six faces in a square box centered on any given point xi. Else, we perform step
(b) assuming n(N) = 9. This last parameter was identified by extensive numerical
experiments.

3 Discretizations

3.1 Introduction

Assume for simplicity that our domain is either the [0,1]2 square, for 2D problems,
or the [0,1]3 cube for 3D problems.

When dealing with 2D problems, let us start with a uniform discretization obtained
by evenly dividing the x- and y-side into nx = ny = 4 parts. Let us call this uniform
discretization U1, the level ` = 1 discretization. The interval spacing is h1 = 1/4.
Each finer, uniform discretization level is obtained by halving each subinterval.

3D uniform discretizations are obtained in a similar manner, by setting nx = ny =
nz = 4 at the initial level ` = 1, h1 = 1/4. Each finer level is obtained by halving
each subinterval.

Our refinement strategy builds irregular discretizations, whose effectivity for MLPG
computations is to be tested. Let I be a given one, consisting of N nodes, x1, . . . ,xN .
When any irregular discretization is considered, the following two measures are
worth considering. They are the fill distance hI,Ω, and the separation distance, qI ,
i.e. [Fasshauer (2007)]

hI,Ω = sup
x∈Ω

min
1≤i≤N

‖x− xi‖, qI =
1
2

min
k 6=i
‖xk− xi‖, 1≤ k, i≤ N.

3.2 Refinement strategy

Assume an N–node irregular discretization I was computed.

Let us focus on 2D problems. In order to refine the discretization, we consider on
each node xi the “local” Total Variation (TV) of the solution u, defined as

‖u‖TV,i = ‖∇u‖1,i =
∫ ∫

Ωi

(|ux|+ |uy|) dΩ,

where ux and uy are the partial derivatives of the solution. The advantages of this
“variation measure” are clearly pointed out by Strang (2007): The variational meth-
ods which use the TV norm “allow for discontinuities but disfavor oscillations”.
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i

old nodes

inserted nodes

x

Figure 1: Node insertion 2D strategy, when a “locally–uniform” discretization is
detected around node xi.

In order to approximate the TV on node xi for our numerical solution ũ, we exploit
the one point Gauss integration scheme, i.e. we set

‖ũ‖TV,i = (|ũx(xi)|+ |ũy(xi)|) |Ωi|,

being |Ωi|, the area of the i-th integration subdomain. One can see that, due to our
previous assumptions on the domains of trial and test functions, Ωi is the support
of the i-th test function, i.e. the square centered at xi, whose radius is ρi. The partial
derivatives ux and uy are approximated by differentiating the MLS solution ũ(x).

Let

µ = max
i=1,...,N

‖ũ‖TV,i.

Assume a threshold parameter γ is given, so that for each node xi, we refine our
discretization around that node if and only if

‖ũ‖TV,i > γµ.

Our refinement procedure around node xi consists of adding one node in the middle
of each line joining xi with its closest n(C) nodes. The value n(C) must be guessed
on the ground of geometrical considerations. We set n(C) = 8 for 2D problems,
hence on an uniform grid all “diagonal” nodes are added (see Figure 1). When an
inserted node overlaps an old one, insertion is skipped.

Once all nodes in the discretization were processed, we say a new “discretization
level” is reached.

Our refinement procedure is repeated until a maximum number Nmax of nodes is
reached, or a maximum number of “discretization levels” `max is computed.

Note that under the previous assumptions, when γ = 0 and an initial uniform dis-
tribution is enrolled, uniform refinements are obtained.
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When 3D problems are attacked, the straightforward generalization of our 2D “lo-
cal” TV applies, where subdomain volumes, in place of areas, are involved.

Our refinement strategy is accordingly updated by setting n(C) = 24, in order to
insert all “diagonal” nodes in a cube, when a (local) uniform discretization is de-
tected.

3.3 Implementation issues

We implemented our algorithms into FORTRAN 77 codes, compiled via XLF v9.1.
They were run on a machine operating under Ubuntu, featuring an Intel Core i7-
2600K, 3.40 GHz (quadricore) processor, and 2x4GB, 1333 MHz, RAM.

No involved data structures were necessary in order to deal with our discretizations,
since they are mere clouds of points.

