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A Level-set Algorithm for Simulating Wildfire Spread
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Abstract: Level-set approaches are efficient and versatile methods for solving
interface tracking problems and have been used in recent years to describe wildland
fire propagation. Being based on an Eulerian description of the spread problem,
their numerical implementation offers improved computational agility and better
portability to parallel computing environments with respect to vector-based simu-
lators. The use of a continuous representation of the fire perimeter in place of the
binary formulation used in Cellular Automata avoids the commonly observed dis-
tortion of the fire shape. This work presents an algorithm for fire-spread simulation
based on a level-set formulation. The results are compared to the ones obtained by
two well-known Cellular Automata simulators under homogeneous conditions, and
to the ones given by a well-know vector-based fire-spread simulator under realistic
slope and wind conditions. According to this work, the level-set approach provides
better results, in terms of accuracy, at a much reduced computational cost.
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1 Introduction

Methods for simulating wildland fires range from purely physical models (those
based on the analysis of the physics and chemistry involved in the combustion of
biomass fuel and its interaction with the atmosphere) to purely empirical mod-
els (those based on a statistical regression of the observed fire behavior) [Sullivan
(2009a)]. As a full formulation of the equations governing a wildland fire is still
not computationally feasible, a number of simplifications are often used in physical
models: simplified chemistry, averaging (time-averaging or low-pass filtering), tur-
bulence modeling, etc. Even with these assumptions, physical and quasi-physical
models are in most cases several orders of magnitude slower than real-time, even on
relatively large supercomputers, thus limiting their use for operational purposes (in
2007, a high-intensity fire simulation with 16 million grid cells within a 1.5 × 1.5
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km domain took 0.44 processing hours for every second of simulated time [Mell,
Jenkins, Gould, and Cheney (2007)] and, even if the current 30% yearly increase
in computational power is maintained [Byrne, Oliner, and Sichel (2013)], it would
take several decades before a similar model can be used for real-time applications
at a comprensorial level). On the contrary, empirical and semi-empirical models,
being based on a regression of experimental data, can provide faster-than-real-time
predictions to fire spread problems (reliable when caution is placed on their lim-
its of applicability [Perry (1998)]) and have become the basis of operational fire
behavior models in use today [Sullivan (2009b)].

Empirical (and quasi-empirical) simulators are based on the combination of two
elements: a fire-behavior model and a fire-spread method. Fire-behavior models
estimate fire-behavior and spread characteristics that are important for fire suppres-
sion planning (such as rate of spread and fireline intensity) as a function of a num-
ber of independent variables (wind speed, terrain slope, fuel moisture, fuel load,
fuel density, etc.). One of the most renowned is the model of Rothermel [Rother-
mel (1972, 1983)], which was developed based on a large number of laboratory
experiments on surface fires of varying characteristics and forms the foundation
of many fire-spread simulators in the United States and in Mediterranean Europe
[Finney (2004); Lopes, Cruz, and Viegas (2002); Peterson, Morais, Calson, Denni-
son, Roberts, Moritz, and Weise (2009)]. Similar models have been developed in
Australia [McArthur (1966)], Canada [Van Wagner (1998)] and other parts of the
world. Fire-spread methods define the rules for evolving the fire perimeter across a
landscape, based on the local characteristic of fuel, weather and topography.

Existing fire-spread techniques can be split into two categories. The first category
goes under the name of vector implementation and treats the fire perimeter as a
closed curve, discretized through a number of points, each one expanding based
on the given spread model and the local conditions (fuel, weather and topography).
The outer shape formed by all individual fires constitutes the new perimeter, which
is further discretized and expanded. This approach was first introduced as the Huy-
gens’ principle for fire-spread simulation by [Anderson, Catchpole, De Mestre, and
Parkes (1982)], using an ellipse to define the local shape of new fires. The second
category – raster implementation – treats the problem by mean of a group of con-
tiguous cells that can be either inactive (burnt or not burning) or active. A set of
rules defines the spread mechanism from a cell to its neighbors, usually based on
time-of-arrival or heat-accumulation approaches [Peterson, Morais, Calson, Den-
nison, Roberts, Moritz, and Weise (2009)].

