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The Boundary Integral Equation for 3D General
Anisotropic Thermoelasticity

Y.C. Shiah1 and C.L. Tan2,3

Abstract: Green’s functions, or fundamental solutions, are necessary items in
the formulation of the boundary integral equation (BIE), the analytical basis of the
boundary element method (BEM). In the formulation of the BEM for 3D general
anisotropic elasticity, considerable attention has been devoted to developing effi-
cient algorithms for computing these quantities over the years. The mathematical
complexity of this Green’s function has also posed an obstacle in the development
of this numerical method to treat problems of 3D anisotropic thermoelasticity. This
is because thermal effects manifest themselves as an additional domain integral in
the integral equation; this has implications for the numerical modeling in BEM.
Difficulties in deriving a true BIE arise, unless some simple representations of the
thermal effects are used, such as in the dual reciprocity approach. These approx-
imation schemes, however, have some serious limitations. An integral transfor-
mation method to obtain an exact BIE has been successfully employed, but only
for isotropy and two-dimensional (2D) general anisotropy. The extension of this
scheme to three-dimensional (3D) general anisotropy has remained a very serious
challenge. This paper reports on the progress towards this end. By following the
same steps as for 2D general anisotropy, and using a double-Fourier series repre-
sentation of the Green’s function first proposed by the authors recently, a true BIE
is derived for 3D general anisotropic thermoelasticity. Some numerical results are
presented to demonstrate the success of this derivation.

1 Introduction

The boundary element method (BEM) is recognized as an efficient numerical tool
for engineering stress analysis with its distinctive feature that only the boundary or
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surface of the solution domain needs to be discretized. This stems from the analyt-
ical transformation of the governing differential equations into a boundary integral
equation (BIE). The kernels of the BIE involve the Green’s function (or fundamen-
tal solution) for displacements and its derivatives. Although the general analytical
and numerical formulations of the BEM for isotropic elasticity have been very well
established for over three decades, the same cannot be said about the case for gen-
eral anisotropic elasticity, especially for 3D solids. This is due to the significantly
more complex mathematical form of the Green’s function and its derivatives.

The Green’s function for the displacements in a generally anisotropic, elastic body
in three dimensions was first derived by Lifschitz and Rosenzweig (1947). It is not
algebraically explicit, but is instead expressed as a line integral around a unit circle
with the integrand containing the Christoffel matrix defined in terms of elastic con-
stants. Since then, the re-formulation of this fundamental solution and its deriva-
tives into simpler forms to facilitate their evaluation and more efficient computation
has been a focus of numerous researchers. A brief review of this may be found in,
e.g., Shiah, Tan and Lee (2008), Tan, Shiah and Lin (2009). In the pioneering work
of Wilson and Cruse (1978) on BEM for 3D general anisotropic elastostatics, the
Green’s function of Lifschitz and Rosenzweig (1947) is employed. In their numeri-
cal algorithm, the Green’s function and its derivatives required in the integration of
the BIE are obtained by interpolation of pre-calculated values from a database that
is generated in advance for a given material. This is evidently quite cumbersome;
it is less than efficient; and, its accuracy has been questioned for highly anisotropic
materials. The development and use of other forms of the Green’s function with
BEM has also been proposed by, e.g., Tonon, Pan and Amadei (2001), Phan, Gray
and Kaplan (2004), Wang and Denda (2007), Tan, Shiah and Lin (2009).

Of significance to note here is that in Ting and Lee (1997), a fully algebraic form
of the 3D Green’s function for general anisotropic elasticity, expressed in terms of
Stroh’s eigenvalues, has been derived. This was, unfortunately, not well recognized
in the BEM community until Tavara, Ortiz, Mantic and Paris (2008) and Shiah,
Tan and Lee (2008) formulated the expressions into computational algorithms for
implementation in the BEM, for the special case of transverse isotropy and gen-
eral anisotropy, respectively. Lee (2003, 2009) further showed how its derivatives
could be obtained, although the complete explicit expressions for them in general
anisotropy were derived and presented only by the present authors [Shiah, Tan and
Lee (2008, 2010)]. These formulations have also been implemented by Tan, Shiah
and Lin (2009), and by Buroni and Saez (2010), to analyse some benchmark prob-
lems by the BEM.

The Green’s function of Ting and Lee (1997) may be expressed in spherical co-
ordinates wherein the spherical angles are periodic. Recognising this, the present
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authors have very recently proposed that this Green’s function be represented by
a simple, double-Fourier series [Shiah, Tan and Wang (2012a,b)]. This approach
significantly reduces the computational effort to evaluate the Green’s function par-
ticularly when there are a large number of field points, as is typically the case for
practical problems. It also makes differentiations of the Green’s function a straight-
forward task, resulting in relatively more concise formulations for the derivatives.
The major advantage of this scheme is that evaluations of the coefficients for the
Fourier series need to be performed only once, regardless of the number of field
points involved in the BEM analysis. This makes it very efficient without sacri-
ficing any significant loss of accuracy. To further enhance the computational ef-
ficiency, the authors [Tan, Shiah and Wang (2013)] reformulated the expressions
by rearranging and simplifying the terms where possible, and eliminated repeated
calculations. As a result, the number of terms in the Fourier series is reduced by
more than half.

