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Free-Space Fundamental Solution of a 2D Steady Slow
Viscous MHD Flow

A. Sellier1, S. H. Aydin2 and M. Tezer-Sezgin3

Abstract: The fundamental free-space 2D steady creeping MHD flow produced
by a concentrated point force of strength g located at a so-called source point x0 in
an unbounded conducting Newtonian liquid with uniform viscosity µ and conduc-
tivity σ > 0 subject to a prescribed uniform ambient magnetic field B = Be1 is an-
alytically obtained. More precisely, not only the produced flow pressure p and ve-
locity u but also the resulting stress tensor field σ are expressed at any observation
point x 6= x0 in terms of usual modified Bessel functions, the vectors g,x−x0 and
the so-called Hartmann layer thickness d = (

√
µ/σ)/B (see Hartmann (1937)).

The resulting basic flows obtained for g either parallel with or normal to the mag-
netic field B are examined and found to exhibit quite different properties.

Keywords: MagnetoHydroDynamics, Two-dimensional flow, Stokes flow, Fun-
damental solution, Green tensor, Hartmann layer thickness, modified Bessel func-
tions.

1 Introduction

A conducting liquid with uniform conductivity σ > 0 flows when subject to am-
bient magnetic and/or electric field(s). Such a flow, with pressure p and velocity
u, is actually driven by the (non-uniform) Lorentz body-force f = j∧B with j the
current density given from Ohm’s law by j = σ(E+ u∧B) where B and E des-
ignate the magnetic and electric fields prevailing in the liquid. The determination
of the quantities p,u,B and E falls in the field of Magnetohydrodynamics (see,
for instance, Moreau (1990)) and is in general tedious since such quantities obey
coupled incompressible non-linear Navier-Stokes equations with body force f for
the so-called MHD flow (u, p) and Maxwell equations for (E,B). Even more in-
volved is the case when solid particles are suspended in the conducting liquid. As
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discussed in Gotoh (1960), for some steady MHD flows exhibiting specific sym-
metries the previous equations fortunately decouple in the sense one is then able
to first get the fields B and E prior to the determination of the MHD flow (u, p). It
might even happen that in the entire liquid domain (B,E) = (B,0) with B uniform!
This is the case for the following cases:

(i) A solid sphere translating in a quiescent liquid parallel with a prescribed uniform
external magnetic field B in absence of far-field electric field (see Chester (1957)).

(ii) The plane steady two-dimensional MHD flow produced by the rigid-body mo-
tion (translation parallel with and/or rotation normal to the plane) of a solid particle
in a conducting quiescent fluid solely subject (no far-field electric field) to a uni-
form magnetic field B lying in the flow plane. Such a 2D case is illustrated in Fig.
1.
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Figure 1 – A solid plane particle P, with (closed) boundary C, immersed in
the ambient uniform magnetic field B = Be1 and migrating with translatio-
nal velocity U and/or angular velocity Ωe3.
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Figure 2 – Isolevel contours for the velocity component u(p).e1 = G11(x,x0)
in the plane (x′1, x

′
2).

1

Figure 1: A solid plane particle P, with (closed) boundary C, immersed in the
ambient uniform magnetic field B = Be1 and migrating with translational velocity
U and/or angular velocity Ωe3.

If the particle has length scale a and its rigid-body motion velocity has typical
magnitude U > 0 the MHD flow Reynolds number Re = ρUa/µ may be of quite
different magnitude depending upon the applications. Whenever Re is moderate or
large getting the MHD flow about the moving solid body remains a very-involved
task even in above Cases (i)-(ii), for which there is no electric field and a prescribed
uniform magnetic field, because one has still to cope with the non-linear Navier-
Stokes equations. Fortunately, for some applications involving small solid particles
one has Re� 1 and, neglecting inertial effects, the MHD flow then obeys the more
tractable (linear) Stokes equations. Within this framework Yosinobu and Kabutani
(1959) solved Case (ii) for a translating disk by expanding the flow stream function
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as an infinite serie of terms and truncating the serie for the computations. The
Reynolds number compares in the Navier-Stokes equations the inertial term with
the viscous term. As previously outlined, the MHD flow is driven by the Lorentz
body-force. Comparing in the Navier-Stokes equations this force with the viscous
term gives the Hartmann number M. This number is obtained by introducing the
so-called Hartmann layer thickness d [Hartmann (1937)]. For a magnetic field with
typical magnitude B > 0 the Hartmann length d and number M read

d = (
√

µ/σ)/B, M = a/d. (1)

The low-Reynolds-number MHD flow about the solid particle in Cases (i)-(ii) has
been then found to deeply depend upon the value of M [Chester (1957); Yosinobu
and Kabutani (1959)].