Our Fortran codes exploit CSR sparse matrix storage representation, in order to deal
with the large number of nodes needed by volume discretizations in non–structural,
e.g. flow, heat, problems.

In order to sort the distances of each node from its neighbours, we exploited the
Fortran subroutine SORT2 after NAPACK library.

4 Test problems

In order to check our adaptive strategies, we assign the forcing function f and we
impose Dirichlet boundary conditions in eq. (1), so that its “test” solution is a
function u undergoing large variations on a small portion of the domain.

4.1 2D problems

First, we consider the classical Gaussian function, centered at a given point P0 =
(x0,y0), i.e.

u(x,y) = exp(−c
(
(x− x0)

2 +(y− y0)
2)
)
.

The parameter c is a large positive value which generates a high “bump” around P0.
In the sequel, c = 200 is set. Any adaptive procedure is like to be effective when
finer discretizations enrol a large numer of dicretization nodes nearby P0, where a
large variation in u occurs. On the other hand, “far” from P0 the u values are small,
and u does not display large variations, hence nodes can be quite coarsely dis-
tributed without appreciable loss in estimation error. The setting P0 = (1/2,1/2),
the centroid of our domain, corresponds to the problem called in the sequel PGC.

As a further test problem we consider, after [Kee, Liu, Zhang, and Lu (2008)]

u(x,y) = tan−1(1000x2 y2−1).
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Figure 2: Contour regions for the solution of test problem PH .

This function displays a “hill” growing into the domain from the left and bottom
sides of [0,1]2. Figure 2 shows the contour levels of the surface. In the sequel, this
test problem is called PH .

4.2 3D problems

By straightfordwardly extending our 2D test problems, we consider Gaussian func-
tions centered at a given point P0 = (x0,y0,z0)

u(x,y,z) = exp(−c
(
(x− x0)

2 +(y− y0)
2 +(z− z0)

2) .
When attacking 3D problems, c = 200 is set.

Three settings are exploited, corresponding to Gaussian “centers” on suitable do-
main points, either internal or on the boundary of our domain.

• The setting P0 = (1/2,1/2,1/2), will be again called test problem PGC.

• Setting P0 = (1/2,1/2,0), we speak of test problem PGXY .

• The setting P0 = (1/2,0,0), is called test problem PGX .
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5 Numerical results

Being N the number of discretization nodes, we define the numerical error

eu,N =
maxN

i=1 |ui− ũi|
maxN

i=1 |ui|
=
‖u− ũ‖1
‖u‖1

,

where ui is the exact value on node xi, while ũi is the corresponding approximated
value.

We are interested in analyzing the behavior of the errors when the number of nodes
in the discretization increases, using our refinement procedure.

Recall that our strategy increases the number of nodes trying to node–wise identify
the higher TV. We must check if the TV is an effective indicator of the error.

5.1 2D Numerical Results

5.1.1 Refinement parameters

By numerical experiments, we found that a convenient interval is 1/1000 ≤ γ ≤
1/10. Smaller γ values lead to uniform discretizations. Larger values lead to coarse
discretizations which do not allow one to compute enough accurate approxima-
tions.

When 2D problems were attacked, we set Nmax = 6,000, `max = 7.

5.1.2 Discretizations

Table 1 shows fill and separation distances of our 2D finest discretizations, when
PGC and PH test problems were solved. By inspecting the first line of Table 1
one can see that the 5th uniform discretization level corresponds to nx = ny = 64
subdivisions on each axis. One has N5 =(nx+1)2 = 4225 nodes. The node distance
on each axis is h5 = 1/64 ' 1.56E-2. Note that at the 5th uniform discretization,
we get q5 = 7.81E-3 = h5/2.

When solving problem PH with our refinement technique, we stop at the same
level and get the same q5 value. When solving problem PGC, we stop at ` = 6,
hence displaying q6 = q5/2. It seems that the Gaussian solution allows for a more
dense discretization around its center, without requiring too much nodes elsewhere
in the domain. On the other hand, test problem PH , where the solution undergoes
high variations on a “front” (instead of a single point), requires insertion of more
nodes. The level ` = 6 cannot be completed: more than Nmax nodes should be
enrolled.