In the direct formulation of the BIE, it is well known that when thermal effects
and/or body forces are included, they are manifested by the presence of an extra
domain integral. Direct evaluation of this integral requiring domain discretization
will destroy the notion of the BEM as a boundary solution technique. Several differ-
ent schemes, first developed for treating these problems in isotropic elasticity, have
been proposed to transform the volume/domain integral into surface/boundary inte-
grals. They include the dual reciprocity method [e.g., Partridge, Brebbia and Wro-
bel (1994), Schclar (1994), Kogl and Gaul (2003)], particular integral approach
[e.g., Deb and Banerjee (1990), Deb, Henry and Wilson (1992)], and the exact
transformation method (ETM) [e.g., Rizzo and Shippy (1979), Tan (1983), Danson
(1983)]. The first two of these schemes are approximate analytical schemes. The
ETM, on the other hand, is analytically exact and can be applied to problems in-
volving geometric singularities, such as those with cracks and re-entrant corners,
without re-formulation. It is thus the most attractive approach among them. For
anisotropic elasticity, however, the ETM has, to the authors’ knowledge, been suc-
cessfully implemented only in 2D [Zhang, Tan and Afagh (1996), Shiah and Tan
(1999a,b; 2000)]; the exact, analytical volume-to-surface integral transformation in
this approach for 3D has, hitherto, remained elusive due to the complexity of the
Green’s function and its derivatives.

Although the fundamental solution presented by Ting and Lee (1997) is fully ex-
plicit in terms of the Stroh eigenvalues, the latter need to be determined numeri-
cally, thereby posing a potential hurdle to the task of the volume-to-surface integral
transformation. For the much simpler case of transversely isotropy, the authors
[Shiah and Tan (2012b)] have achieved this end, but some of the kernels of the
transformed surface integrals were not explicitly derived into algebraic forms; they
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are, instead, numerically determined. In the course of the work, the authors found
that the Fourier-series representation of the Green’s function is a suitable form to
facilitate the transformation. In the integral transformation process, the volume in-
tegral is first redefined in a mapped domain, where the thermal field is governed
by a standard Laplace equation. The aim of the present study is to extend this to
general 3D anisotropy and it follows a similar vein. This will now be described and
discussed below. It will be followed by some numerical examples to demonstrate
the success of the volume-to-surface integral transformation. Before all these, how-
ever, it is useful, first, to provide a brief review of the integral equation for the BEM
in thermoelasticity and the Fourier representation of the Green’s function of Ting
and Lee (1997) as developed by the authors in Tan, Shiah and Wang (2013).

2 Integral equation of 3D anisotropic thermoelasticity

It is well known that in elastic stress analysis, thermal effects can be represented by
a pseudo- or equivalent body force term in the governing equations. In the basic di-
rect formulation of the BEM, the integral equation relating the nodal displacements
u j and tractions t j on the surface S of the homogeneous elastic domain when body-
forces or their equivalence, Xi, are present, can be expressed in indicial notation
as

Ci j(P)ui(P)+
∫

s
ui(Q)Ti j(P,Q)dS(Q)=

∫
s
ti(Q)Ui j(P,Q)dS(Q)+

∫
Ω

Xi Ui j(P,q)dΩ(q)

(1)

In Equation (1), Ui j(P,Q) ≡U(x) and Ti j(P,Q) represent the fundamental solution
of displacements and tractions, respectively, and Ci j(P) depends on the geometry
at the source point P on boundary. This equation is not truly a BIE as the last term
is a volume integral over the domain Ω(q), where q is an arbitrary field point. To
restore this equation into a BIE, this volume integral term has to be transformed
into surface integrals. This is the primary focus of the present study.

An explicit form of U(x) = Ui j has been derived by Ting and Lee (1997) and it is
expressed as follows,

U(x)=
1

4πr
1
|κκκ|

4

∑
n=0

qnΓ̂ΓΓ
(n)

, (2)

where r represents the radial distance between the source and field points; and the
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quantities qn, Γ̂ΓΓ
(n)

, and κκκ are given by

qn=


−1

2β1β2β3

[
Re
{

3
∑

t=1

pn
t

(pt−p̄t+1)(pt−p̄t+2)

}
−δn2

]
f orn =0,1,2,

1
2β1β2β3

Re
{

3
∑

t=1

pn−2
t p̄t+1p̄t+2

(pt−p̄t+1)(pt−p̄t+2)

}
f orn =3, 4,

(3a)

Γ̂
(n)
ij = Γ̃

(n)
(i+1)( j+1)(i+2)( j+2)− Γ̃

(n)
(i+1)( j+2)(i+2)( j+1), (i, j = 1, 2, 3), (3b)

κκκ ik=Cijksmjms, m = (−sinθ , cosθ , 0) (3c)

In Equation (3c), the spherical angle θ is as defined in Figure 1, and Ci jks are the
stiffness coefficients of the material. In Equation (3a), the quantity, pi, denotes the
Stroh eigenvalues and they appear as three pairs of complex conjugates. They are
expressed as

pv=αv+iβv,βv>0,(ν=1,2,3) (4)

where the overbar on them denotes the corresponding conjugate.

In terms of the spherical coordinates as shown in Figure 1, the Green’s function can
be re-expressed as

U(r,θ ,φ)=
H(θ ,φ)

4πr
, (5)

where H(θ ,φ), referred to as the Barnett-Lothe tensor, only depends on the spheri-
cal angles (θ ,φ). For the numerical evaluation of the Bartnett-Lothe tensor, Shiah,
Tan and Wang (2012), Tan, Shiah and Wang (2013) very recently proposed that it
be represented by a double Fourier-series, taking advantage of the periodic nature
of the spherical angles. This has been demonstrated to be simpler to implement
into a BEM code as well as significantly more efficient in computations.

The double Fourier series representation of this tensor is as follows:

Huv(θ ,φ) =
a

∑
m=−a

a

∑
n=−a

λ
(m,n)
uv ei(mθ+nφ), (u, v = 1, 2, 3) , (6)

where a is an integer sufficiently large to ensure convergence of the series; λ
(m,n)
uv are

unknown coefficients are determined by

λ
(m,n)
uv =

1
4π2

∫
π

−π

∫
π

−π

Huv (θ ,φ) e−i(mθ+nφ)dθ dφ . (7)



430 Copyright © 2014 Tech Science Press CMES, vol.102, no.6, pp.425-447, 2014

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

x1 

 

 

r 

x2 

x3 m 

n 

Field Pt. 

