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Fatigue Crack Growth Reliability Analysis by Stochastic
Boundary Element Method

Xiyong Huang1, M. H. Aliabadi2 and Z. Sharif Khodaei3

Abstract: In this paper, a stochastic dual boundary element formulation is pre-
sented for probabilistic analysis of fatigue crack growth. The method involves a di-
rect differentiation approach for calculating boundary and fracture response deriva-
tives with respect to random parameters. Total derivatives method is used to obtain
the derivatives of fatigue parameters with respect to random parameters. First-
Order Reliability Method (FORM) is applied to evaluate the most probable point
(MPP). Opening mode fatigue crack growth problems are used as benchmarks to
demonstrate the performance of the proposed method.
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1 Introduction

Probabilistic Fracture Mechanics (PFM) is a recognised tool for realistic evalua-
tion of fracture response and reliability of cracked structures Feng, Garbatov, and
Guedes Soares (2012); Dong and AtIuri (2013); Leonel, Chateauneuf, and Ven-
turini (2012); Guo and Chen (2013); Paffrath and Wever (2012); Hombal, Wolfe,
Ling, and Mahadevan (2012); Li, Xiang, Wang, Zhang, and Liu (2013); Graham-
Brady and Liu (2013); Katsuyama, Itoh, Li, Osakabe, Onizawa, and Yoshimura
(2014). Using PFM, statistical uncertainties can be incorporated in engineering
design and evaluation. The theory of fracture mechanics provides a relationship
between the maximum load acting on a structural component and the size and lo-
cation of a crack in that component, while the probability theory evaluate the ran-
domness in crack size, loads and material properties affect the integrity of cracked
structures. In PFM, the derivatives of stress intensity factor (SIF) or J-integral are
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often required for probabilistic analysis Besterfield, Liu, Lawrence, and Belytschko
(1990); Chen, Rahman, and Park (2001); Grigoriu, Saif, El Borgi, and Ingraffea
(1990); Provan (1987). These two fracture parameter are required for obtaining the
gradient of performance function with respect to random parameters in first- and
second order reliability methods (FORM/SORM).

As for fatigue reliability analysis, different types of uncertainty such as physical
variability (material properties, loading), data uncertainty (crack detection uncer-
tainty, sparse data), and model uncertainty (SIF, crack growth law) errors are all
contributing to that aspect. Bayesian network has been used in two different ways
in PFM: 1) probabilistic crack growth prediction (forward problem) Rebba and
Mahadevan (2008) and 2) quantifying the uncertainty of the model parameters, i.e.
model calibration (inverse problem) Sankararaman, Ling, Shantz, and Mahadevan
(2011). Sankararaman, Ling, and Mahadevan (2011) used the calibrated model for
probabilistic crack growth prediction (combining both inverse and forward prob-
lems) using a dynamic Bayesian network including all three types of uncertainty.
Several different crack growth models were efficiently used with Bayes network:
finite element anlysis, surrogate model analysis and crack growth law. Probabilis-
tic damage prediction can then be used in effective prognosis under uncertainty to
predict the remaining useful like of the structure.

Most previous research has focused on advanced probabilistic algorithms coupled
with finite element method because of its generality and popularity. A probabilistic
finite element method coupled with FORM has been developed by Besterfield, Liu,
Lawrence, and Belytschko (1991); Harkness, Belytschko, and Liu (1992) for the
reliability analysis of the fatigue crack growth. The finite element analysis and the
reliability calculation is linked through a response surface program using Hermite
polynomials for the fatigue reliability of marine structures by Schall, Rackwitz,
Scharrer, and Ostergaard (1991). Zhu, Lin, and Lei (1992) assumed the material
resistance to fatigue crack growth and the time-history of the stress are random
to obtained the analytical expressions for a randomized Paris-Erdogan law. Peng,
Geng, Liyan, Liu, and Lam (1998) combined the stochastic finite element method
with a second-order three-moment reliability analytical model to investigate the fa-
tigue strength reliability of a gear teeth subjected to bending. More recent advances
have been reported in Lua, Liu, and Belytschko (1993) which combines the mixed
boundary integral equations with the first-order reliability method for probabilis-
tic crack growth analysis and the least-squares fitting routine is used to obtain the
first-order response-surface model of the random parameters.

In contrast, boundary element method has emerged as the most efficient technique
for the evaluation of stress intensity factor and crack growth analysis in the con-
text of linear elastic fracture mechanics Benedetti, Aliabadi, and Davi (2008);
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Dirgantara and Aliabadi (2000); Fedelinski, Aliabadi, and Rooke (1996); Sfantos
and Aliabadi (2007); Wen, Aliabadi, and Rooke (1998a,b). Portela and Aliabadi
Portela, Aliabadi, and Rooke (1992, 1993) and Mi and Aliabadi (1994) presented
an application of the Dual Boundary Element Method (DBEM) to the analysis of
mixed-mode crack growth in 2D and 3D linear elastic fracture mechanics, where
the crack growth processes were simulated with an incremental crack extension
analysis based on the maximum principal stress criterion for 2D and minimum
strain energy density criterion for 3D.