Figure 3 shows the nodes in the finest discretization, when the test problem PH is
attacked via our refinement procedure. One can see that the discretization nodes
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Table 1: 2D tests. Number of nodes, N`, fill distance, h`,[0,1]2 , and separation dis-
tance, q`, of our final `-th irregular discretization. Note: the label “any” means that
any value is admitted; γ = 0 denotes uniform discretization. Parameter values are
α = 1, β = 4.

test B γ ` N` h`,[0,1]2 q`
any any 0 5 4225 1.10E-2 7.81E-3

2 0.01 5 2401 6.25E-2 7.81E-3
PH 2 0.001 5 3282 4.42E-2 7.81E-3

3 0.01 5 2069 6.25E-2 7.81E-3
3 0.001 5 3260 4.42E-2 7.81E-3
2 0.01 6 3205 4.42E-2 3.91E-3

PGC 2 0.001 6 5467 3.13E-2 3.91E-3
3 0.01 6 2822 4.42E-2 3.91E-3
3 0.001 6 3981 4.42E-2 3.91E-3

condense nearby the x = 0 and y = 0 sides. They well match the zone where our
test solution undergoes the largest variation, as one can argue by comparing with
the solution contour regions displayed in Figure 2.

When test problem PGC is attacked, one could see that the nodes in the finer dis-
cretizations condense around the centroid of [0,1]2 (not shown, for brevity).

5.1.3 Convergence history

In the sequel, the Figures reporting our numerical results start from considering the
`= 2 level, enrolling N2 = 81 nodes. Level `= 1, counting N1 = 25 nodes, proved
too a coarse discretization for producing useful results.

Figure 4 shows errors and maximum TV, recorded when test problem PGC is
attacked. We set α = 1, together with the optimal value, identified by exper-
iments, β = 5. Either uniform discretizations or our refinement strategy with
γ = 0.1,0.01,0.001, are considered in each frame.

Frames (a) and (c) display our results obtained by setting B = 2, i.e. using a
quadratic polynomial basis in the MLS approximation. Frames (b) and (d) report
our results when B = 3 was set, meaning a cubic polynomial MLS basis.

By inspecting frames (a) and (b) in Figure 4 one can see that when γ = 0.01,0.001,
the error decreases as the number of nodes increases. Moreover, when either
γ = 0.01 or γ = 0.001 the convergence of our refinement strategy outperforms the
uniform discretization. When γ = 0.1 the TV is not a good error indicator. Compar-
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Figure 3: Test problem PH . Nodes in the finest, refined 2D discretization, β = 4,
γ = 0.01.

ing frames (a) and (c), one can see that while the TV is either decreasing or mildly
increasing when finer discretizations are enrolled. The corresponding error behav-
iors in frame (a) well match the TV ones in frame (c), except in the case γ = 0.1.
Recall that estimating the TV one must rely upon numerical approximations of par-
tial derivatives, which is more error prone that evaluating the plain function [Libre,
Emdadi, Kansa, Rahimian, and Shekarchi (2008); Babuska, Strouboulis, and Upad-
hyay (1997)]. One can argue that better estimations of the partial derivatives should
give more accurate TV (and hence error) estimations, i.e. a better adaptive strategy.

Note that the accuracy with the finest uniform discretization is lower than when
using our adaptive strategy, when setting either γ = 0.01, or γ = 0.001.

Let us continue analyzing Figure 4, which refers to test problem PGC. Analogous
results as before can be drawn by inspecting frame (b) for errors, and comparing it
with frame (d) for TV values. Recall that they report our results obtained by setting
B = 3, i.e. cubic polynomials are exploited in the MLS approximation.

Let us now consider Figure 5, which reports our results obtained when attacking
test problem PH . Again, frames (a) and (c) refer to setting B = 2 (quadratic MLS
basis), while frames (b) and (d) refer to setting B = 3 (cubic MLS basis).

By inspecting frames (a) and (c) in Figure 5, one can see that the accuracy ob-
tained using uniform discretizations is quite the same as the corresponding “level”
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of adaptive discretization, when either γ = 0.01 or γ = 0.001 was set. The setting
γ = 0.1 gives less accurate results.