Source Pt. 

Figure 1: Unit circle on an arbitrary plane at the field point.

The integrals in Equation (7) can be numerically evaluated by, for example, simple
Gaussian quadrature, as follows:

λ
(m,n)
uv =

1
4

k

∑
p=1

k

∑
q=1

wpwq f (m,n)
uv (π ξp, π ξq) , (8)

where k is the number of the Gauss abscissa ξp, and wp is the corresponding weight;
and f (m,n)

uv (θ , φ) represents the integrand in Equation (7). Each computation of
λ
(m,n)
uv requires the evaluation of Huv (θ ,φ) at points (π ξp, π ξq) using Equations

(2)-(4). For large values of m and n, rapid fluctuations of f (m,n)
uv (θ , φ) may make it

necessary to use a relatively large number of Gauss points to accurately perform the
numerical integrations. Numerical experiments have shown that with k=64, very
accurate integrations for convergent H(θ ,φ) have been achieved even for highly
anisotropic materials. Of significance to note is that the computation of the Fourier
coefficients by Eq.(8) is carried out only once irrespective of the number of field
points in the BEM stress analysis. The CPU-time for this process is thus relatively
trivial indeed in a BEM analysis of a practical problem.
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The 1st-order derivatives of U, denoted by U’, can be determined from

U′ ≡ Uuv,l =
∂Uuv

∂ r
∂ r
∂xl

+
∂Uuv

∂θ

∂θ

∂xl
+

∂Uuv

∂φ

∂φ

∂xl
. (9)

By performing the indicated differentiations, they may be readily shown to have
the following Fourier-series forms [Tan, Shiah and Wang (2013)]:

Uuv,l =
1

4πr2



a
∑

m=−a

a
∑

n=−a
λ
(m,n)
uv ei(mθ+nφ)

[
−cosθ (sinφ − in cosφ)
− im sinθ/sinφ

]
for l = 1

a
∑

m=−a

a
∑

n=−a
λ
(m,n)
uv ei(mθ+nφ)

[
−sinθ (sinφ − in cosφ)
+ im cosθ/sinφ

]
for l = 2

a
∑

m=−a

a
∑

n=−a
λ
(m,n)
uv ei(mθ+nφ) [−(cosφ + i n sinφ)] for l = 3

(10)

As explained in the above cited reference, the singularity issue at φ = 0 or π in
Eq.(10) may be resolved by a simple coordinate transformation; no further discus-
sion need be provided here. The process of volume-to-surface integral transforma-
tion will now be discussed.

3 Volume-to-surface integral transformation

As is well known in solid mechanics, thermal effects can be treated as an equivalent
body-force in the governing equations in elasticity. It can be easily established that
Equation (1) becomes as follows [see, e.g., Rizzo and Shippy (1977)]:

Ci j(P)ui(P)+
∫

s
ui(Q)Ti j(P,Q)dS(Q)

=
∫

s
ti(Q)Ui j(P,Q)dS(Q)+

∫
s
γiknk(Q)Θ(Q) Ui j(P,Q)dS(Q)

−
∫

Ω

γikΘ,k(Q) Ui j(P,q) dΩ

(11)

On the right hand side in Equation (11), the last integral is a domain integral that
remains to be transformed. For simplicity, this domain integral is denoted by Vj,
namely

Vj =−
∫

Ω

γikΘ,k(q)Ui j(P,q)dΩ, (12)

where in anisotropyγikare the thermal moduli; Θstands for the temperature change
in anisotropic solid. Following the similar treatment as in Shiah and Tan (1999),
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the volume integral in Equation (12) can be redefined in a transformed coordinate
system such that the temperature field is governed by the standard Laplace equation,
i.e.

Θ,kk = 0, (13)

where the underline denotes the transformed coordinates. As shown by Shiah and
Tan (2004), the transformation of the corresponding governing equation for field
problems in general anisotropy in three dimensions (namely, Euler’s equation) to
Equation (13) can be achieved simply by the following coordinate transformation:

x̂T= F xT. (14)

In Equation (14), the transformation matrix F is given by

F =

 √
∆/K11 0 0

−K12/K11 1 0
α β χ

 , (15)

where Ki j are the thermal conductivity coefficients; the other coefficients ∆, α , β ,
and χ are defined by

∆ = K11K22−K2
12, (16a)

α = (K12K23−K13K22)/
√

ω, (16b)

β = (K12K13−K23K11)/
√

ω, (16c)

χ = ∆/
√

ω, (16d)

ω = K11K13∆−K11K12K2
13 +K11K12K13K23−K2

23K2
11. (16e)

With this coordinate transformation, the volume integral in Equation (12) can be
rewritten as

Vj =−
∫

Ω

ZikΘ,k(q)U i j(P,q)dΩ, (17)

where Zik are defined by

Zik = K11

√
ω

∆3

 γ11 γ12 γ13
γ21 γ22 γ23
γ31 γ32 γ33

  √
∆/K11 −K12/K11 α

0 1 β

0 0 χ

 . (18)
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Following exactly the same treatment as in Shiah and Tan (1999), Vj can be written
in terms of the transformed boundary integrals as follows:

Vj =
∫

S
Zik

[(
Θ Wi jk,t −Wi jkΘ,t

)
nt −Θ Ui j nk

]
dS, (19)

where Wi jk is a new kernel function which satisfies

Wi jk,tt =Ui j,k. (20)

The exact analytical volume-to-surface integral transformation is not complete yet
unless the very explicit expression of the new function Wi jk is determined. Herein
lies the difficulty in deriving the analytically explicit form of Ui j,k