Under homogeneous conditions (i.e. constant fuels, weather and topography), wild-
land fires have been observed to produce regular shapes, such as ellipses, double
ellipses and ovoids. Richards [Richards (1995)] provides a mathematical formula-
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tion for the spread rate as a function of the angle from the direction of maximum
spread for several of the observed shapes. Green et al. [Green, Gill, and Noble
(1983)] compare experimental burned areas under homogeneous conditions, con-
cluding that a simple ellipse could fit fire growth data as well as other shapes. The
elliptic fire-spread template of Anderson et al. [Anderson, Catchpole, De Mestre,
and Parkes (1982)] is used in FARSITE [Finney (2004)] and many other fire-spread
simulators. In real conditions, wildland fires produce shapes different from the
regular shapes mentioned above and require some form of spatial and temporal
discretization to account for landscape and weather non-homogeneity.

The main weakness of vector-based approaches is the need for a computationally
expensive algorithm for generating the convex hull fire-spread perimeter at each
time step, especially in the presence of fire crossovers and unburned islands [Glasa
and Halada (2008)]. Approaches based on raster implementations tend to be com-
putationally more efficient, but can suffer from significant distortion of the pro-
duced fire shape: under constant wind and homogeneous landscape conditions,
the heading portion of the fire perimeter tends to be angular rather than rounded
[Karafyllidis and Thanailakis (1997)] due to the constraints of the grid cell restric-
tion to eight directions of movement [Ball and Guertin (1992)]. These inaccuracies
lead to modified predictions even in real landscape situations [Peterson, Morais,
Calson, Dennison, Roberts, Moritz, and Weise (2009)].

A number of authors make use of larger neighborhoods, thus increasing the num-
ber of fire spread directions allowed [French, Anderson, and Catchpole (1990)]
and mitigating the distortion of the theoretically elliptic shape. The same result can
also be achieved by mean of a Minimum Travel Time (MTT) algorithm: the work
of Finney [Finney (2002)] demonstrates how the use of an indefinitely large neigh-
borhood leads to results equivalent to the ones given by a vector implementation, at
the cost of larger computational costs and, more importantly, of large errors in the
presence of real landscapes characterized by fuel and weather variability [Peterson,
Morais, Calson, Dennison, Roberts, Moritz, and Weise (2009)]. Alternative dis-
cretizations have been also used: Frandsen and Andrews [Frandsen and Andrews
(1979)] and Hernández-Encinas et al. [Hernández Encinas, Hoya White, Martín
del Rey, and Rodríguez Sánchez (2007)] employed hexagonal cells suffering from
the same distortion problems found in the square model, Johnston et al. [Johnston,
Kelso, and Milne (2008)] employed an irregular grid to avoid directional biasing
in fire-front propagation. To improve the produced fire perimeter, they modified
the rate of spread function with the inclusion of two terms: the first one divides
a region where the backing rate of spread is employed from one where a variable
rate of spread is used, the latter increases the maximum rate of spread to allow for
the fact that on an irregular grid fire cannot travel in a straight line, but follows an
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irregular path dictated by the cells’ connections. The first factor is chosen from
experience, while for the second factor the authors use a parametric search aimed
at matching the rate of spread in the direction of maximum propagation. The re-
sults for the maximum rate of spread are promising, but little insight is given on
the mitigation of the elliptic shape distortion. Trunfio et al. [Trunfio, D’Ambrosio,
Rongo, Spataro, and Di Gregorio (2011)] suggest an improved algorithm for simu-
lating wildfire spread through Cellular Automata, which, not restricting the ignition
points’ locations to the cell centers, does not limit the fire spread to the eight direc-
tions (or more if larger neighborhoods are used) defined by the raster discretization,
producing shapes more closely resembling the theoretically elliptic shape. This is
achieved at the price of an increased computational cost, due to the calculation of
the position of the new ignition point within each raster cell, making the solution
approach a hybrid between a Cellular Automata and a vector implementation.

In recent years, an alternative approach has gained attention: the level-set method-
ology is a versatile technique for general front tracking problems. It was first de-
veloped by Osher and Sethian [Osher and Sethian (1988)] to express the motion
of N − 1 dimensional surfaces in N spatial dimensions. The method makes use
of a Hamilton-Jacobi equation (a hyperbolic partial differential equation) to de-
scribe the propagation of the fire front, which is defined implicitly by mean of a
level-set function. The differential equation can be solved using an appropriate nu-
merical method for hyperbolic conservation laws and does not require the addition
of new computational elements (unlike the vector implementation) as the simu-
lation progresses, being able to deal with complex topological features (merging
of fire fronts or formation of islands) without any additional requirements. This
approach has been employed with success in several areas: solution of complex
multi-phase flows [Balabel (2012, 2013); Wang, Li, Yang, and Hill (2013)], topol-
ogy optimization [Matsumoto, Yamada, Takahashi, Zheng, and Harada (2011); Li,
Ouyang, Wu, and Xu (2011)], injection moliding simulation [Yang, Ouyang, Jiang,
and Liu (2010); Li, Ouyang, Wu, and Xu (2011)], passive transport problems [Mai-
Cao and Tran-Cong (2008)].