In this study, a dual boundary element method combined with FORM to predict
probability of fatigue failure for mode-I crack growth is presented. The response
gradient of performance function is determined by the total derivative method (TDM).
The derivative of fracture parameters with respect to crack size, required for proba-
bilistic analysis, is calculated using the implicit differentiation method (IDM). The
randomness in the initial crack length, final crack length, fatigue crack growth pa-
rameters and the applied stress are considered in the present work. Other random
parameter of the problem can be included. The Hasofer–Lind–Rackwitz–Fiessler
algorithm is used to find the most probable point, referred to as the reliability index.
The efficiency and accuracy of the proposed method on a classical mode I fatigue
problem is demonstrated by comparison with Monte Carlo simulation (MCS) .

2 The dual boundary element method

2.1 Boundary element formulation

The basic Boundary Integral Equations can be written as Aliabadi (2002):

Ci j(x′)u j(x′)+−
∫

Γ

Ti j(x′,x)u j(x)dΓ(x) =
∫

Γ

Ui j(x′,x)t j(x)dΓ(x) (1)

where −
∫

Γ
stands for Cauchy principle value integral, Ci j(x′) is a tensor, dependent

on the boundary shape at the source point x′ , u j and t j are components of dis-
placements and tractions, respectively; Ti j(x′,x) and Ui j(x′,x) are the fundamental
solutions for elastostatics.

The Dual Boundary Element Method (DBEM) has been developed to overcome
the problems created by the analysis of crack domains without the need to use
sub-regions. The usual displacement equation is now replaced with the traction
equation on one of the crack surfaces.

1
2

ui(x′)+
1
2

ui(x′′)+−
∫

Γ

Ti j(x′,x)u j (x)dΓ(x) =
∫

Γ

Ui j(x′,x)t j (x)dΓ(x) (2)
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1
2

σi j
(
x′
)
+

1
2

σi j
(
x′′
)
+=
∫

Γ

Ski j(x′,x)uk (x)dΓ(x)

=−
∫

Dki j(x′,x)tk (x)dΓ(x) (3)

where =
∫

Γ
stands for Hadamard principle value integral.

The dual integral equations (2) and (3) will be evaluated for a source point x′ on
a smooth crack boundary to give the DBEM equations; where Dki j and Ski j are
formed from the derivatives of the fundamental solutions Ui j,k and Ti j,k. The detail
of fundamental solutions Ti j, Ui j, Dki j, Ski j and Jacobian of Transformation J are
shown in Appendix A:.

In BEM, a transformation of the system equations leads to an integral equation,
evaluated only on the boundary of the domain Γ. In order to use the BEM, only
the boundary of the body needs to be discretised into elements. Equation 1 can
be discretised using quadratic boundary elements characterised by shape functions
Mn(ξ ) and Jacobian Jγ(ξ ), with ξ the local dimensionless variable, leading to the
following boundary integral equations:

Ci j(x′)u j(x′)+
M

∑
γ=1

3

∑
n=1

uγn
j (x)P

γn
i j =

M

∑
γ=1

3

∑
n=1

tγn
j (x)Qγn

i j i, j = 1,2 (4)

where the coefficient Pγn
i j and Qγn

i j are defined in terms of integrals over Γ, where
dΓ(x) becomes Jγ(ξ )dξ ; that is

Pγn
i j =

+1∫
−1

Ti j(x′,x(ξ ))Mn(ξ )Jγ(ξ )dξ

Qγn
i j =

+1∫
−1

Ui j(x′,x(ξ ))Mn(ξ )Jγ(ξ )dξ (5)

Equations (2) and (3) can also be discretised using quadratic boundary elements
characterised by Mn(ξ ) and Jγ(ξ ), leading to the following boundary integral equa-
tions:

1
2

ui(x′)+
1
2

ui(x′′)+
M

∑
γ=1

3

∑
n=1

uγn
j (x)P

γn
i j =

M

∑
γ=1

3

∑
n=1

tγn
j (x)Qγn

i j i, j = 1,2 (6)

1
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ti(x′)+
1
2

ti(x′′)+
M

∑
γ=1

3

∑
n=1

uγn
k (x)Vγn

ki j =
M

∑
γ=1

3

∑
n=1

tγn
k (x)Wγn

ki j k, i, j = 1,2 (7)
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where the coefficient Vγn
ki j and Wγn

ki j are defined as:

Vγn
ki j =

+1∫
−1

Ski j(x′,x(ξ ))Mn(ξ )Jγ(ξ )dξ

Wγn
ki j =

+1∫
−1

Dki j(x′,x(ξ ))Mn(ξ )Jγ(ξ )dξ (8)

Each of the boundary element equations contain either unknown displacement or
traction value. However, from boundary condition given for each system, one of
the values at each node can be found, giving a linear system of equations which
may be solved using a standard method. The system can be written in matrix form
as

A X =F (9)

In this equation, the vector F is evaluated from the application of the known bound-
ary conditions to the system of equation, X is the vector of unknown values and A
is the coefficient matrix. Although any standard linear algebraic routine can be
used to solve the above system, the LU decomposition method is used here since
the repeated computations with only forward and backward substitution is required
for each of the derivatives analysis.