By comparing frames (a), (c) and (b), (d), one can see that the TV is an apt error
indicator, except when γ = 0.1 is set.

We tested our 2D adaptive strategy on many other test problems. We obtained error
and TV behaviors which resemble either one of the previous ones.

5.1.4 Effectivity
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Figure 6: Effectivity index behavior, β = 5, B = 2. Frame (a): test problem PGC.
Frame (b): test problem PH .
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Let us define the effectivity index at discretization level `, adapted after [Babuska,
Strouboulis, and Upadhyay (1997)]

κ` =
‖ũ‖1,`

‖u‖1,`
.

The idea is that the more κ` is close to one, the better our TV indicator should
match the exact one. Babuska, Strouboulis, and Upadhyay (1997) showed that
this indicator can be effective when Finite Element techniques are exploited. We
wondered wether this is true also for MLPG techniques.

Note that in [Babuska, Strouboulis, and Upadhyay (1997)] the efficiency index
is element–wise, while here it is node–wise. True meshless methods deal with
“nodes”, not with “elements”.

Figure 6 displays the effectivity index behavior when either the PGC, frame (a),
or the PH , frame (b), are attacked, by a quadratic polynomial MLS basis (B = 2).
Analogous behaviors could be shown for cubic basis (not shown, for brevity).

Test problem PGC: by inspecting frame (a) one can see that when uniform dis-
cretizations are exploited, the index is monotonically decreasing to 1. Quite erratic
behaviors are displayed when our adaptive procedure is enrolled. Recall that when
test problem PGC is attacked, the error displays a monotonic decrease when either
uniform or adaptive refinements are computed, except when γ = 0.1 is set. We
can say that our efficiency index is not a good indicator of the effectiveness of our
MLPG procedure.

Test problem PH : by inspecting frame (b) one can see that the effectivity index
monotonically converges to 1 irrespective of the discretization exploited. We say
that in this case the efficiency index is a relevant indicator of the effectiveness of
our procedures.

By numerical experiments (not shown here) we found that this index is not a useful
value when the MLPG technique is exploited. In the sequel we do not report about
it anymore.

5.2 3D Numerical Results

5.2.1 Discretizations

When 3D problems were solved Nmax = 50,000, `max = 6 were set.

By extensive numerical experiments, we found that 0.01 ≤ γ ≤ 0.005 is an apt
interval for the refining parameter.

Table 2 shows fill and separation distances of our 3D finest discretizations, when
our 3D test problems were solved. By inspecting the first line of Table 2 one can
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Table 2: 3D tests, B = 3. Number of nodes, N`, fill distance, h`,[0,1]3 , and separation
distance, q`, of our final `-th irregular discretization. The half grid size, h`/2, of our
uniform discretizations, is also shown. Note: the label “any” means that any value
is admitted; γ = 0 denotes uniform discretization. Parameter values are α = 1,
β = 4.

test γ ` N` h`,[0,1]2 q`
any 0 4 35937 2.71E-2 1.56E-2

PGC 0.01 5 12673 1.25E-1 7.81E-3
0.005 4 7926 1.08E-1 1.56E-2

PGXY 0.01 5 7270 1.40E-1 7.81E-3
0.005 5 9594 1.40E-1 7.81E-3

PGX 0.01 6 18526 1.40E-1 3.91E-3
0.005 5 5168 1.40E-1 7.81E-3

see that the 4th uniform discretization level corresponds to nx = ny = nz = 32 sub-
divisions on each axis; hence the distance of nodes on each axis is h4 = 1/32 '
3.13E-2. One has N4 = (nx + 1)3 = 35,937 nodes. Note that at 4th uniform dis-
cretization, we get q4 = 1.56E-2 = h4/2.

The finest uniform discretization bears ` = 4, while our refined discretizations go
up to ` = 6 (see line 6 in Table 2) for test problem PGX . Indeed each solution of
problems PGXY and PGX changes around a point on the domain boundary. Less
nodes are inserted than for problem PGC, whose solution changes inside (around
the centroid of) the domain.