Recently, Mallet et al. [Mallet, Keyes, and Fendell (2009)] made use of a level-
set method combined with a simple expression for the advection velocity, defined
as a trigonometric combination of three values for flank, head and rear fire-spread
rates. Rehm et al. [Rehm and Mcdermott (2010)] used the same approach to com-
pare Lagrangian and Eulerian formulations of the fire-spread problem, noting their
equivalence for simple scenarios. Mandel et al. [Mandel, Beezley, and Kochanski
(2011)] coupled a level-set formulation for fire-front propagation with the Weather
Research and Forecasting (WRF) Model, a mesoscale numerical weather prediction
system used both for forecasting and atmospheric research purposes, allowing the
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two-way interaction between fire and atmosphere to be calculated and accounted
for in fire-propagation simulations.

The common distortion problem found in Cellular Automata is due to the limitation
of the spread to a number of fixed directions (eight in the presence of the simplest
approach, where fire can only spread from one cell to its immediate neighbors),
which in turn depends on the binary nature of Cellular Automata (each cell can
be either in burning or non-burning) rather than on the raster discretization itself.
Level-set methods do not limit the position of the fire-front to the nodes of the
numerical grid and therefore can provide a much more precise description of the
spread phenomenon.

Other advantages of the level-set approach are its computational agility and porta-
bility to parallel computing environments, while the increased computational cost
(which for a one-dimensional interface moving in a two-dimensional space is O(n2)
per time iteration, with n number of points in each spatial dimension) can be re-
duced by mean of a narrow-band method (O(kn), where k is a constant depending
on the width of the narrow-band tube) [Adalsteinsson and Sethian (1995)]. De-
spite these advantages, a validation for simple fire-propagation problems has not
yet been presented.

This work presents a level-set approach to fire propagation that allows the simulated
fire perimeters to approximate the expected elliptic fire shapes more closely than
other raster-based techinques such as Cellular Automata. The results are compared
to the ones obtained by other cell-based simulators based on a Cellular Automata
paradigm [Peterson, Morais, Calson, Dennison, Roberts, Moritz, and Weise (2009);
Trunfio, D’Ambrosio, Rongo, Spataro, and Di Gregorio (2011)] and show a signif-
icantly improved accuracy, in the presence of a much reduced computational cost.

The rest of this paper is organized as follows. Section 2 summarizes the semi-
empirical equations of Rothermel [Rothermel (1972)] and Richards [Richards (1995)],
used as the basis for this work. Section 3 provides a brief introduction to level-set
methods. Section 4 analyzes the predicted fire perimeters, both for homogeneous
and realistic spread conditions. Section 5 draws some conclusions and outlines
future directions.

2 Fire-spread Model

The fire-spread model is based on Rothermel’s surface fire spread model [Rother-
mel (1972)]. This choice was dictated by its application to many fuels around
the world, such as logging slash, grasslands and shrublands and by its use in dif-
ferent software for fire behavior prediction such as FIREMAP [Ball and Guertin
(1992)], FARSITE [Finney (2004)], FireStation [Lopes, Cruz, and Viegas (2002)],
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FlamMap [Finney (2006)], and HFIRE [Peterson, Morais, Calson, Dennison, Roberts,
Moritz, and Weise (2009)].

A list of input parameters required by the fire propagation model is given in Table
1. The model’s outputs are given in Table 2. Fuel properties are generally supplied
separately for live and dead fuels, for different size classes. Properties are averaged
between size classes using the surface-to-volume ratio as weighting factor, while
live and dead fuels are treated separately. A full derivation and description of the
parameters in use is given in [Rothermel (1972)].

