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Collocation Methods to Solve Certain Hilbert Integral
Equation with Middle Rectangle Rule

Jin Li 1,2 and De-hao Yu 3,4

Abstract: The generalized composite middle rectangle rule for the computation
of Hilbert integral is discussed. The pointwise superconvergence phenomenon is
presented, i.e., when the singular point coincides with some a priori known point,
the convergence rate of the rectangle rule is higher than what is global possible.
We proved that the superconvergence rate of the composite middle rectangle rule
occurs at certain local coordinate of each subinterval and the corresponding super-
convergence error estimate is obtained. By choosing the superconvergence point as
the collocation points, a collocation scheme for solving the relevant Hilbert integral
equation is presented and an error estimate is established. At last, some numerical
examples are provided to validate the theoretical analysis.

Keywords: Hilbert integral, Composite middle rectangle rule , Boundary inte-
gral equation, Superconvergence, Error expansion, Collocation methods.

1 Introduction

Consider the Hilbert integral

I( f ,s) =
∫ c+2π

c
− cot

x− s
2

f (x)dx,s ∈ (0,2π) (1)

where
∫ c+2π

c− denotes a Hilbert integral and s is the singular point.

There are several different definitions which can be proved equally, such as the
definition of subtraction of the singularity, regularity definition, direct definition
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and so on. In this paper we adopt the following one∫ c+2π

c
− cot

x− s
2

f (x)dx = lim
ε→0

{∫ s−ε

0
cot

x− s
2

f (x)dx+
∫ 2π

s+ε

cot
x− s

2
f (x)dx

}
, (2)

Recently, more and more mathematicians are interested in numerical approxima-
tion (1), such as the Gaussian method [ Criscuolo and Mastroianni (1989); Di-
ethelm (1995a); Hasegawa (2004);Monegato (1984)] the Newton-Cote methods [
Koler (1997); Amari (1994); Diethelm (1994); Liu Zhang and Wu (2010); Li and
Yu (2011a); Li and Yu (2011b); Li Zhang and Yu (2013); Li Yang and Yu (2014); Li
Rui and Yu (2014)], spline methods [Orsi (1990);Dagnino and Santi (1990)] and
some other method [Natarajan and Mohankumar (1995); Kim and Choi (2000);
Kim and Yun (2002); Behforooz (1992); Xu and Yao (1998); Junghanns and
Silbermann (1998); Chen and You (1999); Chen and Hong (1999); Chen Yang
Lee and Chang (2014)]. The main reason for this interest is probably due to the
fact that integral equations have shown to be an adequate tool for the modeling of
many physical situations [Yu (2002)], such as acoustics, fluid mechanics, elasticity,
fracture mechanics and electromagnetic scattering problems.

The superconvergence phenomenon for hypersingular integral was studied with the
density function is replaced by the approximation function while the singular kernel
is computed analysis in each subinterval. This methods may be considered as the
semi-discrete methods and the order of singularity kernel can be reduced somehow.
This idea was firstly presented by [Linz (1985)] in the paper to calculated the hy-
persingular integral on interval. The superconvergence of composite Newton-Cote
rules for Hadamard finite-part integrals and Cauchy principal value integrals were
studied in [Wu and Sun (2008)] and [Liu Zhang and Wu (2010)], where the super-
convergence rate and the superconvergence point were presented, respectively. In
the reference [Feng Zhang and Li (2012)],the midpoint rule for evaluating finite-
part integral with the hypersingular kernel sin−2 x−s

2 is studied and the pointwise
superconvergence phenomenon is also obtained.

This paper focuses on the superconvergence of middle rectangle rule to compute
the Hilbert integral on a circle. It is the aim of this paper to investigate the super-
convergence phenomenon of rectangle rule for it and, in particular, to derive error
estimates. Based on the error functional of the middle rectangle rule, we prove
both theoretically and numerically that the composite middle rectangle rule reach
the superconvergence rate O(h2) when the local coordinate of the singular point
s is ±2

3 . Then a collocation scheme for solving a certain kind of Hilbert integral
equation is presented and an optimal error estimate is established.

The rest of this paper is organized as follows. In Sect.2, after introducing some
basic formulas of the rectangle rule, the main results is presented. In Sect.3, the
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proof of the superconvergence phenomenon is completed. In Sect. 4, we present
a collocation scheme for solving a certain kind of Hilbert singular integral equa-
tion. Based on the superconvergence result, an error estimate of the Hilbert integral
equation is presented. Finally, several numerical examples are provided to validate
our analysis.

2 Main result

Let c = x0 < x1 < · · · < xn−1 < xn = c+ 2π be a uniform partition of the inter-
val [c,c+ 2π] with mesh size h = 2π/n. Define by fC(x) the piecewise constant
interpolant for f (x)

fC(x) = f (x̂i), x̂i = xi−1 +h/2 i = 1,2, · · · ,n (3)

and a linear transformation

x = x̂i(τ) := (τ +1)(xi+1− xi)/2+ xi, τ ∈ [−1,1], (4)

from the reference element [−1,1] to the subinterval [xi,xi+1]. Replacing f (x) in
Eq. 1 with fC(x) gives the composite rectangle rule:

In( f ;s) :=
∫ c+2π

c
− cot

x− s
2

fC(x)dx =
n−1

∑
i=0

ωi(s) f (xi) = I( f ,s)−En( f ;s), (5)

where ωi(s) denotes the Cote coefficients given by

ωi(s) = 2log
∣∣∣∣sin0.5(xi+1− s)

sin0.5(xi− s)

∣∣∣∣ (6)

and En( f ,s) the error functional.