It should be reminded that the Green’s function, Ui j , and its derivatives, Ui j,k, are
both defined in the mapped domain. The former can also be written is the trans-
formed spherical coordinate system (r̂, θ̂ , φ̂ ) as

Û(r̂, θ̂ , φ̂)=
Ĥ(θ̂ , φ̂)

4π r̂
(21)

Similarly, the Fourier series representation of Ĥ(θ̂ , φ̂) is given by

Ĥuv(θ̂ , φ̂) =
α

∑
m=−α

α

∑
n=−α

λ̂
(m,n)
uv ei(m θ̂+n φ̂), (u, v = 1, 2, 3) (22)

where the series coefficients are determined by

λ̂
(m,n)
uv =

1
4π2

∫
π

−π

∫
π

−π

Ĥuv(θ̂ , φ̂) e−i(m θ̂+nφ̂)dθ̂ dφ̂ . (23)

It is evident that Ĥuv(θ̂ , φ̂) can be determined using the Û(x̂1, x̂2, x̂3), defined in the
Cartesian coordinate system for the mapped domain, as follows:

Ĥ(θ̂ , φ̂) = 4π Û(sin φ̂ cos θ̂ ,sin φ̂ sin θ̂ ,cos φ̂) (24)

From the coordinate transformation in Equation (14), Equation (24) can be rewrit-
ten as

Ĥ(θ̂ , φ̂) = 4πU(x′1,x
′
2,x
′
3), (25)

where

x′1 =

√
∆

K11
sin φ̂ cos θ̂ ,

x′2 =
−K12

K11
sin φ̂ cos θ̂ + sin φ̂ sin θ̂ ,

x′3 = α sin φ̂ cos θ̂ +β sin φ̂ sin θ̂ +χ cos φ̂ .

(26)
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Thus, Equation (23) is re-expressed as

λ̂
(m,n)
uv =

1
4π2

∫
π

−π

∫
π

−π

Huv(θ
′,φ ′)

r′
e−i(m θ̂+nφ̂)dθ̂ dφ̂ . (27)

In Equation (27), (r′,θ ′,φ ′) are all intrinsic functions of (θ̂ ,φ̂), defined by

r′ =
√
(x′1)

2 +(x′2)
2 +
(
x′3
)2
, θ

′ = tan−1
(

x′2
x′1

)
, φ

′ = cos−1
(

x′3
r′

)
. (28)

As a result, λ̂
(m,n)
uv can be numerically computed using, for example, Gaussian

quadrature, viz

λ̂
(m,n)
uv =

1
4

k

∑
p=1

k

∑
q=1

wpwq f̂ (m,n)
uv (π ξp, π ξq) , (29)

where f̂ (m,n)
uv (θ̂ , φ̂) is the integrand in Equation (29), i.e.

f̂ (m,n)
uv (θ̂ , φ̂) =

Huv(θ
′,φ ′)

r′
e−i(m θ̂+nφ̂). (30)

In Equation (30), Huv(θ
′,φ ′) is directly computed from Equation (6). With all

the coefficients, λ̂
(m,n)
uv , computed via the steps outlined above, the fundamental

displacements in the transformed coordinate system can be calculated using the
Fourier-series

Uuv =
1

4π r̂

a

∑
m=−a

a

∑
n=−a

λ̂
(m,n)
uv ei(m θ̂+n φ̂), (u, v = 1, 2, 3) (31)

Similar to Equation (10), the 1st-order derivatives of the fundamental displace-
ments are given by

Uuv,l=
1

4π r̂2



α

∑
m=−α

α

∑
n=−α

λ̂
(m,n)
uv ei(m θ̂+n φ̂)

[
−cos θ̂

(
sin φ̂ − in cos φ̂

)
− im sin θ̂/sin φ̂

]
for l = 1

a
∑

m=−a

a
∑

n=−a
λ̂
(m,n)
uv ei(m θ̂+n φ̂)

[
−sin θ̂

(
sin φ̂ − in cos φ̂

)
+ im cos θ̂/sin φ̂

]
for l = 2

a
∑

m=−a

a
∑

n=−a
λ̂
(m,n)
uv ei(m θ̂+n φ̂) [−(cos φ̂ + i n sin φ̂

)]
for l = 3

(32)

Returning now to Equation (20) that is used to define the new third order tensor,
Wi jk. In the spherical coordinate system for the mapped domain, Equation (20) can
be expressed as

∂ 2Wi jk

∂ r̂2 +
2
r̂

∂Wi jk

∂ r̂
+

1
r̂2

∂ 2Wi jk

∂ φ̂ 2
+

cot φ̂

r̂2

∂Wi jk

∂ φ̂
+

1
r̂2sin2

φ̂

∂ 2Wi jk

∂ θ̂ 2
=

κi jk(θ̂ , φ̂)

r̂2 (33)
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where

κi jk(θ̂ , φ̂)=
1

4π



a
∑

m=−a

a
∑

n=−a
λ̂
(m,n)
i j ei(mθ̂+nφ̂)

[
−cos θ̂

(
sin φ̂ − incos φ̂

)
− im sin θ̂/sin φ̂

]
f or k=1

a
∑

m=−a

a
∑

n=−a
λ̂
(m,n)
i j ei(mθ̂+nφ̂)

[
−sin θ̂

(
sin φ̂ − incos φ̂

)
+ im cos θ̂/sin φ̂

]
f or k=2

a
∑

m=−a

a
∑

n=−a
λ̂
(m,n)
i j ei(mθ̂+n φ̂)[−(cos φ̂ + insin φ̂

)]
f or k=3

(34)

The satisfaction of Equation (33) implies that Wi jk depends only on the spherical an-
gles but not the radial coordinate. For this reason, it is written simply as Wi jk(θ̂ , φ̂)
and Equation (33) is simplified into