For applications one might of course encounter solid particles which are not disks.
Unfortunately, it is not possible to extend the method employed in Yosinobu and
Kabutani (1959) for the translating disk to deal for a solid body of arbitrary (but
smooth) shape. Therefore, another technique is needed to deal with the 2D prob-
lem (ii) of a solid and arbitrary-shaped body experiencing a given rigid-body mo-
tion (translation and/or rotation) and subject to a given uniform magentic field B.
One can think about extending the boundary approach available for a 2D Stokes
in absence of magnetic field [Pozrikidis (1992)]. To do so the key step consists in
obtaining the so-called fundamental flow associated with the considered problem,
i. e. the free-space 2D steady creeping MHD flow produced by a concentrated
point force of strength g located at a source point x0 in the plane domain. Such a
challenging issue is addressed in the present work.

The paper is organized as follows. The governing 2D problem and the velocity,
pressure and stress tensor associated with the required fundamental MHD Stokes
flow are analytically obtained in §2. Two different basic flows are then distin-
guished and studied (paying attention to each flow pattern) in §3. Finally, a few
remarks in §4 close the paper.

2 Fundamental flow problem and analytical solution

This section gives the governing 2D MHD problem for the fundamental flow and
derives the associated analytical solution.

2.1 Governing flow problem and notations

We look at the so-called free-space fundamental 2D MHD plane steady Stokes flow
with pressure field p and velocity field u produced in a Newtonian liquid, where
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prevails the uniform magnetic field B, by a concentrated point force of strength g
placed at the arbitrary source point x0. We adopt Cartesian coordinates (O,x1,x2)
and take B = Be1 with B > 0. Denoting by µ > 0 and σ > 0 the uniform liquid
viscosity and conductivity, the flow (u, p) then obeys the following steady Stokes
equations and far-field behaviour

∇.u = 0 for x 6= x0, (2)

µ∇
2u+σB2(u∧ e1)∧ e1−∇p =−δ (x−x0)g for x 6= x0, (3)

(u, p)→ (0,0) as |x−x0| → ∞ (4)

where δ is the two-dimensional delta pseudo-function.

Inspecting (2)-(4) immediately shows that (u, p) and its stress tensor σ lineary
depend upon the force g. As in Pozrikidis (1992), we thus introduce a Green vector
P and a so-called second-rank Green velocity tensor G such that

u(x) =
1

4πµ
G(x,x0).g, p(x) =

1
4π

P(x,x0).g. (5)

The aim of the present work is to determine those Green vector P(x,x0) and tensor
G(x,x0) at x 6= x0 whatever the value (recall the definitions (1)) of the Hartmann
layer thickness d = (

√
µ/σ)/B. Knowing such quantities will also permit us to

subsequently obtain the associated stress tensor σ .

2.2 Velocity second-rank Green tensor

Henceforth, we adopt the tensor summation convention. For instance we have
x = xiei and u = uiei. Under such notations the force strength g is g = giei. Simi-
larly, the tensor G(x,x0) admits Cartesian components Gi j(x,x0) with G(x,x0) =
Gi j(x,x0)ei⊗ e j.

Clearly, (2)-(4) show that G(x,x0) = G(x−x0) and P(x,x0) = P(x−x0). Accord-
ingly, we restrict our attention to the case of a concentrated force located at the
origin O (case x0 = 0).
As outlined in the introduction, determining the Green tensor G is a key task for a
future boundary approach of the 2D MHD slow viscous flow about a solid particle
experiencing a given rigid-body motion. As always when dealing with either two-
dimensional or three-dimensional Stokes fundamental flows, one can think about
using a diect approach (as, for instance, in Sellier (2008)) or a Fourier transform
(as in Jones (2004) or Sellier and Pasol (2006) for the fundamental flow between
two plane and parallel walls and also as recently achieved in Sellier and Ghalia
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(2011) for the fundamental flow above a plane slip wall with a general anisotropic
slip condition).