2.2 Derivatives of dual boundary integral equations

The response derivatives with respect to a set of random parameters Zm, (m =
1....Nv), where Nv is the number of random parameters, will be computed using
a system of equations created by the direct differentiation of the equations used in
DBEM. These will be evaluated by differentiation of the standard boundary con-
ditions used in the deterministic system. Differentiating equations (4), (6) and (7)
with respect to the design variable Zm gives Mellings and Aliabadi (1993); Sfantos
and Aliabadi (2006):

Ci j,m(x′)u j(x′)+Ci j(x′)u j,m(x′)+
M

∑
γ=1

3

∑
n=1

un
j,m(x)P

γn
i j +

M

∑
γ=1

3

∑
n=1

un
j(x)P

γn
i j,m

=
M

∑
γ=1

3

∑
n=1

tn
j,m(x)Q

γn
i j +

M

∑
γ=1

3

∑
n=1

tn
j (x)Q

γn
i j,m (10)
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where (),m indicates a derivative with respect to the design variable Zm. The detail
of the derivatives of coefficients Pγn

i j,m, Qγn
i j,m, Vγn

ki j,m, and Wγn
ki j,m; the derivatives of

fundamental solutions Ti j,m, Ui j,m, Dki j,m, Ski j,m and the derivatives of Jacobian of
transformation J,m can be found in (Appendix A:).

The equations (11) and (12) contain the required displacement and traction deriva-
tives un

k,m(x) and tn
k,m(x) which can now be used to analyse the derivatives of frac-

ture parameters. In order to use the derivative of the system of equations to evaluate
the response derivatives, it is necessary to prescribe a new set of boundary condi-
tions for the derivative values. Since the known displacements and tractions at the
boundary nodes are independent of the boundary geometry, their derivatives with
respect to Zm equal to 0.

After applying the new boundary condition, the derivative of the system of equa-
tions can be written in matrix form as:

AX,m = F,m−A,mX (13)

where X,m is the first order derivative of the unknown displacement and traction
vector, A,m is the first order derivative of the coefficient matrix, while X is the vector
of known values at this stage. For the derivative analysis, the same coefficient
matrix A that was used to solve the deterministic problem is reused here.

2.3 Analytic integration

The singular term in equation (4) is evaluated by the rigid body condition. Whereas
the other singular and hyper-singular terms in equations (6) and (7) are calculated
analytically. In the DBEM, since the crack is traction free, integrals involving Ui j

and Dki j kernels are not required. The integrals required are those containing the
Ti j terms in the displacement equation (6) and Ski j terms in the traction equation (7)
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Figure 1: change to node A of a straight crack

when the field point is on the crack boundary. Further detail of the evaluation of the
integrals contain Ti j and Ski j terms can be found in Portela, Aliabadi, and Rooke
(1992, 1993).

In derivative DBEM analysis, the integrals requiring analytically calculation are
those containing the Ti j,m terms in equation (11) and Ski j,m terms in equation (12).
Since the crack faces are modelled as straight lines, therefore, the design variables
are restricted to the coordinates of the end points of one or more crack elements in
this work. Both the non-singular and the singular terms of equations (11) and (12)
can be evaluated using the same approach adopted by Portela, Aliabadi, and Rooke
(1992, 1993) on the basis of the geometric derivatives.

Consider a flat, boundary element with the end nodes labelled as A and B, as shown
in Fig 1. The local coordinates of the end nodes are given by ξ = η . Assume
the design variables related to the coordinates of these end nodes. Then a change
in the design variable is a change in one direction of one of the end nodes, with
the other end node remaining fixed. Applying a simple parametric function, the
derivatives of the element node with respect to the design variable Zm can be written
in generalised form as:

xi,zm =
(1+ηξ )

2
δim (14)

δim =

{
1 i f Zm represents a change in direction i
0 otherwise

(15)

Using above definitions, the other required derivatives can be simplified. The inte-
gral which required analytical integration then reduces to:

un
j(x)

+1∫
−1

(Ti j,m(x′,x(ξ ))Jγ(ξ )+Ti j(x′,x(ξ ))Jγ
,m(ξ ))M

n(ξ )dξ = 0 (16)
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un
j(x)

+1∫
−1

(Ski j,m(x′,x(ξ ))J(ξ )+Ski j(x′,x(ξ ))Jγ
,m(ξ ))M

n(ξ )dξ

=
Eη

2πl2(1−ν2)
hn

ki j,mun
j

+1∫
−1

Mn(ξ )