We also define

ks(x) =


(x− s)cot

x− s
2

, x 6= s,

2, x = s.
(7)

In the following analysis, C will denote a generic constant which is independent of
h and s and it may have different values in different places.
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Theorem 1 Assume f (x)∈Cα [a,b],α ∈ (0,1]. For the middle rectangle rule In( f ,s)
defined as Eq. 5. Assume that s = xm +(1+ τ)h/2, there exist a positive constant
C, independent of h and s, such that

|En( f ;s)| ≤C(| lnh|+ | lnγ(τ)|)hα , α ∈ (0,1], (8)

where

γ(τ) = min
0≤i≤n

|s− xi|
h

=
1−|τ|

2
. (9)

Proof: By setting R(x) = f (x)− fC(x), as f (x) ∈Cα [a,b], then we have |R(x)| ≤
Chα and

En( f ;s) =
n−1

∑
i=0

∫ xi+1

xi

− cot
x− s

2
[ f (x)− fC(x)]dx

=
n−1

∑
i=0

∫ xi+1

xi

− cot
x− s

2
R(x)dx

(10)

By the definition of ks(x), we have

n−1

∑
i=0

∫ xi+1

xi

− cot
x− s

2
R(x)dx = 2

n−1

∑
i=0

∫ xi+1

xi

− R(x)
x− s

dx

+
n−1

∑
i=0

∫ xi+1

xi

− ks(x)−2
x− s

R(x)dx
(11)

For the first part of Eq. 11,by the definition of∫ b

a
− f (x)

x− s
dx =

∫ b

a

f (x)− f (s)
x− s

dx+ f (s) ln
∣∣∣∣b− s
s−a

∣∣∣∣ , (12)

then we have∫ c+2π

c
− R(x)

x− s
dx =

∫ c+2π

c

R(x)−R(s)
x− s

+R(s) ln
xm+1− s
s− xm

, (13)

and∣∣∣∣∣n−1

∑
i=0

∫ xi+1

xi

− R(x)
x− s

dx

∣∣∣∣∣ =

∣∣∣∣∣
∫ xm+1

xm

− R(x)
x− s

dx+
n−1

∑
i=0,i 6=m

∫ xi+1

xi

R(x)
x− s

dx

∣∣∣∣∣
≤
∣∣∣∣∫ c+2π

c

Rx)−R(s)
x− s

dx
∣∣∣∣+ ∣∣∣∣R(s) ln

xm+1− s
s− xm

∣∣∣∣
+Chα

n−1

∑
i=0,i 6=m

∫ xi+1

xi

1
|x− s|

dx

≤Chα | lnγ(τ)|.

(14)
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For the second part of Eq. 11,we have∣∣∣∣∣n−1

∑
i=0

∫ xi+1

xi

− ks(x)−2
x− s

R(x)dx

∣∣∣∣∣ =

∣∣∣∣∫ c+2π

c
− ks(x)−2

x− s
R(x)dx

∣∣∣∣
≤Chα

∫ c+2π

c
−

∣∣∣∣ks(x)−2
x− s

∣∣∣∣dx

=Chα

∫ c+2π

c
−

∣∣∣∣cot
x− s

2

∣∣∣∣dx+
∫ c+2π

c
−

∣∣∣∣ 2
x− s

∣∣∣∣dx

≤Chα | lnγ(τ)|.
(15)

Combining Eq. 14 and Eq. 15 together, we get Eq. 8 and the proof of Theorem 1 is
completed.

Setting

In,i(s) =



∫ xm+1

xm

− (x− x̂m)cot
x− s

2
dx, i = m,

∫ xi+1

xi

(x− x̂i)cot
x− s

2
dx, i 6= m.

(16)

Lemma 1 Assume s = xm +(τ +1)h/2 with τ ∈ (−1,1). Let In,i(s) be defined by
Eq. 16, then there holds that

In,i(s) = h
∞

∑
k=1

1
k
[cosk(xi+1− s)+ cosk(xi− s)]

+
∞

∑
k=1

1
k2 [sink(xi+1− s)− sink(xi− s)] . (17)

Proof For i = m,by the definition of Cauchy principal value integral, we have

In,m(s) = lim
ε→0

(∫ s−ε

xm

+
∫ xm+1

s+ε

)
(x− x̂m)cot

x− s
2

dx

= −h ln
∣∣∣∣2sin

xm− s
2

∣∣∣∣−h ln
∣∣∣∣2sin

xm+1− s
2

∣∣∣∣
+ 2

∫ xm+1

xm

ln
∣∣∣∣2sin

x− s
2

∣∣∣∣dx. (18)
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For i 6= m, taking integration by parts on the correspondent Riemann integral, we
have

In,i(s) = −h ln
∣∣∣∣2sin

xi− s
2

∣∣∣∣−h ln
∣∣∣∣2sin

xi+1− s
2

∣∣∣∣
+ 2

∫ xi+1

xi

ln
∣∣∣∣2sin

x− s
2

∣∣∣∣dx. (19)

Now, by using the well-known identity

ln
∣∣∣2sin

x
2

∣∣∣=− ∞

∑
n=1

1
n

cosnx. (20)

The proof of Lemma1 is completed.