Figure 7 shows the nodes in the finest discretization when test problem PGX is
attacked via our refinement procedure. The “blob” around P0 = (1/2,0,0) is gener-
ated by our technique, which inserts nodes around the point of maximum variation
in the exact solution. As expected, the nodes are “quite uniformly” distributed “far”
from P0, where the solution is practically constant.

5.2.2 Convergence history

Figure 8 shows the error behavior when B = 3, α = 1, β = 4. By setting B = 2 we
obtained similar results (not shown for brevity).

Errors for γ = 0.0 are not reported, since they overlap the “unif” case. Such over-
lap confirms that, as expected, our adaptive strategy produce uniform discretiza-
tions when γ = 0 is set. Implementation errors and/or unfeasibility of our adaptive
strategy are restrained by these results.
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Figure 7: Test problem PGX . Nodes in the finest, refined 3D discretization, B = 3,
β = 4, γ = 0.005.

By inspecting Figure 8 one can argue that the accuracy of our adaptive procedure
well compares with that one of a brute uniform discretization. The setting γ =
0.005 proves effective, raising quite the same (or better) accuracy than the uniform
discretization, requiring far less nodes than the latter.

5.2.3 Performance

Table 3 shows CPU times spent in order to compute the solution of our test prob-
lems. The ratios to the corresponding uniform discretization level are also shown.
Recall that in the previous Section we showed that quite the same (or better accu-
racy) can be obtained by exploiting our adaptive procedure. Respect to uniform
discretizations, a far less number of nodes can be used by our adaptive technique,
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Figure 8: Errors recorded when our 3D test problems are solved. Parameter setting:
β = 4, B = 3. Frame (a) refers to test problem PGC, frame (b) to test problem
PGXY , frame (c) to PGX .
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Table 3: CPU seconds spent when solving the proposed test problems via either
the finest uniform discretization U , or our corresponding refined, irregular, finest
discretizations, Iγ , γ = 0.01,0.005. Note: γ = 0 means “uniform discretization”:
I0 =U holds true. For each test problem, the ratios are also shown: seconds spent
when using U divided by seconds spent using Iγ .

test γ ` N` CPU (s) U/Iγ

0 4 35937 6299.3 1.00
PGC 0.01 5 12673 2533.4 2.49

0.005 4 7926 1123.9 5.60
0 4 35937 6546.1 1.00

PGXY 0.01 5 7270 1096.9 5.97
0.005 5 9594 1900.0 3.45

0 4 35937 6708.4 1.00
PGX 0.01 6 18526 5097.9 1.32

0.005 5 5168 759.0 8.84

hence allowing up to 8.84 (Table 3, last line, last column) faster CPU time (and
possibly better accuracy, e.g. see Figure 8, frame (c)) than uniform refinements.

6 Conclusions

We analyzed the accuracy and efficiency in solving diffusion problems of a fresh
refinement technique for MLPG.

The following points are worth mentioning.

Concerning 2D problems.

• Our adaptive strategy condense nodes around the regions where the approxi-
mating function undergoes “high” variation.

• Our adaptive strategy allows for attaining quite the same (or higher) accuracy
as uniform discretizations, by using far less nodes.

• The “numerical, local” TV is a sound measure of the numerical error, pro-
vided the refine parameter is not “too large”.

• Our “efficiency index”, adapted after [Babuska, Strouboulis, and Upadhyay
(1997)], seems not a good estimator of the effectiveness of our refinement
MLPG procedure. Monotone decreasing errors with finer discretization lev-
els can correspond to oscillating efficiency index behaviors.
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Concerning 3D problems.

• Like when solving 2D problems, as expected the majority of nodes is inserted
where the solution undergoes high variation.

• As in the 2D case, one can obtain quite the same (or higher) accuracy as
exploiting uniform discretizations, by using far less nodes.

• Comparable accuracy can be obtained by using either uniform or our adaptive
discretizations, the latter being up to more than 8 times faster.

Future work: We plan to extend our refinement technique to DMLPG methods
[Mazzia, Pini, and Sartoretto (2012)]. In principle the DMLPG approach allow for
approximating any linear functional of the solution. Partial derivatives, and hence
the TV, can be directly approximated by DMLPG with expected higher accuracy
and/or efficiency.
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