∂ 2Wi jk(θ̂ , φ̂)

∂ φ̂ 2
+cot φ̂

∂Wi jk(θ̂ , φ̂)

∂ φ̂
+

1
sin2

φ̂

∂ 2Wi jk(θ̂ , φ̂)

∂ θ̂ 2
=κi jk(θ̂ , φ̂). (35)

Under the general condition when φ̂ 6= 0 or π , Equation (35) can be further rewritten
as

sin2
φ̂

∂ 2Wi jk(θ̂ , φ̂)

∂ φ̂ 2
+

sin2φ̂

2

∂Wi jk(θ̂ , φ̂)

∂ φ̂
+

∂ 2Wi jk(θ̂ , φ̂)

∂ θ̂ 2
= κi jk(θ̂ , φ̂)sin2

φ̂ . (36)

By taking advantage of the periodical nature of the spherical angles, Wi jk(θ̂ , φ̂) can
be expressed as a Fourier series,

Wi jk(θ̂ , φ̂) =
a

∑
m=−a

a

∑
n=−a

C̃(m,n)
i jk ei(m θ̂+n φ̂), (37)

where C̃(m,n)
i jk are unknown coefficients to be determined. Substituting Equation (37)

directly into Equation (36) yields

−1
2

a

∑
m=−a

a

∑
n=−a

C̃(m,n)
i jk

(
n2 +2m2−n2 cos2φ̂ − insin2φ̂

)
ei(mθ̂+nφ̂)=κi jk(θ̂ , φ̂)sin2

φ̂

(38)
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For determining the unknown coefficients, both sides of Equation (38) are inte-
grated as follows:

−1
2π2

π∫
−π

π∫
−π

a
∑

m=−a

a
∑

n=−a
C̃(m,n)

i jk

(
n2+2m2−n2 cos2φ̂−insin2φ̂

)
ei(mθ̂+nφ̂)e−i(pθ̂+qφ̂)dθ̂dφ̂

= 1
π2

π∫
−π

π∫
−π

κi jk(θ̂ , φ̂)sin2
φ̂ e−i(pθ̂+qφ̂)dθ̂ dφ̂

.

(39)

From the orthogonality relationships of the trigonometric functions, the above in-
tegrations of the left hand side (LHS) and right hand side (RHS) of Equation (39)
yield the following nonzero values:

LHS: C̃(m,n)
i jk


−2(2m2 +n2) (for m = p , n = q)
n(n−1) (for m = p , n = q+2)
n(n+1) (for m = p , n = q−2)

, (40a)

RHS (when k=1):
iλ̂ (m,n)

i j

4



(4m+n−3) (for m = p+1 , n = q+1)
−(n−1) (for m = p+1 , n = q+3)
−(4m−n−3) (for m = p+1 , n = q−1)
−(n+1) (for m = p+1 , n = q−3)
(−4m+n−3) (for m = p−1 , n = q+1)
−(n−1) (for m = p−1 , n = q+3)
(4m+n−3) (for m = p−1 , n = q−1)
−(n+1) (for m = p−1 , n = q−3)

, (40b)

RHS (when k=2):
iλ̂ (m,n)

i j

4



−(4m+n−3) (for m = p+1 , n = q+1)
(n−1) (for m = p+1 , n = q+3)
(4m−n−3) (for m = p+1 , n = q−1)
(n+1) (for m = p+1 , n = q−3)
(−4m+n−3) (for m = p−1 , n = q+1)
−(n−1) (for m = p−1 , n = q+3)
(4m+n−3) (for m = p−1 , n = q−1)
−(n+1) (for m = p−1 , n = q−3)

, (40c)

RHS (when k=3):
iλ̂ (m,n)

i j

4


(3n−1) (for m = p , n = q+1)
−(n−1) (for m = p , n = q+3)
−(3n+1) (for m = p , n = q−1)
(n+1) (for m = p , n = q−3)

. (40d)
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These integrations for all values of p, q ranging from -a to +a result in a system of
equations, expressed in the following banded matrix form:



M1 0
_

M1 0 0 · · · 0 0 0 0 0

0 M2 0
_

M2 0 · · · 0 0 0 0 0
^

M3 0 M3 0
_

M3 · · · 0 0 0 0 0

0
^

M4 0 M4 0 · · · 0 0 0 0 0

0 0
^

M5 0 M5 · · · 0 0 0 0 0
...

...
...

...
...

. . .
...

...
...

...
...

0 0 0 0 0 · · · Mt−4 0
_

Mt−4 0 0

0 0 0 0 0 · · · 0 Mt−3 0
_

Mt−3 0

0 0 0 0 0 · · ·
^

Mt−2 0 Mt−2 0
_

Mt−2

0 0 0 0 0 · · · 0
^

Mt−1 0 Mt−1 0

0 0 0 0 0 · · · 0 0
^

Mt 0 Mt





C̄(1)
i jk

C̄(2)
i jk

C̄(3)
i jk

C̄(4)
i jk

C̄(5)
i jk
...

C̄(t−4)
i jk

C̄(t−3)
i jk

C̄(t−2)
i jk

C̄(t−1)
i jk

C̄(t)
i jk



=



ϒ
(1)
i jk

ϒ
(2)
i jk

ϒ
(3)
i jk

ϒ
(4)
i jk

ϒ
(5)
i jk
...

ϒ
(t−4)
i jk

ϒ
(t−3)
i jk

ϒ
(t−2)
i jk

ϒ
(t−1)
i jk

ϒ
(t)
i jk


(41)

where C̄(u)
i jk is used to denote the u-th coefficient of each set of C̃(m,n)

i jk , numbered in

sequential order; ϒ
(v)
i jk represents the RHS value as defined in Equations (40b)∼(40d)

for the v-th equation. In Equation (41), Mu,
_

Mu,
^

Muare defined as follows:

Mu =−2(2m2 +n2) (for m = p , n = q),
_

Mu = n(n−1) (for m = p , n = q+2),
^

Mu = n(n+1) (for m = p , n = q−2).