(ξ −ξ ′)2 dξ (17)

where the terms hn
m = hn

ki j,m is given by

hn
m =

 2n1n2(4n2
2−1) −8n2

2n2
1 +1

2n1n2(4n2
1−1) 8n2

2n2
1−4n2

1 +1
−8n2

2n2
1 +1 2n1n2(−4n2

2 +3)

 f or a change Zm

in direction 1

(18)

hn
m =

 −8n2
2n2

1 +4n2
2−1 2n1n2(−4n2

2 +1)
8n2

2n2
1−1 2n1n2(−4n2

1 +1)
2n1n2(4n2

1−3) 8n2
2n2

1−1

 f or a change Zm

in direction 2

(19)

3 The J-Integral and its derivatives

x

y

a

ds

G

Figure 2: J-integral

One of the most popular path independent integrals is the J-integral, which can be
defined as Rigby and Aliabadi (1993):

J =
∫

Γ

(Wn1− t ju j,1)dΓ (20)
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where W is the strain energy density, Γ is the contour, dΓ is the differential length
along contour Γ, t j = σi jn j is the traction on the contour, n j is the components
of the unit vector normal to contour. Consider a body with a crack of length a,
subjected to mode-I loading. Using an arbitrary counter-clockwise path around the
crack tip, as shown in Figure 2, the relation between J and stress intensity factor is
given by:

J =
K2

I +K2
II

E ′
(21)

where E ′= E/(1−ν2) for plane strain condition. By using decomposition method,
stress intensity factor for each mode can be obtained. The J-integral is an effective
tool for the evaluation of the stress intensity factors, because the interior elastic
field can be accurately determined along the contour path in the boundary element
method, since the exact variation of the interior elastic field is built into the funda-
mental solution. Similar process can be applied to determine the derivatives of J
and stress intensity factor. Differentiating the J with respect to design variable Zm

gives:

J,m =
∫

Γ

[
W,mn1 +Wn1,m− (t1,mε11 + t1ε11,m + t2,m

∂u2

∂x1
+ t2

∂u2,m

∂x1
)

]
dΓ (22)

The detail of those term in J and J,m are shown in Appendix B:.

4 Fatigue crack growth and its derivatives

4.1 Crack growth direction

Here, crack growth is simulated by an incremental crack extension, that assumes a
piece-wise linear discretisation of crack path. For each increment analysis, crack
extension is conveniently modelled with new boundary elements. In such a way, no
remeshing is needed during crack extension. The local crack growth direction θt is
determined by the condition that local shear stress is zero, that is:

KIsinθt +KII(3cosθt −1) = 0 (23)

where θt is the angular coordinate of the tangent to the crack path, centred at the
crack tip and measured from the crack axis ahead of the crack tip.

In a mixed-mode analysis, an equivalent mode I stress intensity factor is defined as:

KIeq = KIcos3 θ

2
−3KIIcos2 θ

2
sin

θ

2
(24)
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4.2 Fatigue crack growth

The analysis of fatigue crack life envisages the problem of showing the relation
between the number of cycles of loading and the increments of cracks to obtain the
final life of the damaged structure. In order to show the variation in the number of
loading cycles as a function of crack length, in the present work the fatigue life N
is determined from the empirical Paris model defined as:

N =

a f∫
a0

da
C(4Ke f f )m (25)

where a0 is the initial crack length, a f is the final crack length, C and m are the
fatigue parameters and 4Ke f f is the range of the effective stress intensity factor.
Although 4Ke f f = 4KIeq when the maximum principal stress criterion is used,
the model of Tanaka Tanaka (1974) was applied in the present work to determine
4Ke f f .

4Ke f f =
√
4K2

I +24K2
II (26)

5 Reliability analysis by FORM

The performance function for fatigue crack growth can be defined as:

g(Z) = N−Ns (27)

where N is the fatigue life (resistance) and Ns is the service life (load).

The probability of failure Pf is calculated assuming a generic N-dimensional vec-
tor Z of random variables. The first-order reliability method is based on linear
approximation of the performance function g(Z) = 0 to an ideal situation where
Z is a vector of independent Gaussian variable with zero means and unit standard
deviation.

The probability of failures is then defined by:

Pf = Φ(−β ) (28)

where Φ(Zm) is the cumulative probability distribution function of a standard Gaus-
sian random variable, β is the reliability index. g(Z)>0 represents a safe state while
g(Z)<0 represents a failute state. Therefore the the reliability index β can be usd
as a measure of reliability which is the distance between the hyper plane g(Z) from
the origin in the reduced space.
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Figure 3: crack path

The Hasofer–Lind–Rackwitz–Fiessler algorithm Hasofer and Lind (1974); Rack-
witz and Fiessler (1978) is used in this work to evaluate the failure point, which is
applicable to nonlinear limit state functions. The number of iterations required for
convergence to the design point depends on the degree of non-linearity of the limit
state function in the transformation space.