In this work we adopt a direct approach and obtain the required Green tensor G
by micmicking the nice treatment worked out in Priede (2013) for a similar three-
dimensional problem. In order to get ride of the pressure p we first apply the op-
erator ∇∧ (∇∧) to each side of equation (3). Taking into account of the continuity
equation (2) we arrive at

µ∇
2(∇2u)−σB2 ∂ 2u

∂x2
1
= ∇∧ (∇∧ [δg]) (6)

with u=u(x),δ = δ (x) and x= x1e1+x2e2. Denoting by ∆ the usual two-dimensional
Laplacien operator, the solution for the velocity u then reads

u =
1
µ

∇∧ (∇∧ [Hg]), (7)

∆(∆H)− σB2

µ

∂ 2H
∂x2

1
= δ (8)

where the occurring function H has to be determined. Observe that knowing H
will immediately provide the velocity u = u1e1 +u2e2 from (7) by appealing to the
relations (recall that g = giei)

µu1 = [
∂ 2H
∂x2

1
−∆H]g1 +[

∂ 2H
∂x2∂x1

]g2, (9)

µu2 = [
∂ 2H

∂x2∂x1
]g1 +[

∂ 2H
∂x2

2
−∆H]g2. (10)

By virtue of (9)-(10), it turns out that it is sufficient to determine the functions ∆H
and ∂H/∂x1 (the obtention of H is therefore not needed).

Here, the function H is gained by solving the problem (8) with a proper far-field
behaviour. For convenience, we recognize on the left-hand side of (8) the quantity
1/d2 with d = (

√
µ/σ)/B the Hartmann layer thickness (see also (1)). We also

introduce two auxiliary functions H− and H+ as follows

[∆+
1
d

∂

∂x1
]H− = [∆− 1

d
∂

∂x1
]H+ =−δ , (11)

∆H =−H++H−
2

,
∂H
∂x1

=−d
2
(H+−H−). (12)



398 Copyright © 2014 Tech Science Press CMES, vol.102, no.5, pp.393-406, 2014

Because both u1 and u2 are required to vanish far from the source point O (recall
the far-field behaviour (4)) we must retain functions H− and H+ going to zero as
r = |x| becomes large. Designating by K0 the usual modified Bessel function of
order zero (which indeed vanishes at infinity; see Abramowitz and Stegun (1965))
and also using Pozrikidis (2002), the required solutions are found to be

H± =
1

2π
e±x1/(2d)K0(

r
2d

). (13)

Therefore, one gets

∆H =− 1
2π

cosh(
x1

2d
)K0(

r
2d

), (14)

∂H
∂x1

=− d
2π

sinh(
x1

2d
)K0(

r
2d

). (15)

Invoking (9)-(10) and the definitions (5) easily provides the required Cartesian
components Gi j(x,x0) of the second-rank Green velocity tensor. Because K′0 =
−K1, with K1 the usual modified Bessel function of order one, the obtained results
read

G11(x,x0) = cosh(
x̂1

2d
)K0(

r̂
2d

)+ sinh(
x̂1

2d
)K1(

r̂
2d

)
x̂1

r̂
, (16)

G12(x,x0) = sinh(
x̂1

2d
)K1(

r̂
2d

)
x̂2

r̂
, (17)

G21(x,x0) = G12(x,x0), (18)

G22(x,x0) = cosh(
x̂1

2d
)K0(

r̂
2d

)− sinh(
x̂1

2d
)K1(

r̂
2d

)
x̂1

r̂
(19)

with the notations x̂ = x−x0, x̂i = x̂.ei and r̂ = |x̂|. The derived Cartesian compo-
nents of the Green velocity tensor are thus found to obey the following properties:
Gi j(x,x0) = G ji(x0,x) = Gi j(x0,x).

2.3 Pressure Green vector

We now look at the pressure Green vector P(x,x0) introduced by (5). To do so we
need to determine the pressure p for the fundamental flow. Selecting again x0 = 0,
we appeal to the equation (3) which now reads ∇p = µ∇2u+σB2(u∧ e1)∧ e1 +
δ (x)g with u previously given by (7) and (9)-(10). Taking the divergence of this
equation and using the property ∇.u = 0 gives ∆p = ∇.(δg) +σB2∇.[(u.e1)e1].
Applying now on each side the Laplacien operator easily gives for the pressure p
the equation

∆(∆p)− σB2

µ

∂ 2 p
∂x2

1
= ∆[∇.(δg)]− σB2[g.e1]

µ

∂δ

∂x1
. (20)
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Recalling that H obeys (8) and using the definition (1) of the Hartmann layer thick-
ness d then provides the pressure p. One ends up with the solution

p = ∆[∇.(Hg)]− (
g.e1

d2 )
∂H
∂x1

= [
∂∆H
∂x1
− 1

d2
∂H
∂x1

]g1 +[
∂

∂x2
(∆H)]g2. (21)