(42)

Since C̃(0,0)
i jk is associated with the rigid body motion, its corresponding equation

with all zero coefficients should be removed from the system of equations and
one may choose the null value for it. Thus, the resulting matrix will be of order
[(2a+1)2-1] × [(2a+1)2-1]. Equation (41) can be solved relatively quickly for the
Fourier coefficients due to the banded matrix. It should also be reminded that solv-
ing for these coefficients is done only once irrespective of the number of field points
involved in the BEM analysis. As for the proper choice of the value of a, extensive
numerical experiments have shown that a=22 is a sufficiently large number to en-
sure very accurate results here. As a further saving in computational effort, one may
also pre-calculate and store the inverse of the banded matrix, as the coefficients of
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the banded matrix are independent of material properties and the indices With all
coefficients determined from Equation (41), the explicit expression for Wi jk(θ̂ , φ̂)
is given by Equation (37). By performing partial differentiations in the spherical
coordinate system, its first-order derivatives are given by

W i jk,t(r̂, θ̂ , φ̂)=
1
r̂



a
∑

m=−a

a
∑

n=−a
C̃(m,n)

i jk ei(mθ̂+nφ̂)
(
incos θ̂cos φ̂−imsin θ̂/sin φ̂

)
(for t = 1)

a
∑

m=−a

a
∑

n=−a
C̃(m,n)

i jk ei(mθ̂+nφ̂)
(
insin θ̂cos φ̂+imcos θ̂/sin φ̂

)
(for t = 2)

a
∑

m=−a

a
∑

n=−a
C̃(m,n)

i jk ei(mθ̂+nφ̂)
(
−insin φ̂

)
(for t = 3)

(43)

Up to this point, the new tensor and its derivatives are well defined in the trans-
formed coordinate system and the transformed boundary integrals in Equation (19)
can be computed in the usual manner in BEM analysis.

4 Numerical tests

To demonstrate the veracity of the above volume-to-surface integral transformation
for the domain integral associated with thermal loads in BEM, the results of a few
numerical tests are presented here. The main focus is to show the equivalence of
the original domain integral and the transformed surface ones. For the first test,
quartz with the following stiffness coefficients [Nye (1960)] defined in its principal
directions, denoted by C∗, is selected as the material:

C∗ =



87.6 6.07 13.3 17.3 0 0
6.07 87.6 13.3 −17.3 0 0
13.3 13.3 106.8 0 0 0
17.3 −17.3 0 57.2 0 0

0 0 0 0 57.2 17.3
0 0 0 0 17.3 40.765

 GPa. (44)

With successive clockwise rotation of the principal axes by 30◦, 45◦ and 60◦ with
respect to the x1, x2 and x3-axis, respectively, the corresponding stiffness coeffi-
cients in the global Cartesian coordinate system is obtained which has the features
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of a generally anisotropic material:

C =



111.8489 14.8019 −5.2389 −0.2525 11.0164 −14.0224
14.8019 101.8225 −7.5773 0.3963 −0.6162 18.8720
−5.2389 −7.5773 129.6975 4.3933 1.5637 0.6272
−0.2525 0.3963 4.3933 31.2929 2.5347 3.5506
11.0164 −0.6162 1.5637 2.5347 37.9378 1.3277
−14.0224 18.8720 0.6272 3.5506 1.3277 55.2450

 GPa

(45)

A second material, namely, alumina (Al2O3) is also selected as a further check.
In its principal directions of the material properties, it has the following stiffness
coefficients [Nye (1960)]:

C∗ =



465 124 117 0 0 0
124 465 117 0 0 0
117 117 563 0 0 0
0 0 0 233 0 0
0 0 0 0 233 0
0 0 0 0 0 170.5

 GPa. (46)

Successive counterclockwise rotation of the principal axes about the x1-, x2- and
x3-axis by 20◦, 80◦ and 150◦, respectively, yields the following stiffness matrix
with respect to the global Cartesian system:

C =



564.7664 113.5682 113.7194 −3.7359 −1.9834 −2.0239
113.5682 471.4372 123.5177 3.1022 −1.7179 18.4872
113.7194 123.5177 471.1860 3.1063 18.1411 −1.7284
−3.7359 3.1022 3.1063 173.7951 9.5251 9.3103
−1.9834 −1.7179 18.1411 9.5251 227.7924 −1.8476
−2.0239 18.4872 −1.7284 9.3103 −1.8486 227.7177

 GPa.

(47)

Using a=22 in the procedure as explained above, the coefficients of Wi jk(θ̂ , φ̂) were
computed. The satisfaction of Equation (20) at a few sample field points in the
mapped domain was checked for all 18 independent sets of Wi jk(θ̂ , φ̂). For this
purpose, the Laplacian operations of Wi jk were approximated using the central dif-
ference scheme, while Ui j,k was determined by Equation (32). Since the computa-
tions for all 18 independent sets showed similar accuracy, only a typical case for
W131 was arbitrarily chosen. The numerical results are listed in Table 1. As has
been explained in Shiah, Tan and Wang (2012), the singularity when φ̂= 0 or π can
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be removed by coordinate redefinition. To further demonstrate this, two sample
points along the x3-axis were also included in the test. As can be seen from the
table, the computed W131 accurately satisfies Equation (20) for all the sample field
points with negligible truncation errors.