5.1 Explicit expressions for derivatives of fatigue life

The random crack path is mapped to a local coordinate system, ξ , ξ ε [−1,+1]
(i.e., see Fig3 ) via a line mapping. For a straight or curved crack, the mapping
from ξ to a (e.g., linear interpolation) is given by Besterfield, Liu, Lawrence, and
Belytschko (1991):

a(ξ ,Z) =
1
2
[(a f −a0)ξ +(a f +a0)] (29)

Since the limits on the integration in (25) for the fatigue life are random, the crack
path mapping is introduced in order to shift the randomness into the Jacobian.
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Based on (25), the fatigue life is given by:

T =

+1∫
−1

f [Z,Keq(Z,ξ )]dξ (30)

where

f [Z,Keq(Z,ξ )] =
J(Z)

C [Keq(Z,ξ )]
m (31)

and the Jacobian of transformation, for the random variables Z, is defined by

J(Z) =
1
2
(a f −a0) (32)

5.2 Total derivatives method

Total derivative method has been employed to calculate the response gradient. The
total derivative of N with respect to the vector of random variablesZ can be written
as:

dT
dZ

=

+1∫
−1

{
f,Z + f,Keq

[
Keq,KI

∂KI(Z,ξ )
∂Z

+Keq,KII

∂KII(Z,ξ )
∂Z

+Keq,θ
∂θ(Z,ξ )

∂Z

]}
dξ

(33)

where f,Z , f,Keq , Keq,KI
, Keq,KII

and Keq,θ can be determined explicitly and are given

in Appendix C.

Using the proposed method, ∂KI(Z,ξ )
∂Z and ∂KII(Z,ξ )

∂Z can be directly obtained using
DBEM with IDM, while in this study does not account for the effect of the crack
growth direction law that results in ∂θ(Z,ξ )

∂Z = 0 has not been accounted for. Further

detail of the deviation relate to ∂θ(Z,ξ )
∂Z = 0 can be found in Appendix C:.

6 Numerical examples

6.1 Fatigue crack growth reliability analysis of double edge crack specimen

Consider a double edge crack specimen with the width 2W and the length L = 3W
as shown in Figure 4. The initial crack length a0, final crack length a f , fatigue
parameters C, m and far-field tensile stress σ were treated as statistically indepen-
dent random variables. Table 1 presents the mean, standard deviation and proba-
bility distribution for each of these random parameters. The Young’s modulus E
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Figure 4: Geometry and loads of double edge crack specimen

Table 1: Statistical properties of random parameters

Parameters Mean Standard deviation Probability
distribution

Normalised initial crack
length a0

W

0.1 0.25 Normal

Normalised final crack
length a f

W

0.4 0.1 Normal

Fatigue parameter C 1.0×10−10 3.0×10−11 Normal
Fatigue parameter m 3.25 0.08 Normal

Normalised far-field tensile
stress σ

E

4.0×10−4 1.0×10−4 Normal

and Poisson’s ratio of υ = 0.3 were assumed to be deterministic. The stress ratio
R = 0.1 and the plane strain condition is assumed. Various values of the service life
are assumed to be known and used in the probabilistic analysis.

The crack was assumed to be growing in 4 different increments with 5, 10, 15 and
20 propagation steps. For a known final crack size the normalised crack increment
length 4a

W are equal to 0.06, 0.03, 0.02 and 0.015, respectively. Half of the plate is



304 Copyright © 2014 Tech Science Press CMES, vol.102, no.4, pp.291-330, 2014

only modelled due to symmetry. Figure 5 shows the boundary conditions and the
discretisation using 46 quadratic elements. The BEM model employed 30 contin-
uous elements on the external boundary, while each crack face is discretised using
8 quadratic discontinuous elements. In the model with 96 quadratic elements, 18
quadratic discontinuous elements were used on each crack face, while the external
boundary was modelled with 60 elements.

1
0

 B
E

5 BE

BE - Boundary Elements

5 BE

5
 B

E
5

 B
E

8 BE

8 BE

87654321

10  9111213141516

Crack face is discretised with 16 discontinous elements

Figure 5: Boundary conditions and discretisation of double edge crack specimen

Figures 6 to 13 show the normalised values of stress intensity factors and its deriva-
tive with respect to the crack size for different crack growth sizes. Figures 6 to 9
show the stress intensity factors obtained by different boundary modelling. As it is
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illustrated in the figures, the stress intensity factor increases with each crack growth
and the maximum difference between the computational results from DBEM and
analytical solutions provided by Tada, Paris, and Irwin (2000) is less than 0.14%.
Figures 10 to 13 show the normalised value of derivatives of stress intensity factor
with respect to crack size computed for different crack growth increment. As it
can be seen in those figures, the results obtained by the DBEM agree well with the
analytical solutions, with a maximum difference of 2.32%. The model with more
boundary elements gives better evaluation of the derivatives of the stress intensity
factor with respect to the crack size at each crack growth increment, although it
does not improve the calculation of the stress intensity factor itself.
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Figure 6: Normalised KI with crack growth size 4a
W = 0.06