Table 1: Input parameters required by Rothermel’s model [Rothermel (1972)]
Description Symbol Units
Fuel load W0 kg m−2

Fuel depth δ m
Surface-to-volume ratio σ m−1

Fuel heat content h kJ kg−1

Fuel moisture content M f -
Fuel moisture content of extinction Mx -
Ovendry particle density ρp kg m−1

Fuel particle total mineral content ST -
Fuel particle effective mineral content Se -
Midflame-height wind speed Um m s−1

Terrain slope φ degrees

IR and R0 represent reaction intensity and rate of spread on a flat terrain with no
wind. In the presence of wind and slope, these two parameters are multiplied by
(1+φw +φs), where φw and φs are two fire-intensification factors which depend on
local wind and terrain slope. The direction of maximum spread is obtained through
a vectorial summation of the dimensionless coefficients for wind speed and slope
[Finney (2004)]. The two-dimensional fire-spread rule used is the one described in
[Alexander (1985)], subsequently adapted by [Finney (2004)]. The ellipse length-
to-width ratio can be calculated as:

LW = 0.936e50.5Ueq +0.461e−30.5Ueq−0.397 (1)

where the equivalent wind speed Ueq (in ms−1) is the wind speed that alone would
produce the combined effect of actual wind and terrain slope. Assuming the fire
origin to be located at the rear focus of the ellipse, the fire-spread rate can be cal-
culated as a function of the angle θ , measured from the direction of maximum
spread.

R(θ) = R0
1−E

1−Ecos(θ)
(2)
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Table 2: Outputs from Rothermel’s model [Rothermel (1972)]
Description Symbol Units Equation

A - A = 1
4.239σ 0.1−7.27

B - B = 0.0133σ0.54

C - C = 7.47exp(−0.0693σ0.55)

E - E = 0.715exp(−1.079×10−4σ)

Maximum reaction
velocity

Γ′max s−1 Γ′max =
σ 1.5

1171.27+3.564σ 1.5)

Optimum reaction
velocity

Γ′ s−1 Γ′ = Γ′max(
β

βop
)Aexp([A(1− β

βop
)])

Optimum packing
ratio

βop - βop = 3.348σ−0.8189

Moisture damping
coefficient

ηM - ηM = 1−2.59 M f
Mx

+5.11(M f
Mx

)2−3.52(M f
Mx

)3

Mineral damping
coefficient

ηS - ηM = 0.174S−0.19
e

Propagating flux ratio ξ - ξ =
exp[(0.792+0.376σ 0.5)(β+0.1)

192+0.0791σ

Net fuel loading Wn kg m−2 Wn =
W0

1+ST

Ovendry bulk density
ρb

kg m−3 ρb =
W0
δ

Effective heating
number

ε - ε = exp(−4527.56σ−1)

Heat of preignition Qig kJ kg−1 Qig = 522+2332M f
Packing ratio β - β = ρb

ρp

Reaction intensity IR kJ m2 s−1 IR = Γ′WnhηMηS

Rate of spread R0 m s−1 R0 =
IRξ

ρbεQig

Wind factor φw - φw =CUB( β

βo p )
−E

Slope factor φs - φs = 5.275β−0.3(tanφ)2

where E is the ellipse eccentricity, defined as
√

1−1/LW 2. Alternatively, the same
can be calculated as a function of the angle θ ′ between the normal to the fire surface
and the direction of maximum spread:

R(θ ′) = (acos(θ ′))2 +(bsin(θ ′))2 + ccos(θ ′) (3)

where a, b and c are respectively the ellipse’s semi-major and semi-minor axes and
semi-focal-length.

3 Fire-front Propagation using a Level-set Approach

Level-set methods are Eulerian schemes for tracking fronts that propagate with a
given speed function (which can depend on position, time and other local properties
such as normal direction and local curvature [Osher and Sethian (1988)]). The
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basic idea is to use an implicit definition of the front Γ by mean of a function
ψ : RN× [0,Tf ]→ R such that

∀t ∈ [0,Tf ] Γ(t) =
{

x ∈ RN |ψ(x, t) = 0
}

(4)

The partial differential equation defining the evolution of the front can be obtained
by differentiating the equation for the fire front with respect to time:

∂ψ

∂ t
+R ·∇ψ = 0 (5)

where R is the front propagation speed. To simplify the solution of equation (5),
the spread rate can be calculated as a a function of the angle between the normal
to the level-set function and the maximum-spread direction. In this case, the front
propagation speed R will be calculated from equation (3) and parallel to ∇ψ .