Lemma 2 Under the same assumptions of Lemma 1, there holds that

n−1

∑
i=0

In,i(s) =−2h ln2cos
τπ

2
. (21)

Proof ByEq. 17, we have

n−1

∑
i=0

In,i(s) = h
n−1

∑
i=0

(
∞

∑
k=1

1
k
(cosk(xi+1− s)+ cosk(xi− s))

+
∞

∑
k=1

1
k2 (sink(xi+1− s)− sink(xi− s)))

= 2h
∞

∑
k=1

n−1

∑
i=0

1
k

cosk(xi− s)

= 2h
∞

∑
k=1

ncosk(xi− s)
k

= 2h
∞

∑
k=1

cos j(1+ τ)π

j

= −2h ln2sin
(1+ τ)π

2

= −2h ln2cos
τπ

2
(22)
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where we have used

n−1

∑
i=0

cosk(xi− s) =


ncosk(x1− s), k = n j,

0, k 6= n j.
(23)

The proof of Lemma 2 is completed.

Theorem 2 Assume f (x) ∈C2[a,b]. For the middle rectangle rule In( f ,s) defined
as Eq. 5. Assume that s = xm +(1+ τ)h/2, there exist a positive constant C, inde-
pendent of h and s, such that

En( f ;s) =−2h f ′(s) ln2cos
τπ

2
+Rn(s), (24)

where

|Rn(s)| ≤C max{|ks(x)|}(| lnh|+ | lnγ(τ)|)h2 (25)

and γ(τ) is defined as Eq. 9.

It is known that the global convergence rate of the composite middle rectangle rule
is lower than Riemann integral.

For ln2cos τπ

2 = 0, which means τ =±2
3 , then we have

Corollary 1 Under the same assumption of Theorem 2,we have

|En( f ,s)| ≤C| lnh|h2. (26)

Based on the Theorem 2, we present the modify rectangle rule

Ĩn( f ;s) = In( f ;s)−2h f ′(s) ln2cos
τπ

2
, (27)

and

Ẽn( f ;s) = I( f ;s)− Ĩn( f ;s) (28)

then we have

Corollary 2 Under the same assumption of Theorem 2,we have

Ẽn( f ;s)≤C max{|ks(x)|}(| lnh|+ | lnγ(τ)|)h2. (29)

where γ(τ) is defined as Eq. 9.
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3 Proof of the Theorem 2

In this section, we study the superconvergence of the composite rectangle rule for
Hilbert singular integrals.

3.1 Preliminaries

Lemma 3 Under the same assumptions of Theorem 2, it holds that

f (x)− fC(x) = f ′(s)(x− x̂i)+R1
f (x)+R2

f (x) (30)

where

R1
f (x) = f ′′(ηi)(x− s)(x− x̂i) (31)

R2
f (x) =−

f ′′(ξi)

2
(x− x̂i)

2 (32)

and ηi,ξi ∈ (xi,xi+1).

Proof:Performing Taylor expansion of fC(x) at the point x, we have

fC(x) = f (x)+ f ′(x)(x̂i− x)+
f ′′(ηi)

2
(x̂i− x)2. (33)

Similarly, we have

f ′(x) = f ′(s)+ f ′′(ξi)(x− s). (34)

Combining Eq. 33 and Eq. 34 together complete the proof.

Setting

Em(x) = f (x)− fC(x)− f ′(s)(x− x̂m). (35)

Lemma 4 Let f (x) ∈ C2[a,b] , denote Em(x) to be the error functional for the
composite rectangle rule, assume s 6= xi for any i = 1,2, · · · ,n, then there holds∣∣∣∣∫ xm+1

xm

− cot
x− s

2
Em(x)dx

∣∣∣∣≤Ch2| lnγ(τ)|. (36)

Proof:As f (x) ∈C2[a,b], we get Ei(x) ∈C2[a,b]. Then we have∫ xm+1

xm

− cot
x− s

2
Em(x)dx = 2

∫ xm+1

xm

− Em(x)
x− s

dx+
∫ xm+1

xm

− ks(x)−2
x− s

Em(x)dx. (37)
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For the first part of Eq. 37, following the identity∫ b

a
− f (x)

x− s
dx =

∫ b

a

f (x)− f (s)
x− s

dx+ f (s) ln
∣∣∣∣b− s
s−a

∣∣∣∣ , (38)

we have∫ xm+1

xm

− Em(x)
x− s

dx =
∫ xm+1

xm

Em(x)−Em(s)
x− s

dx+Em(s) ln
xm+1− s
s− xm

, (39)

then we get∣∣∣∣∫ xm+1

xm

− Em(x)
x− s

dx
∣∣∣∣ ≤ ∣∣∣∣∫ xm+1

xm

Em(x)−Em(s)
x− s

dx
∣∣∣∣+ ∣∣∣∣Em(s) ln

xm+1− s
s− xm

∣∣∣∣
≤Ch2| lnγ(τ)|.