Accordingly, one arrives at the following components Pi = P.ei for the pressure
Green tensor

P1(x,x0) =
1
d
[sinh(

x̂1

2d
)K0(

r̂
2d

)+ cosh(
x̂1

2d
)K1(

r̂
2d

)
x̂1

r̂
], (22)

P2(x,x0) =
1
d

cosh(
x̂1

2d
)K1(

r̂
2d

)
x̂2

r̂
. (23)

2.4 Associated third-rank Green stress tensor

In this subsection we gain the stress tensor σ for the fundamental flow (u, p) from
the previous results established for the fields u and p. Still using our tensor summa-
tion notation, the flow (u, p) has stress tensor σ(x) =σi j(x,x0)ei⊗e j. By linearity,
one can introduce a so-called third-rank stress tensor T with cartesian components
Ti jk(x,x0) such that (see also Pozrikidis (1992))

σik(x,x0) =
1

4π
Ti jk(x,x0)g j. (24)

One should here carefully note by that our definition (24) does not at that stage read
σ = T.g! Using the definitions (5) and (24) immediately shows that

Ti jk(x,x0) =−δikPj(x,x0)+
∂Gi j

∂xk
(x,x0)+

∂Gk j

∂xi
(x,x0) (25)

where the symbol δik designates the Kronecker delta. Hence, Ti jk = Tk ji and the
task therefore reduces to the determination of only six Cartesian components of the
stress tensor: the components T111,T121,T212,T222 and the components T112 = T211
and T122 = T221. After elementary manipulations one gets, using the results (16)-
(19) and (22)-(23),

T111(x,x0) =2sinh(
x̂1

2d
)K1(

r̂
2d

)(
1
r̂
− x̂2

1
r̂3 )

+
1
d

[
sinh(

x̂1

2d
)K′1(

r̂
2d

)
x̂1

r̂
− cosh(

x̂1

2d
)K1(

r̂
2d

)

]
x̂1

r̂
,

(26)



400 Copyright © 2014 Tech Science Press CMES, vol.102, no.5, pp.393-406, 2014

T222(x,x0) =−
2
d

cosh(
x̂1

2d
)K1(

r̂
2d

)
x̂2

r̂
+ sinh(

x̂1

2d
)

[
2
r̂

K1(
r̂

2d
)− 1

d
K′1(

r̂
2d

)

]
x̂1x̂2

r̂2 ,

(27)

T121(x,x0) = 2sinh(
x̂1

2d
)

[
1

2d
K′1(

r̂
2d

)− 1
r̂

K1(
r̂

2d
)

]
× (

x̂1x̂2

r̂2 ) (28)

and also

T212(x,x0) =
1
d

sinh(
x̂1

2d
)

[
K′1(

r̂
2d

)
x̂2

2
r̂2 −K0(

r̂
2d

)

]
− 1

d
cosh(

x̂1

2d
)K1(

r̂
2d

)
x̂1

r̂

+2sinh(
x̂1

2d
)K1(

r̂
2d

)(
1
r̂
− x̂2

2
r̂3 ),

(29)

T112(x,x0) = T211(x,x0)

= sinh(
x̂1

2d
)

[
1
d

K′1(
r̂

2d
)− 2

r̂
K1(

r̂
2d

)

]
x̂1x̂2

r̂2 ,
(30)

T122(x,x0) = T221(x,x0)

=
1

2d
sinh(

x̂1

2d
)K0(

r̂
2d

)− 1
d

cosh(
x̂1

2d
)K1(

r̂
2d

)
x̂1

r̂

+ sinh(
x̂1

2d
)

[
1
r̂

K1(
r̂

2d
)− 1

2d
K′1(

r̂
2d

)

][
x̂2

1− x̂2
2

r̂2

] (31)

where K′1 designates the derivative of the function K1 and of course x̂ = x−x0, x̂i =
x̂.ei and r̂ = |x̂|. Observe that Ti jk(x,x0) =−Ti jk(x0,x).

3 Properties of the fundamental flows produced by a point force parallel or
normal to the magnetic field

By linearity, two different fundamental flows actually occur: the first one for a unit
force g = e1 parallel with B and the second one for a unit force g = e2 normal
to B. As seen in this section, such basic fundamental flows actually exhibit quite
different properties.