The increased difference in the derivative values is due to the new boundary ele-
ments introduced at each increment. In addition the analytical solution in Tada,
Paris, and Irwin (2000) is based on an infinite plate which could also attribute to
the difference in derivative analysis. A new assumption has to be made at each
increment to define the new random variable, as the analytical integration has to
be performed based on the new crack tip element illustrated in Figure 1. It is well
recognized that any small difference between the calculation of the stress intensity
factor by the reference solution and the BEM solution will give a larger error in
the fatigue life; also the increased difference in the calculation of the derivatives of
the stress intensity factor with respect to the crack size could induce an even larger
difference in the reliability index.
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Figure 7: Normalised KI with crack growth size 4a
W = 0.03
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The effect of the different crack increment size on the KI and its derivatives was
also investigated. Figures 14 to 17 show BEM solutions for the same number of the
boundary elements used with different crack increment size compared to the analyt-
ical solution. The results in these Figures illustrate the normalised crack increment
size 4a

W equal to 0.06, 0.03, 0.02 and 0.015 which all have good evaluation of the
stress intensity factor and its derivatives. Similarly as before, The model with more
boundary elements improved the evaluation of the derivatives of the stress intensity
factor with respect to the crack size at each crack growth increment, without any
noticable improvement of the stress intensity factor.

The reliability index β is plotted as a function of the service life under various types
of uncertainties in Figures 18 to 23. The model with 96 boundary elements is used,
the crack is assumed to grow in 10 propagation steps. The Monte Carlo simulation
with deterministic solution of the Paris law is used to validate the result obtained by
the proposed method. Three different number of simulations are used to study the
accuracy and efficiency of the Monte Carlo simulation. In this particular example,
1×105, 5×105 and one million simulations are used. As it can be seen in Figures
18 to 23, by increasing the number of simulations, the reliability index converges
to the numerical value. The results demonstrated that in order to obtain higher
reliability index, e.i. the probability of failure equals to 1×10−6 , it would require
one million simulation which is computationally expensive.

Figure 18 shows the combined effect of all the considered random parameters. In
contrast, Figures 19 to 23, the initial crack length a0, final crack length a f , fa-
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Figure 18: Reliability index with various uncertainty

tigue parameter C, fatigue parameter m and far-field tensile stress σ each has been
modelled as a single random parameter separately, while the rest remained deter-
ministic. As it can be seen from the graphs, all the numerical results obtained
by BEM IDM agreed well with the results of the MC simulations (also obtained by
running BEM). As expected, one million simulation yields the best result compared
to 1×105 and 5×105 simulations. In Figure 24 all the numerical results for each
random parameters are plotted in the same scale, which shows that the combination
of all random parameters gives the smallest reliability index for a given service life
which is expected. For a given reliability index (assuming β = 4), the final crack
length a f modelled as the only random variable yields the highest service life.

6.2 Fatigue crack growth reliability analysis of single edge crack specimen

Consider a single edge crack specimen with width W and length L = 3W as shown
in Figure 25. The initial crack length a0, final crack length a f , fatigue parameters
C , m and far-field tensile stress σ were treated as statistically independent random
variables. The mean, standard deviation and probability distribution for each of
these random parameters are assumed to be the same as those given in Table 1. The
Young’s modulus E and Poisson’s ratio of υ = 0.3 were assumed to be determinis-
tic. The stress ratio R = 0.1 and the plane stress condition is assumed.

A total of 96 boundary elements with 18 discontinuous elements on each of the
crack face is used to model the specimen. The crack was assumed to be growing in
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Figure 19: Reliability index with random initial crack length
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Figure 20: Reliability index with random final crack length
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Figure 21: Reliability index with random fatigue parameter C
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Figure 22: Reliability index with random fatigue parameter m
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Figure 23: Reliability index with random stress
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Figure 25: Geometry and loads of single edge crack specimen

4 different increments with 5, 10, 15 and 20 propagation steps. For a known final
crack size the normalised crack increments 4a

W are equal to 0.06, 0.03, 0.02 and
0.015, respectively.

Figure 26 shows the boundary conditions and the discretisation using 96 quadratic
elements. The BEM model employed 60 continuous elements on the external
boundary, while each crack face is discretised using 18 quadratic discontinuous
elements. In the model with 46 quadratic elements, 8 quadratic discontinuous el-
ements were used on each crack face, while the external boundary was modelled
with 30 elements.

Figures 27 to 30 show the stress intensity factor and its derivatives with respect to
cthe rack size at each crack growth increment. The stress intensity factor increases
with each crack growth. The maximum difference between the BEM and the an-
alytical solutions provided by Tada, Paris, and Irwin (2000) is less than 1%. The
derivatives of the stress intensity factor with respect to the crack size at each crack
growth are obtained by the BEM with IDM. As it can be seen in Figures 28 and 30,
the results agree well with the analytical solution, with a maximum difference of
9%.

The reliability index is plotted as a function of the service life under the various
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Figure 26: Boundary conditions and discretisation of single edge crack specimen
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Figure 30: Normalised ∂KI
∂a with different crack increment sizes

types of uncertainties in Figures 31 to 36. One million Monte Carlo simulations
with deterministic solution of the Paris law was used in this example. In Figures
32 to 36 the initial crack length a0, final crack length a f , fatigue parameter C,
fatigue parameter m, far-field tensile stress σ each has been modelled as a single
random parameter, while Figure 31 shows the combined effect of all those random
parameters. It can be seen that all of the numerical results agree well with the
simulations.