(40)

For the second part of Eq. 37, we have∣∣∣∣∫ xm+1

xm

− ks(x)−2
x− s

Em(x)dx
∣∣∣∣

≤Ch2
∫ xm+1

xm

∣∣∣∣ks(x)−2
x− s

∣∣∣∣dx

=Ch2
(∫ xm+1

xm

−
∣∣∣∣cot

x− s
2

∣∣∣∣dx+
∫ xm+1

xm

− 2
|x− s|

dx
)

≤Ch2| lnγ(τ)|.

(41)

Combining Eq. 40 and Eq. 41 together, we get Eq. 36 and the proof of Lemma 4 is
completed.

Proof of Theorem 2: By Lemma 3, we have(∫ xm

c
+
∫ c+2π

xm+1

)
cot

x− s
2

( f (x)− fC(x))dx

=
n−1

∑
i=0,i6=m

∫ xi+1

xi

cot
x− s

2
( f (x)− fC(x))dx

= f ′(s)
n−1

∑
i=0,i 6=m

∫ xi+1

xi

(x− x̂i)cot
x− s

2
dx

+
n−1

∑
i=0,i6=m

∫ xi+1

xi

R1
f (x)cot

x− s
2

dx

+
n−1

∑
i=0,i6=m

∫ xi+1

xi

R2
f (x)cot

x− s
2

dx.

(42)
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By the definition of Em(x) , we have

∫ xm+1

xm

− ( f (x)− fC(x))cot
x− s

2
dx =

∫ xm+1

xm

− Em(x)cot
x− s

2
dx

+ f ′(s)
∫ xm+1

xm

− (x− x̂m)cot
x− s

2
dx.

(43)

Putting Eq. 42 and Eq. 43 together yields

∫ c+2π

c
− ( f (x)− fC(x))cot

x− s
2

dx =
n−1

∑
i=0,i6=m

∫ xi+1

xi

( f (x)− fC(x))cot
x− s

2
dx

+
∫ xm+1

xm

− ( f (x)− fC(x))cot
x− s

2
dx

=−2h f ′(s) ln2cos
τπ

2
+Rn(s)

(44)

where
Rn(s) = R1 +R2

and

R1 =
n−1

∑
i=0,i 6=m

∫ xi+1

xi

R1
f (x)cot

x− s
2

dx+
n−1

∑
i=0,i 6=m

∫ xi+1

xi

R2
f (x)cot

x− s
2

dx (45)

R2 =
∫ xm+1

xm

− Em(x)cot
x− s

2
dx (46)

Now we estimate Rn(s) term by term. For the first part of R1,we have∣∣∣∣∣ n−1

∑
i=0,i6=m

∫ xi+1

xi

R2
f (x)cot

x− s
2

dx

∣∣∣∣∣
=

∣∣∣∣∣ n−1

∑
i=0,i 6=m

∫ xi+1

xi

ks(x)
R2

f (x)

x− s
dx

∣∣∣∣∣
≤C max{|ks(x)|}h2

(∫ xm

c

1
s− x

dx+
∫ c+2π

xm+1

1
x− s

dx
)

=C max{|ks(x)|}h2 ln
(c+2π− s)(s− c)
(xm+1− s)(s− xm)

≤C max{|ks(x)|}(| lnh|+ | lnγ(τ)|)h2.

(47)
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For the second part of R1,there are no singularity and we have∣∣∣∣∣ n−1

∑
i=0,i6=m

∫ xi+1

xi

R1
f (x)cot

x− s
2

dx

∣∣∣∣∣
=

∣∣∣∣∣ n−1

∑
i=0,i 6=m

∫ xi+1

xi

ks(x)R1
f (x)

x− s
dx

∣∣∣∣∣
=

∣∣∣∣∣ n−1

∑
i=0,i 6=m

∫ xi+1

xi

ks(x) f ′′(ηi)(x− x̂i)dx

∣∣∣∣∣
≤

n−1

∑
i=0,i6=m

|ks(x) f ′′(ηi)|
∫ xi+1

xi

|x− x̂i|dx

=
n−1

∑
i=0,i6=m

|ks(x) f ′′(ηi)|
(∫ x̂i

xi

(x̂i− x)dx+
∫ xi+1

x̂i

(x− x̂i)dx
)

≤C max{|ks(x)|}h2.

(48)

For Rn(s), with Lemma 4, the we get

|Rn(s)| ≤ |R1|+ |R2| ≤C max{|ks(x)|}(| lnh|+ | lnγ(τ)|)h2 (49)

and the proof is completed.

4 Collocation scheme for Hilbert singular integral equation of first kind

In this section, we consider the integral equation

1
2π

∫ 2π

0
− f (x)cot

x− s
2

dx = g(s), s ∈ (0,2π), (50)

with the compatibility condition

∫ 2π

0
g(x)dx = 0. (51)

As in [Yu (2002)], under the condition Eq. 51, there exists a unique solution for the
integral equation Eq. 50. In order to arrive at a unique solution, we adopt following
condition∫ 2π

0
f (x)dx = 0. (52)
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By choosing the middle points x̂k = xk−1+h/2(k = 1,2, · · · ,n) of each subintervals,
we get the composite rectangle rule In( f ;s) to approximate the Hilbert singular
integral in Eq. 50, then we have the following linear system

1
π

n

∑
m=1

[
log
∣∣∣∣sin

(x̂k− xm)