On Cartesian grids, equation (5) can be solved using a Finite Difference approach.
To preserve stability, special care needs to be placed in the approximation of spatial
derivatives. The simplest stable scheme is a first-order upwind. For the x-derivative
it reads:

∂ψ

∂x
=

{
ψi, j−ψi−1, j

∆x if Rx ≥ 0
ψi+1, j−ψi, j

∆x otherwise
(6)

where Rx is the x-component or R. Similarly, the time derivative in equation (5)
can be approximated with a first-order explicit scheme (Euler’s method):

∂ψ

∂ t
=

ψ
n+1
i, j −ψn

i, j

∆t
(7)

where the superscripts represent the time step. This approach is first-order accurate
in both time and space: higher-order discretizations can be used, but are not consid-
ered in this study due to the uncertainties in the estimation of the fire propagation
rate. For an explicit scheme, the maximum stable time step is related to the grid
spacing by the Courant-Friedrichs-Lewy (CFL) condition:

max
(

R∆t
∆x

)
≤ 1 (8)

Neumann boundary conditions are used at the boundaries of the physical domain
(i.e. ∂ψ

∂x = ∂ψ

∂y = 0). To approximate the fire front at time t = 0, the initial value of
the level-set function can be chosen as the signed distance from the fireline [Mallet,
Keyes, and Fendell (2009)]:

ψ(x, t) =
{

dΓ(t)(x) if x lies outside the front Γ(x)
− dΓ(t)(x) if x lies inside the front Γ(x) (9)

Alternatively, the level-set function can be initialized with a positive value in non-
burnt regions and with a negative value in burnt regions.
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3.1 Sloping Terrain

The equations introduced in Section 2 provide the rate of spread relative to the
ground surface. Therefore, in the presence of sloping terrain, the value needs to be
corrected to represent the rate of spread in the horizontal coordinate system.

Rx = R′xcos(δx) (10)

Ry = R′ycos(δy) (11)

where R′x and R′y are the rate of spread components in a coordinate system parallel to
the ground, Rx and Ry are the rate of spread components in a horizontal coordinate
system and δx and δy the slope components.

3.2 Model Evaluation

To evaluate the performance of the level-set algorithm, the following metrics were
adopted:

λu =
|R−S|
|R| (12)

λo =
|S−R|
|S| (13)

λs =
|R∪S|− |R∩S|
|R∪S| (14)

where R represents the set of cells defining the expected fire shape, S the set of
cells defining the simulated fire shape and the operator |.| gives the size of a set.
Consequently, λu and λo represent the underpredicted and overpredicted fire area
ratios, respectively, while λs is a measure of the level of disagreement between the
two predictions. To compute the set of cells defining the expected fire shape, a cell
was considered burnt when its center fell inside the fire ellipse. To compute the
predicted fire shape, a cell was considered burnt when the corresponding value for
the level-set function was less than zero.

The same metrics were adopted by [Trunfio, D’Ambrosio, Rongo, Spataro, and
Di Gregorio (2011)] to evaluate the performance of their proposed Cellular Au-
tomata approach in comparison to the one of [Peterson, Morais, Calson, Dennison,
Roberts, Moritz, and Weise (2009)].
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4 Results

4.1 Homogeneous Fire-spread Conditions

The fire shapes obtained with the level-set approach for different values of ellipse
eccentricity (0.5, 0.7, 0.9 and 0.95) are shown in Figures 1, 2, 3 and 4, respectively,
for different wind angles. The corresponding values for error factors λs, λu and λo

are summarized in Table 3, where they are compared to the ones obtained through
to two well-known Cellular Automata (raster-based) simulators – the one proposed
by [Peterson, Morais, Calson, Dennison, Roberts, Moritz, and Weise (2009)] (la-
beled RCA) and the one proposed by [Trunfio, D’Ambrosio, Rongo, Spataro, and
Di Gregorio (2011)] (ECA) – using both a 8-cell and a 24-cell neighborhood. The
benefits of the level-set approach are evident, both graphically (through the similar-
ity between expected and predicted fire shapes) and numerically. Considering the
largest eccentricity case with wind in the direction of one of the grid axes, the re-
duction in shape factor’s value is 93.9% relative to the 24-cell neighborhood RCA
and 70.8% relative to the 24-cell neighborhood ECA taken as reference. The error
is equally divided between under- and over-predicted areas. Relatively to the ref-
erence algorithms, the under-prediction factor λu is reduced by 97.1% (RCA) and
80% (ECA). The over-prediction factor λo has also been reduced (-56%) relative to
the one found in the 24-cell neighborhood ECA (the RCA has a zero value for λo).
The influence of the effective wind direction on the fire shape is also minimal.