The next set of tests is to verify the equivalence of the original volume integral
defined in Equation (12) and the transformed surface integrals, given in Equation
(19). Figure 2 shows the BEM mesh used to model a cube. For this purpose, the
stiffness coefficients in Equation (47) are used; the other thermal material properties
(conductivity coefficients K and thermal expansion coefficients ααα , are assumed as
follows:

K =

 21.0104 −10.1401 −0.5520
−10.1401 24.5785 1.6656
−0.5520 1.6656 23.4811

 W · m/0C, (48a)

ααα =

 0.2612 −0.5760 −0.2129
−0.5760 0.2838 0.2015
−0.2129 0.2015 0.1600

 ×10−6/0C. (48b)

With these values, the thermal moduli of the original domain are determined, from
the basic theory of thermoelasticity, to be:

γγγ =

 0.1981E +02 −0.2134E +01 −0.7204E +00
−0.2134E +01 0.1813E +02 0.5929E +00
−0.7204E +00 0.5929E +00 0.1397E +02

 ×10−5 GPa/0C.

(49)

From Equation (18), one obtains

ZZZ =

 0.2158E+02 0.8360E+01 −0.2181E+01
−0.2325E+01 0.1925E+02 0.6188E+00
−0.7849E+00 0.2760E+00 0.1448E+02

 ×10−5 GPa/0C.

(50)

The following temperature distribution is arbitrarily assumed for this test:

Θ = (0.96794x1 +3)(0.4826x1 + x2−2)(−0.0652x1−0.0074x2 +0.9178x3 +5)

(51)

It satisfies the corresponding anisotropic heat conduction equation. Under the trans-
formed coordinate system, the temperature distribution in the mapped domain can
be easily verified to be

Θ = (x̂1 +3)(x̂2−2)(x̂3 +5). (52)
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Table 1: Comparison between ∇2W131 and U13,1 for some sample field points.

Field point
coordinate

Quartz Alumina

∇2W131×109 U13,1×109 ∇2W131×109 U13,1×109

(1.25,3.75,6.50) 0.4205E-03
(0.00%)

0.42049E-03 0.7390E-03
(0.00%)

0.7390E-03

(-1.25,3.75,6.50) 0.2429E-03
(0.00%)

0.2429E-03 0.7158E-03
(0.00%)

0.7158E-03

(-1.25,-3.75,6.50) 0.1479E-03
(0.00%)

0.1479E-03 0.7579E-03
(0.00%)

0.7579E-03

(1.25,-3.75,6.50) 0.3632E-03
(0.00%)

0.3632E-03 0.7501E-03
(0.00%)

0.7501E-03

(1.25,3.75,-6.50) -0.1479E-03
(0.00%)

-0.1479E-03 -0.7579E-03
(0.00%)

-0.7579E-03

(-1.25,3.75,-6.50) -0.3632E-03
(0.00%)

-0.3632E-03 -0.7501E-03
(0.00%)

-0.7501E-03

(-1.25,-3.75,-6.50) -0.4205E-03
(0.00%)

-0.4205E-03 -0.7390E-03
(0.00%)

-0.7390E-03

(1.25,-3.75-,6.50) -0.2429E-03
(0.00%)

-0.2429E-03 -0.7158E-03
(0.00%)

-0.7158E-03

(0.00,0.00,1.00) 0.7074E-01
(0.00%)

0.7074E-01 0.5923E-01
(0.00%)

0.5923E-01

(0.00,0.00,-1.00) -0.7074E-01
(0.00%)

-0.7074E-01 -0.5923E-01
(0.00%)

-0.5923E-01

As shown in Figure 2, the cube (2 units×2 units×2 units) is modeled with 24
quadratic boundary elements. The eight nodes at the corners are selected as the
sample source points. Purely for the purpose to verify the analytical exactness of
Equation (19), the volume integral was integrated using a 100-points Gauss quadra-
ture scheme, while over each of the boundary elements, the 8-points Gauss quadra-
ture was employed. Table 2 lists the results of the computations; it can be seen that
the percentage deviations of the numerical values of the domain integral and the
corresponding transformed surface integrals are very small indeed.

A slightly more complex geometry is considered to further test the validity of the
volume-to-surface integral transformation. It is a hollow cylinder as shown in Fig-
ure 3, with inner radius of unit, outer radius, 2 units, and height, 2 units. A relatively
refined mesh of 96 boundary elements was employed. The material properties were
taken to be the same as those used in the previous example. Purely for convenience,
the same temperature distribution as given by Equations (51, 52) was also used; this



442 Copyright © 2014 Tech Science Press CMES, vol.102, no.6, pp.425-447, 2014

 

Figure 2: BEM mesh of a cube domain 
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Figure 2: BEM mesh of a cube domain.

Table 2: Comparison of the integrated values of Vj – cube.

Source pt.
Vj computed by Eq.(12) Vj computed by Eq.(19)

j=1 j=2 j=3 j=1 j=2 j=3

(1.0,1.0,1.0) 0.1114E+04 -0.4125E+04 0.8220E+3 0.1119E+04
(0.46%)

-0.4118E+04
(0.17%)

0.8295E+3
(0.92%)

(1.0,-1.0,1.0) 0.1444E+04 -0.4437E+04 0.4994E+03 0.1434E+04
(0.70%)

-0.4426E+04
(0.26%)

0.5079E+3
(171%)

(1.0,1.0,1.0) 0.3774E+3 -0.4434E+04 0.1304E+04 0.3758E+3
(0.44%)

-0.4436E+04
(0.04%)

0.1306E+04
(0.15%)

(-1.0,1.0,1.0) 0.1454E+04 -0.4348E+04 0.1376E+04 0.1457E+04
(0.19%)

-0.4351E+04
(0.08%)

0.1378E+04
(0.16%)

(1.0,1.0,1.0) 0.9778E+3 -0.4411E+04 0.1304E+04 0.9868E+3
(0.92%)

-0.4402E+04
(0.21%)

0.1293E+04
(0.82%)