2

∣∣∣∣− log
∣∣∣∣sin

(x̂k− xm−1)

2

∣∣∣∣] fm = g(x̂k), k = 1,2, · · · ,n,

(53)

and written as the matrix expression as

AnFa
n = Ge

n, (54)

where

An = (akm)n×n,

akm =
1
π

[
log
∣∣∣∣sin

(x̂k− xm)

2

∣∣∣∣− log
∣∣∣∣sin

(x̂k− xm−1)

2

∣∣∣∣] ,k,m = 1,2, · · · ,n,

Fa
n = ( f1, f2, · · · , fn)

T ,Ge
n = (g(x̂1),g(x̂2), · · · ,g(x̂n))

T ,

(55)

here fk(k = 1,2, · · · ,n) denote the numerical solution of f at x̂k. By directly calcu-
lation, we get An is not only a symmetric Toeplitz matrix but also a circulant matrix.
As for any k = 1,2, · · · ,n,

n

∑
m=1

akm =
1
π

n

∑
m=1

[
log
∣∣∣∣sin

(x̂k− xm)

2

∣∣∣∣− log
∣∣∣∣sin

(x̂k− xm−1)

2

∣∣∣∣]= 0, (56)

from Eq. 56, we know that An is singular matrix, then we can not use system Eq. 53
or Eq. 54 to solve the integral equation Eq. 50.

In order to get a well-conditioned definite system, we introduce a regularizing fac-
tor γ0n in Eq. 53, which leads to linear system

γ0n +
1
π

n

∑
m=1

[
log
∣∣∣∣sin

(x̂k− xm)

2

∣∣∣∣− log
∣∣∣∣sin

(x̂k− xm−1)

2

∣∣∣∣] fm = g(x̂k),

n

∑
m=1

fm = 0,
(57)

where γ0n defined by

γ0n =
1

2π

n

∑
k=1

g(x̂k)h. (58)
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Then the matrix form of system Eq. 57 can be presented as

An+1Fa
n+1 = Ge

n+1, (59)

where

An+1 =

(
0 eT

n
en An

)
,

Fa
n+1 =

(
γ0n

Fa
n

)
,Ge

n+1 =

(
0
Ge

n

)
,

(60)

and en = (1,1, · · · ,1︸ ︷︷ ︸
n

)T . Then the linear system Eq. 57 can be written by


γ0n +

1
2π

n

∑
m=1
− fm+1− fm

h
log
∣∣∣∣sin

(x̂k− xm)

2

∣∣∣∣h = g(x̂k), k = 1,2, · · · ,n,

− 1
2π

n

∑
m=1

fm+1− fm

h
h = 0,

(61)

where we have used f1 = fn+1.

Let vm =−( fm+1− fm)/h, we get
γ0n +

1
2π

n

∑
m=1

log
∣∣∣∣sin

(x̂k− xm)

2

∣∣∣∣vmh = g(x̂k), k = 1,2, · · · ,n,

1
2π

n

∑
m=1

vmh = 0.
(62)

Lemma 5 (Theorem 6.2.1, §6.2, [Lifanov and Poltavskii (2004)]) For the linear
system Eq. 62, its solution has the following expression

vm =− h
2π

n

∑
k=1

log
∣∣∣∣sin

(x̂k− xm)

2

∣∣∣∣g(x̂k). (63)

Lemma 5 has been proved in [Lifanov and Poltavskii (2004)], which will be used
in the proof of the following Theorem.

Lemma 6 Let the inverse matrix of An+1 to be Bn+1 = (bik)(n+1)×(n+1), defined in
Eq. 59. Then we vave,
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(1) Bn+1 has an expression of the form

Bn+1 =

(
b00 B1
B2 Bn

)
, (64)

where

B1 = (b01,b02, · · · ,b0n),B2 = (b10,b20, · · · ,bn0)
T , (65)

bi0 = b0i =
1
n
,1≤ i≤ n, (66)

bik =
h2

2π

[
n−1

∑
m=i

log
∣∣∣∣sin

(x̂k− xm)

2

∣∣∣∣− 1
n

n−1

∑
m=1

m log
∣∣∣∣sin

(x̂k− xm)

2

∣∣∣∣
]
, (67)

1≤ i≤ n−1,1≤ k ≤ n,

bnk = − h2

2nπ

n−1

∑
m=1

m log
∣∣∣∣sin

(x̂k− xm)

2

∣∣∣∣ ,1≤ k ≤ n. (68)

(2) Bn is both Toeplitz matrix and circulant matrix.

(3) There exist a positive constant C such that
n

∑
k=1
|bik| ≤C, (69)

for i = 1,2, · · · ,n.