It is essential to study the effect of different probability distribution functions on
the reliability of the structure. Figure 37 shows the probability of failure Pf of
the single edge crack specimen, as a function of service life. The initial crack
length a0 is treated as the only random variable with a mean value equal to 0.5 and
standard deviation equal to 0.1 while different probability distribution functions are
considered for the analysis. The probability of failure Pf obtained with Lognormal
distribution has higher value compared to the one with Normal distribution in the
tail region, while the Normal distribution yields higher probability of failure Pf

around its mean value. Figure 37 also characterises the Cumulative Distribution
Function (CDF) of the Normal and the Lognormal distributions for the probability
of failure against the service life.

Throughout this work, the Normal and the Lognormal probability distributions have
been used to characterize the random parameters. However, various probability
distributions can be applied to evaluate the reliability in the illustrated examples.
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Figure 31: Reliability index with various uncertainty
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Figure 32: Reliability index with random initial crack length
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Figure 33: Reliability index with random final crack length
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Figure 34: Reliability index with random fatigue parameter C
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Figure 35: Reliability index with random fatigue parameter m
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Figure 36: Reliability index with random stress
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Figure 37: Comparison with different distribution

7 Conclusions

A method consisting of the DBEM coupled with FORM was developed to deter-
mine the reliability of fatigue crack growth. The method involves a total derivatives
method for calculating the fatigue parameter derivatives with respect to random pa-
rameters. The Hasofer-Lind iterative technique is used to find the most probable
point. The results obtained from the proposed method demonstrated good agree-
ment with the Monte Carlo simulation, as DBEM provides very accurate calcula-
tion of the stress intensity factors and its derivatives leading to a good accuracy of
the reliability index. Since all gradient are calculated analytically, the reliability
analysis of fatigue crack growth can be performed efficiently using the proposed
method.
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Appendix A: Fundamental solutions and their derivatives

The detailed expressions for the first order derivatives of the coefficient terms Pγn
i j,m,

Qγn
i j,m, Vγn

ki j,m and Wγn
ki j,m with respect to the design variables Zm, are given below:

Pγn
i j,m =

+1∫
−1

Ti j,m(x′,x(ξ ))Mn(ξ )Jγ(ξ )dξ +

+1∫
−1

Ti j(x′,x(ξ ))Mn(ξ )Jγ
,m(ξ )dξ (34)

Qγn
i j,m =

+1∫
−1

Ui j,m(x′,x(ξ ))Mn(ξ )Jγ(ξ )dξ +

+1∫
−1

Ui j(x′,x(ξ ))Mn(ξ )Jγ
,m(ξ )dξ (35)

Vγn
i j,m =

+1∫
−1

Ski j,m(x′,x(ξ ))Mn(ξ )Jγ(ξ )dξ +

+1∫
−1

Ski j(x′,x(ξ ))Mn(ξ )Jγ
,m(ξ )dξ (36)

Qγn
i j,m =

+1∫
−1

Dki j,m(x′,x(ξ ))Mn(ξ )Jγ(ξ )dξ +

+1∫
−1

Dki j(x′,x(ξ ))Mn(ξ )Jγ
,m(ξ )dξ (37)

The detailed expressions for the first order derivatives of the boundary element
kernels with respect to the design variables Zm, are given below:

Ui j(x′,x) = 1
8πµ(1−ν)

{
r,ir, j− (3−4ν)ln

(1
r

)
δi j

}
(38)

Ui j,m(x′,x) = 1
8πµ(1−ν)r

{
ri,mr, j + r j,mr,i− [(3−4ν)δi j +2r,ir, j]r,m

}
(39)

Ti j(x′,x) = −1
4π(1−ν)r

{
∂ r
∂n [(1−2ν)δi j +2r,ir, j]− (1−2ν)(n jr,i−nir, j)

}
(40)

Ti j,m(x′,x) = −1
4π(1−ν)r2

{
2 ∂ r

∂n [ri,mr, j + r j,mr,i− ((1−2ν)δi j +4r,ir, j)r,m]

+(rknk),m[(1−2ν)δi j +2r,ir, j]+ (1−2ν)(nir j,m +ni,mr j

−n jri,m−n j,mri)+2(1−2ν)(n jr,i−nir, j)r,m
} (41)

Dki j(x′,x) =
1

4π(1−ν)r

{
(1−2ν)(δikr, j +δ jkr,i−δi jr,k)+2r,ir, jr,k

}
(42)
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Dki j,m(x′,x) =
1

4π(1−ν)r2

{
[2r,ir,k +(1−2ν)δik]r j,m

+
[
2r, jr,k +(1−2ν)δ jk

]
ri,m +[2r,ir, j− (1−2ν)δi j]rk,m

2
[
(1−2ν)(δikr, j +δ jkr,i−δi jr,k)+4r,ir, jr,k

]
r,m

}

Ski j(x′,x) =
E

4π(1−ν2)r2

{
2

∂ r
∂n

[
(1−2ν)δi jr,k +ν

(
δikr, j +δ jkr,i

)
−4r,ir, jr,k

]
+
[
2νr, jr,k +(1−2ν)δ jk

]
ni +[2νr,ir,k +(1−2ν)δik]n j

+[2(1−2ν)r,ir, j− (1−4ν)δi j]nk

}
(43)