(1.0,-1.0,1.0) 0.1768E+04 -0.5038E+04 0.1704E+04 0.1753E+04
(0.80%)

-0.5021E+04
(0.33%)

0.1693E+04
(0.65%)

(1.0,1.0,1.0) 0.5238E+3 -0.4646E+04 0.5487E+3 0.5219E+3
(0.38%)

-0.4649E+04
(0.06%)

0.5457E+3
(0.54%)

(-1.0,1.0,1.0) 0.1391E+04 -0.4308E+04 0.4417E+3 0.1396E+04
(0.30%)

-0.4313E+04
(0.131%)

0.4381E+3
(0.80%)
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does not detract the validity of the numerical test. As before, the volume integration
was performed using 100-points Gauss quadrature, but in the cylindrical coordinate
system, as follows,

Vj =−
∫ 1

−1

∫ 2π

0

∫ 2

1
γikΘ,k(r,θ ,z)Ui j(r,θ ,z) rdr dθ dz

=−π

2

100

∑
s=1

100

∑
u=1

100

∑
v=1

[
γikΘ,k(0.5ξv +1.5,πξu +π,ξs)
Ui j(0.5ξv +1.5,πξu +π,ξs) (0.5ξv +1.5)wswuwv

] (53)

Similarly, the surface integrals over each of the boundary elements in the BEM
mesh were computed with 8-points Gauss quadrature as before. Table 3 lists the
computed results of the numerical evaluations of Vj as a domain integral directly
and as the corresponding transformed surface integral, respectively. It can be seen
again that there is very good agreement between both sets of results. The slightly
greater percentage deviations may be attributed to the errors introduced in the nu-
merical modeling of the geometry by the assemblage of discrete boundary elements
and in the numerical integrations over them Although not presented here, these
small deviations have been verified to decrease further when higher order Gauss
quadrature schemes were used for the elements.

The numerical tests above have provided a clear demonstration of the veracity of
the exact integral transformation for the domain integral associated with thermal
effects in the formulation of the boundary integral equation (BIE) for 3D thermoe-
lastic stress analysis of a generally anisotropic solid It restores the notion of the
BEM as a boundary solution technique without the need of making simplifying
approximation schemes as it is analytically exact.

5 Conclusions

In conventional BEM for elastic stress analysis, thermal effects give rise to a do-
main integral in the primary form of the integral equation. Unless it is transformed
into surface integrals, this domain integral destroys the notion of the BEM as a
boundary solution technique as the integral equation is no longer a true BIE. Among
all the schemes developed to treat this issue, the exact transformation approach is
perhaps the most elegant from the viewpoint of its analytical exactness Thus, it
does not suffer the limitations of approximation methods that have been employed
in BEM modeling. This approach has, however, only been successfully applied to
isotropic thermoelasticity and in the 2D general anisotropic case Its extension to 3D
generally anisotropic thermoelasticity has, hitherto, remained elusive. The major
challenge stems from the mathematical complexity of the associated Green’s func-
tion for 3D generally anisotropic elastic bodies. In this study, the exact volume-
to-surface integral transformation of the domain integral associated with thermal
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Figure 3: A hollow cylinder for numerical test.

Table 3: Comparison of the integrated values of Vj – hollow cylinder.

Source pt.
Vj computed by Eq.(12) Vj computed by Eq.(19)

j=1 j=2 j=3 j=1 j=2 j=3

(0.0,2.0,-1.0) 0.3006E+04 -0.8734E+04 0.1221E+04 0.3002E+04
(0.13%)

-0.8678E+04
(0.64%)

0.1261E+04
(3.28%)

(2.0,0.0,-1.0) 0.1125E+03 -0.8712E+04 0.1681E+04 0.1102E+03
(2.06%)

-0.8704E+04
(0.09%)

0.1702E+04
(1.21%)

(0.0,2.0,-1.0) 0.1066E+04 -0.8048E+04 0.1792E+04 0.1067E+04
(0.6%)

-08043E+04
(0.07%)

0.1791E+04
(0.04%)

(-2.0,0.0,-1.0) 0.3268E+04 -0.7363E+04 0.1890E+04 0.3281E+04
(0.39%)

-0.7358E+04
(0.07%)

0.1902E+04
(0.64%)

(0.0,2.0,1.0) 0.3153E+04 -0.9603E+04 0.3243E+04 0.3151E+04
(0.07%)

-0.9528E+04
(0.78%)

0.3183E+04
(1.83%)

(2.0,0.0,1.0) 0.1465E+04 -0.9306E+04 0.1840E+04 0.1437E+04
(1.97%)

-0.9298E+04
(0.09%)

0.1812E+04
(1.55%)

(0.0,2.0,1.0) 0.1046E+04 -0.8187E+04 0.4991E+03 0.1047E+04
(0.11%)

-0.8181E+04
(0.07%)

0.4990E+04
(0.01%)

(-2.0,0.0,1.0) 0.3183E+04 -0.7348E+04 0.1140E+04 0.3205E+04
(0.70%)

-0.7343E+04
(0.06%)

0.1119E+04
(1.85%)
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effects has been successfully achieved using a Fourier series representation of Ting
and Lee‘s (1997) Green‘s function as proposed by the authors very recently The
transformation follows the same basic steps as carried out by the authors previ-
ously in 2D general anisotropy. The anisotropic temperature field is first, mapped
into another Cartesian system of coordinates so that the governing equation be-
comes the simple Laplace equation. The integral transformation is then carried
out in this mapped domain. The veracity of the process has been checked by a
number of tests where excellent agreement has been obtained from the numerically
evaluated values of the domain integral and the corresponding transformed surface
integrals. This development will thus restore the BEM as a truly boundary solution
technique for 3D thermoelastic analysis of generally anisotropic solids, as a true
exact BIE has now been obtained.
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