Proof: (1) Based on the last equation of Eq. 57, we can easily get

0 =
n

∑
m=1

fm =−h
n−1

∑
m=1

m
fm+1− fm

h
+n fn = h

n−1

∑
m=1

mvm +n fn,

combining with Eq. 63, so we have

fn =−
h
n

n−1

∑
m=1

mvm =− h2

2nπ

n−1

∑
m=1

n

∑
k=1

m log
∣∣∣∣sin

(x̂k− xm)

2

∣∣∣∣g(x̂k), (70)

which yields Eq. 68. Then, by using Eq. 63 once more, we can get

fi = h
n−1

∑
m=i

vm + fn

=
h2

2π

n−1

∑
m=i

n

∑
k=1

log
∣∣∣∣sin

(x̂k− xm)

2

∣∣∣∣g(x̂k)−
h2

2nπ

n−1

∑
m=1

n

∑
k=1

m log
∣∣∣∣sin

(x̂k− xm)

2

∣∣∣∣g(x̂k)

=
h2

2π

n

∑
k=1

[
n−1

∑
m=i

log
∣∣∣∣sin

(x̂k− xm)

2

∣∣∣∣− 1
n

n−1

∑
m=1

m log
∣∣∣∣sin

(x̂k− xm)

2

∣∣∣∣
]

g(x̂k),
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which leads to Eq. 67. Proof of Eq. 66 will be given in next section.

(2) As

− 1
n

n−1

∑
m=1

m log
∣∣∣∣sin

(x̂k+1− xm)

2

∣∣∣∣
=−1

n

n−1

∑
m=1

m log
∣∣∣∣sin

x̂k− xm−1

2

∣∣∣∣
=−1

n

n−2

∑
m=0

(m+1) log
∣∣∣∣sin

x̂k− xm

2

∣∣∣∣
=−1

n

[
n−2

∑
m=1

m log
∣∣∣∣sin

x̂k− xm

2

∣∣∣∣+ n−2

∑
m=0

log
∣∣∣∣sin

x̂k− xm

2

∣∣∣∣
]

=−1
n

[
n−1

∑
m=1

m log
∣∣∣∣sin

x̂k− xm

2

∣∣∣∣+ n−1

∑
m=0

log
∣∣∣∣sin

x̂k− xm

2

∣∣∣∣−n log
∣∣∣∣sin

x̂k− xn−1

2

∣∣∣∣
]

= log
∣∣∣∣sin

x̂k− xn−1

2

∣∣∣∣− 1
n

n−1

∑
m=1

m log
∣∣∣∣sin

x̂k− xm

2

∣∣∣∣ ,
(71)

for i = 1,2, · · · ,n−2, we have

bi+1,k+1

=
h2

2π

[
n−1

∑
m=i+1

log
∣∣∣∣sin

x̂k+1− xm

2

∣∣∣∣− 1
n

n−1

∑
m=1

m log
∣∣∣∣sin

x̂k+1− xm

2

∣∣∣∣
]

=
h2

2π

[
n−2

∑
m=i

log
∣∣∣∣sin

x̂k− xm

2

∣∣∣∣+ log
∣∣∣∣sin

x̂k− xn−1

2

∣∣∣∣− 1
n

n−1

∑
m=1

m log
∣∣∣∣sin

x̂k− xm

2

∣∣∣∣
]

= bik,

(72)

where we have used

n−1

∑
m=0

log
∣∣∣∣sin

x̂k− xm

2

∣∣∣∣= 0. (73)

Moreover, from the equation Eq. 71, we get

bn,k+1 = bn−1,k, f or k = 1,2, · · · ,n−1. (74)
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Combining Eq. 72 and Eq. 74 together, we show that Bn is a Toeplitz matrix. As

b1k =
h2

2π

[
n−1

∑
m=1

log
∣∣∣∣sin

x̂k− xm

2

∣∣∣∣− 1
n

n−1

∑
m=1

m log
∣∣∣∣sin

x̂k− xm

2

∣∣∣∣
]

=
h2

2π

[
n

∑
m=1

cot
x̂k− xm

2
− 1

n

n

∑
m=1

m log
∣∣∣∣sin

x̂k− xm

2

∣∣∣∣
]

=− h2

2nπ

n

∑
m=1

m log
∣∣∣∣sin

x̂k− xm

2

∣∣∣∣ ,
and

bn,k−1 =−
h2

2nπ

n−1

∑
m=1

log
∣∣∣∣sin

x̂k−1− xm

2

∣∣∣∣
=− h2

2nπ

n−1

∑
m=1

log
∣∣∣∣sin

x̂k− xm+1

2

∣∣∣∣
=− h2

2nπ

n−1

∑
m=1

(m+1) log
∣∣∣∣sin

x̂k− xm+1

2

∣∣∣∣+ h2

2nπ

n−1

∑
m=1

log
∣∣∣∣sin

x̂k− xm+1

2

∣∣∣∣
=− h2

2nπ

n

∑
m=2

m log
∣∣∣∣sin

x̂k− xm

2

∣∣∣∣+ h2

2nπ

n

∑
m=2

log
∣∣∣∣sin

x̂k− xm

2

∣∣∣∣
=− h2

2nπ

n

∑
m=1

m log
∣∣∣∣sin

x̂k− xm

2

∣∣∣∣+ h2

2nπ

n

∑
m=1

log
∣∣∣∣sin

x̂k− xm

2

∣∣∣∣
=− h2

2nπ

n

∑
m=1

m log
∣∣∣∣sin

x̂k− xm

2

∣∣∣∣ ,
we have bn,k−1 = b1k for k = 2,3, · · · ,n, which show that Bn is also a circulant
matrix by noting that Bn is a Toeplitz matrix.

Since Bn+1 is the inverse matrix of An+1, and An+1 is symmetric, we see that Bn+1
is also symmetric, we have

b j0 = b0 j, (75)

for j = 1, · · · ,n.