Ski j,m(x′,x) =
E

4π(1−ν2)r3

{[
2νr, jr,k +(1−2ν)δ jk

]
ni,mr

+[2νr,ir,k +(1−2ν)δik]n j,mr

+[2(1−2ν)r,ir, j− (1−4ν)δi j]nk,mr

−2
[
(4νr, jr,k +(1−2ν)δ jk)r,m−ν(r j,mr,k + rk,mr, j)

]
ni

−2 [(4νr,ir,k +(1−2ν)δik)r,m−ν(ri,mr,k + rk,mr,i)]n j

−2 [(4(1−2ν)r,ir, j− (1−4ν)δi j)r,m (44)

−(1−2ν)(r j,mr,i + ri,mr, j)nk]

}
The derivatives of the radius r given as:

r,m = r,iri,m (45)

where

r,i =
ri

r
=

xi− x′i
r

=
∂ r

∂xi(x)
(46)

ri,m =
∂ ri

∂ zm
= xi,m(x)− xi,m(x′) (47)

and

∂ r
∂n(x)

=
∂ r

∂xi(x)
ni = rini (48)
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The field point coordinates are obtained using the interpolation function as:

xi =
3

∑
n=1

Mn(ξ )xn
i (49)

where xn
i are the global nodal positions and Mn(ξ ) are the two dimensional quadratic

shape functions.

The first order derivatives of the coordinates of the field point with respect to the
design variables are given as:

xi,m =
3

∑
n=1

Mn(ξ )xn
i,m (50)

The Jacobian of transformation is given by:

Jγ(ξ ) =

√(
dx1(ξ )

dξ

)2
+
(

dx2(ξ )
dξ

)2
(51)

dxi(ξ )
dξ

= ∑
3
n=1

dMn(ξ )
dξ

xn
i (52)

And its derivative

Jγ
,m(ξ ) =

1
Jγ (ξ )

{
dx1(ξ )

dξ

[
dx1(ξ )

dξ

]
,m
+ dx2(ξ )

dξ

[
dx2(ξ )

dξ

]
,m

}
(53)

The components of the unit outward normal vector and their derivatives are:

n1(ξ ) =
1

Jγ (ξ )
dx2(ξ )

dξ
(54)

n2(ξ ) =− 1
Jγ (ξ )

dx1(ξ )
dξ

(55)

n1,m = 1
Jγ (ξ )

[(
dx2(ξ )

dξ

)
,m
−n1(ξ )J

γ
,m(ξ )

]
(56)

n2,m =− 1
Jγ (ξ )

[(
dx1(ξ )

dξ

)
,m
+n2(ξ )J

γ
,m(ξ )

]
(57)

Appendix B: J-integral and its derivatives

t1 = σ11n1 +σ12n2 (58)

t2 = σ12n1 +σ22n2 (59)

ε11 =
1−ν2

E

(
σ11−

υ

1−υ2 σ22

)
(60)
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ε22 =
1−ν2

E

(
σ22−

υ

1−υ2 σ11

)
(61)

ε12 =
2(1+ν)

E
σ12 (62)

W =
1
2
(σ11ε11 +σ22ε22 +σ12ε12) (63)

t1,m = σ11,mn1 +σ11n1,m +σ12,mn2 ++σ12n2,m (64)

t2,m = σ12,mn1 +σ12n1,m +σ22,mn2 +σ22n2,m (65)

ε11,m =
1−ν2

E

(
σ11,m−

υ

1−υ2 σ22,m

)
(66)

ε22,m =
1−ν2

E

(
σ22,m−

υ

1−υ2 σ11,m

)
(67)

ε12,m =
2(1+ν)

E
σ12,m (68)

W,m =
1
2
(
σ11,mε11 +σ11ε11,m +σ22,mε22 +σ22ε22,m +σ12,mε12 +σ12ε12,m

)
(69)

Appendix C: Total derivatives of N

f,Z =
1

C(Keq)m

(
∂J
∂Z

)
− 1

C2(Keq)m

(
∂C
∂Z

)
−

J ln(Keq)

C(Keq)m

(
∂m
∂Z

)
(70)

f,Ki =−
mJ

C(Keq)m+1

(
∂Keq

∂Ki

)
(71)

f,θi
=− mJ

C(Keq)m+1

(
∂Keq

∂θi

)
(72)

Keq,Ki
=

 cos3
(

θi
2

)
−3cos2

(
θi
2

)
sin
(

θi
2

)  (73)

Keq,Ki
= 0 (74)