3.1 Distinguished key fundamental flows and associated near-field and far-field
behaviours

Let us introduce two fundamentals flows u(p) and u(n) obtained by putting a source
at the point x0 with unit strength g = e1 and g = e2, respectively. At each point
x 6= x0 one thus has

u(p) := 4πµu(p)(x) = G11(x,x0)e1 +G21(x,x0)e2, (32)
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u(n) := 4πµu(n)(x) = G12(x,x0)e1 +G22(x,x0)e2 (33)

and for the associated pressures p(p) and p(n)

p(p) := 4πd p(p)(x) = dP1(x,x0), (34)

p(n) := 4πd p(n)(x) = dP2(x,x0). (35)

As introduced in §2.2, we note x̂ = x−x0 = x̂iei and r̂ = |x̂|. The near-field (r̂→ 0)
and far-field (r̂→ ∞) behaviours of the previous flows are thus obtained by using
the following asymptotic behaviours (see Abramowitz and Stegun (1965))

K0(α)∼− logα and K1(α)∼ 1/α as α → 0+, (36)

K0(α)∼ K1(α)∼
√

π

2α
e−α as α → ∞. (37)

Accordingly, one gets for the near-field

G11 ∼ G22 ∼− log r̂, G12 = G21 ∼
x̂1x̂2

r̂2 as r̂→ 0 (38)

and for the far-field (r̂→ ∞)

G12 = G21 ∼
x̂1

2|x̂1|

√
πd
r̂

e(|x̂1|−r̂)/(2d) x̂2

r̂
(x̂1 6= 0), (39)

G11 ∼
1
2

√
πd
r̂

e(|x̂1|−r̂)/(2d)[1+
|x̂1|
r̂

], (40)

G22 ∼
1
2

√
πd
r̂

e(|x̂1|−r̂)/(2d)[1− |x̂1|
r̂

]. (41)

Inspecting (39)-(41) shows an exponential decay of the components Gi j when x̂2 6=
0. In contrast, for x̂2 = 0 and |x̂1| = r̂ large it appears that G12 = G21 = G22 ∼ 0
while G11 ∼

√
πd/|x̂1| and thus decays much more slowly. As a consequence, the

flow u(n) decays faster than the flow u(p) which has a component parallel with the
magnetic field slowly decaying close to the x̂2 = 0 axis.

3.2 Flow patterns

Both velocity patterns u(p) and u(n) are now plotted versus the normalized coor-
dinates x′i = x̂i/d. For comparison purposes we first plot in Fig. 2-4 the velocity
components of those flows.

These flows admit the same velocity in the direction normal to the associated unit
force (because G12 = G21). In contrast, the velocity component along the direction
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of the unit force is very different from one flow to the other one (compare Fig. 2
and Fig. 4). Morevover, one clearly sees in Fig. 2 the slow decay of the velocity
component u(p).e1 near the x′2 = 0 axis. Actually, for the flow u(p) the velocity
magnitude is given by its component parallel with the uniform magnetic field B =
Be1 which is larger than the component normal to B.
Finally, we also draw in Fig. 5-6 each flow streamlines pattern. Again, quite dif-
ferent streamlines are obtained for the two different flows. As expected (see Fig.
5), the streamlines for the flow u(p) are nearly parallel with the magnetic field in a
large domain near the x′2 = 0 axis or far away from the source point.
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Figure 1 – A solid plane particle P, with (closed) boundary C, immersed in
the ambient uniform magnetic field B = Be1 and migrating with translatio-
nal velocity U and/or angular velocity Ωe3.
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Figure 2: Isolevel contours for the velocity component u(p).e1 = G11(x,x0) in the
plane (x′1,x

′
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4 Conclusions

The 2D MHD Stokes flow produced by a point force has been analytically ob-
tained. Not only the velocity field but also the pressure and the stress tensor have
been given in closed form. The solution is found to deeply depend upon the Hart-
mann layer thickness and to exponentially decay far from the source except for the
velocity component parallel with the magnetic field B when the force is not normal
to B. Two basic flows obtained when the force is normal or parallel with B have
been introduced and found to exhibit quite different far-field behaviours. The ma-
terial presented in this paper is a first key step in developing a boundary approach
to determine the 2D MHD Stokes flow about a solid particle of arbitrary shape and
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prescribed rigid-body motion (translation and/or rotation normal to the body). Such
a challenging task requires additional efforts and is therefore postponed to a future
work.
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