By multiplying the ith row of Bn+1 with the ith column of An+1 , we have

bi0 +
n

∑
j=1

bi ja ji = 1,1≤ i≤ n,
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which can be written as

bi0 = 1−
n

∑
j=1

bi ja ji,1≤ i≤ n. (76)

The first row of matrix Bn+1 to be multiply with the first column of matrix An+1,
we obtain

n

∑
j=1

b0 j = 1. (77)

Combining Eq. 75, Eq. 76 and Eq. 77 leads to bi0 = b0k = 1/n.

(3) In order to prove Eq. 69, we just consider the case k = n because of Bn is a
circulant matrix. Then we have

bnk =
1

2nπ

n

∑
m=1

(x̂m− xk−1) log
∣∣∣∣sin

x̂m− xk−1

2

∣∣∣∣h+ h
n

log
∣∣∣∣sin

xk−1− x̂n

2

∣∣∣∣ . (78)

We know that the first term in the righthand of Eq. 78 which can be considered as
the middle rectangle quadrature of the integral

1
2nπ

∫ 2π

0
(x− s) log

∣∣∣∣sin
x− s

2

∣∣∣∣ dx =
1

2nπ
[J1(2π− s)+ J1(s)]−

log2
n

, (79)

with s = xk−1, where we have used the identity ( See [Cvijović (2008)])

J1(s) =
∫ s

0
t log2sin

t
2

dt. (80)

The integrand function in Eq. 79 is continuous function except one point at s, from
the error estimate of the middle rectangle for Riemann integrals, we have

− 1
2nπ

n

∑
m=1

x̂m log
∣∣∣∣sin

xk−1− x̂m

2

∣∣∣∣h =
1

2nπ
[J1(2π− xk−1)+ J1(xk−1)]+O(h2).

Based on Eq. 80, for any k = 1,2, · · · ,n, which leads to

|bnk| ≤
1

2nπ
[|J1(2π− xk−1)|+ |J1(xk−1)|]+O(h3)+

∣∣∣∣hn log
∣∣∣∣sin

h
4

∣∣∣∣∣∣∣∣≤ C
n
, (81)

where we has been used the inequality∣∣∣∣log
∣∣∣∣sin

x̂n− xk−1

2

∣∣∣∣∣∣∣∣≤ ∣∣∣∣log
∣∣∣∣sin

h
4

∣∣∣∣∣∣∣∣ ,k = 1,2, · · · ,n.

Therefore, Eq. 69 can be obtained from Eq. 81.

Now we present our main result of this section.
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Theorem 3 Assume that f (x), the solution of the Hilbert singular integral equation
Eq. 50, belongs to C2[0,2π]. Then, for the linear system Eq. 57 or Eq. 59, we get
the error estimate as below

max
1≤i≤n

| f (x̂i)− fi| ≤Ch2[1+ | lnh|]. (82)

Proof: Let Fe
n+1 = (0, f (x̂1), f (x̂2), · · · , f (x̂n))

T be the exact vector. Then, from
Eq. 59, we have

Fe
n+1−Fa

n+1 = Bn+1(An+1Fe
n+1−Ge

n+1), (83)

which implies

f (x̂i)− fi = bi0

n

∑
m=1

f (x̂m)+
n

∑
k=1

bikEn( f ; x̂k), i = 1,2, · · · ,n, (84)

where {bik} are the entries of Bn+1 and En( f ; x̂k) is defined in Eq. 24. By Eq. 66
and Eq. 69, we obtain

| f (x̂i)− fi| ≤
1

2π

∣∣∣∣∣ n

∑
m=1

f (x̂m)h

∣∣∣∣∣+ n

∑
k=1
|bik||En( f ; x̂k)|

≤Ch2 +Ch2| lnh|
n

∑
k=1
|bik| ≤Ch2[1+ | lnh|].

where ∑
n
m=1 f (x̂m)h is the rectangle rule of the Rimemann integral Eq. 52 with

accuracy O(h2) has been used. The proof of Theorem 3 is completed.

5 Numerical Examples

In this section, computational results are reported to confirm our theoretical analy-
sis.

Example 1 We consider the Hilbert integral with f (x) = sinx c = 0, the exact
value is g(s) = 2π coss. We consider the dynamic singular points s = x[n/3]+(τ +

1)h/2 and s = x0 +(τ +1)h/2 with τ =±2
3 is the superconvergence point.

In Table 1 and Table 2 show that the superconvergence rate is O(h2) when the local
coordinate equal ±2

3 with the singular point s = x[n/3]+(τ + 1)h/2 and s = x0 +
+(τ +1)h/2. In Table 3 and 4 show that the convergence rate of modify rectangle
rule is O(h2) for both the superconvergence rate and the non-superconvergence rate
which agree with our Corralary 2.
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Table 1: Errors of the rectangle rule with s = x[n/3]+(τ +1)h/2

n τ = 0 τ = 2/3 τ =−2/3 τ = 1/2
36 1.4331e-001 -2.8376e-003 1.2500e-002 7.1381e-002
72 6.6068e-002 -9.2338e-004 3.1271e-003 3.2859e-002

144 3.1638e-002 -2.5728e-004 7.8189e-004 1.5762e-002
288 1.5470e-002 -6.7600e-005 1.9547e-004 7.7192e-003
576 7.6481e-003 -1.7308e-005 4.8868e-005 3.8199e-003
1152 3.8023e-003 -4.3781e-006 1.2217e-005 1.9001e-003
hα 1.0472 1.8680 1.9998 1.0463

Table 2: Errors of the rectangle rule with s = x0 +(1+ τ)h/2

n τ = 0 τ = 2/3 τ =−2/3 τ = 1/2
36 -2.4891e-001 -9.2064e-003 -7.5746e-003 -1.2888e-001
72 -1.2285e-001 -2.1535e-003 -1.9441e-003 -6.2478e-002

144 -6.0971e-002 -5.1876e-004 -4.9225e-004 -3.0742e-002
288 -3.0367e-002 -1.2717e-004 -1.2384e-004 -1.5247e-002
576 -1.5153e-002 -3.1474e-005 -3.1055e-005 -7.5922e-003
1152 -7.5688e-003 -7.8283e-006 -7.7759e-006 -3.7883e-003
hα 1.0079 2.0399 1.9856 1.0177

Table 3: Error estimate of the modify rectangle rule with s = x[n/3]+(τ +1)h/2

n τ = 0 τ = 2/3 τ =−2/3 τ = 1/2
36 -4.5356e-003 -2.8376e-003 1.2500e-002 2.2651e-003
72 -1.0668e-003 -9.2338e-004 3.1271e-003 7.4697e-004
144 -2.5804e-004 -2.5728e-004 7.8189e-004 2.0919e-004
288 -6.3413e-005 -6.7600e-005 1.9547e-004 5.5092e-005
576 -1.5715e-005 -1.7308e-005 4.8868e-005 1.4121e-005
1152 -3.9114e-006 -4.3781e-006 1.2217e-005 3.5738e-006
hα 2.0359 1.8680 1.9998 1.8616

Table 4: Error estimate of the modify rectangle rule with s = x0 ++(τ +1)h/2

n τ = 0 τ = 2/3 τ =−2/3 τ = 1/2
36 7.8775e-003 -9.2064e-003 -7.5746e-003 8.9403e-003
72 1.9836e-003 -2.1535e-003 -1.9441e-003 2.1191e-003
144 4.9729e-004 -5.1876e-004 -4.9225e-004 5.1439e-004
288 1.2447e-004 -1.2717e-004 -1.2384e-004 1.2662e-004
576 3.1136e-005 -3.1474e-005 -3.1055e-005 3.1404e-005
1152 7.7860e-006 -7.8283e-006 -7.7759e-006 7.8196e-006
hα 1.9965 2.0399 1.9856 2.0318
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Example 2 Now we consider an example of solving Hilbert integral equation Eq. 50
by collocation scheme Eq. 57. Let g(s) = coss− sins, the exact solution is f (x) =
cosx+ sinx.

We examine the maximal nodal error and the maximal truncation error, defined by

e∞ = max
1≤i≤n

| f (xi)− fi|, trunc− e∞ = max
1≤i≤n

|En( f ; x̂k)|, (85)

respectively, where fi(i = 1,2, · · · ,n) denotes the approximation of f (x) at x̂i and
En( f ; x̂k) is defined in Eq. 5. Numerical results presented in Table 5 show that both
the maximal nodal error and the maximal truncation error are O(h2), which is in
good agreement with the result in Theorem 3. For the case with the local coordinate
with τ = 0, numerical results presented in Table 6 show that both the maximal nodal
error and the maximal truncation error are O(h) when the collocation point does not
take the superconvergence point.

Table 5: Errors for the solution of the Hilbert integral equation of first kind with
τ = 2/3

n e∞ trunc− e∞

32 3.5896e-003 2.2491e-002
64 8.9891e-004 5.6480e-003

128 2.2516e-004 1.4146e-003
256 5.6338e-005 3.5395e-004
512 1.4090e-005 8.8527e-005
hα 1.998 1.997

Table 6: Errors for the solution of the Hilbert integral equation of first kind with
τ = 0

n e∞ trunc− e∞

32 1.7734e-001 3.9716e-001
64 1.0535e-001 1.9579e-001

128 4.5149e-002 9.7097e-002
256 2.7684e-002 4.8337e-002
512 4.2344e-003 2.4114e-002
hα 1.35 1.01
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6 Conclusion

In this paper, we study the composite rectangle rule for numerical evaluation in-
tegrals defined on a circle with a Hilbert kernel and numerical solution of corre-
sponding Hilbert integral equation. Based on the superconvergence phenomenon
in each subinterval, a collocation scheme is presented by choosing the supercon-
vergence point in each subinterval as the collocation points and an error estimate
of the Hilbert integral equation is obtained.

This kind of Hilbert integral and integral equation is widely used in many engi-
neering area [Yu (2002)]. The results in this paper show a possible way to improve
the accuracy of the collocation method for singular integral equations by choosing
the superconvergence points to be the collocation points. The local coordinate with
superconvergence phenomenon of the middle rectangle rule are ±2

3 . Moreover, the
inverse of the coefficient matrix has an explicit expression, then an optimal error
estimate is established. Both the theoretical analysis and numerical results show
that the method is of higher-order accuracy.
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