0

(a) αw = 0 (b) αw = π/12 (c) αw = π/6 (d) αw = π/4

Expected shape
Numerical shape

Fire origin

Figure 1: Comparison of expected and numerical two-dimensional fire-spread
shapes under homogeneous conditions, for different wind angles (E = 0.50)

Figure 1: Comparison of expected and numerical two-dimensional fire-spread
shapes under homogeneous conditions, for different wind angles (E = 0.50)

Even if a comparison of the computational times required by different numeri-
cal algorithms is not straight-forward (they are highly dependent on the specific
implementations), the potential for low running time of cell-based approaches is
widely recognized, thanks to the avoidance of the de-looping algorithm necessary
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(a) αw = 0 (b) αw = π/12 (c) αw = π/6 (d) αw = π/4

Expected shape
Numerical shape

Fire origin

Figure 2: Comparison of expected and numerical two-dimensional fire-spread
shapes under homogeneous conditions, for different wind angles (E = 0.70)

Figure 2: Comparison of expected and numerical two-dimensional fire-spread
shapes under homogeneous conditions, for different wind angles (E = 0.70)2

(a) αw = 0 (b) αw = π/12 (c) αw = π/6 (d) αw = π/4

Expected shape
Numerical shape

Fire origin

Figure 3: Comparison of expected and numerical two-dimensional fire-spread
shapes under homogeneous conditions, for different wind angles (E = 0.90)

Figure 3: Comparison of expected and numerical two-dimensional fire-spread
shapes under homogeneous conditions, for different wind angles (E = 0.90)
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(a) αw = 0 (b) αw = π/12 (c) αw = π/6 (d) αw = π/4

Expected shape
Numerical shape

Fire origin

Figure 4: Comparison of expected and numerical two-dimensional fire-spread
shapes under homogeneous conditions, for different wind angles (E = 0.95)

Figure 4: Comparison of expected and numerical two-dimensional fire-spread
shapes under homogeneous conditions, for different wind angles (E = 0.95)
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Table 3: Dependence of Error Factors λs, λu and λo on the Wind Angle αw (part 1)
E 0.50 0.70
αw 0 π/12 pi/6 π/4 0 π/12 pi/6 π/4
λs 0.010 0.014 0.019 0.019 0.014 0.020 0.021 0.020
λu 0.005 0.007 0.010 0.010 0.007 0.010 0.011 0.010
λo 0.005 0.007 0.010 0.010 0.007 0.010 0.010 0.010

Table 4: Dependence of Error Factors λs, λu and λo on the Wind Angle αw (part 2)
E 0.90 0.95
αw 0 π/12 pi/6 π/4 0 π/12 pi/6 π/4
λs 0.016 0.022 0.023 0.023 0.021 0.027 0.024 0.025
λu 0.008 0.011 0.011 0.011 0.010 0.014 0.012 0.013
λo 0.008 0.011 0.012 0.012 0.011 0.014 0.012 0.012

to reconstruct the fire perimeter at the end of each time step in vector-based imple-
mentations. Other advantages of raster-based algorithms in general (and level-set
approaches in particular) are their computational agility and portability to paral-
lel computing environment. The governing partial differential equation does not
need to be solved in every cell of the computational domain (this would make the
algorithm O(n2), with n number of computational points for each spatial dimen-
sion): the computational cost can be sensibly reduced by mean of a narrow-band
approach, where only the cells lying within a certain distance from the fire-front
are updated at each time step.

4.2 Comparison with FARSITE on Real Topographies

In order to verify its performance on a realistic fire-spread problem, the level-set
algorithm was compared to FARSITE [Finney (2004)] on a real topography under
different wind conditions. FARSITE has been chosen as the reference simulator
because the vector-based approach is the only one that produces perfectly ellip-
tical fire-propagation fronts in homogeneous conditions and, for this reason, has
been already taken as the reference by a number of different fire spread-simulators
[Trunfio, D’Ambrosio, Rongo, Spataro, and Di Gregorio (2011); Finney (2006);
Peterson, Morais, Calson, Dennison, Roberts, Moritz, and Weise (2009)], which
report deviations in fire-perimeters and computational times relative to FARSITE.

Only surface fires have been considered, and spotting and acceleration modules
were disabled in FARSITE, as the purpose of this exercise was to evaluate the per-
formance of the fire-spread approach. The numerical grid used by the level-set
solver is constituted by 1.44 million square cells with 10 meter sides. FARSITE
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does not make use of a fixed numerical grid, but discretizes the fire perimeter di-
rectly. The maximum distance between adjacent computational points and their
maximum displacement has been set to values similar to the ones used by the level-
set solver. A uniform fuel bed corresponding to the standard fuel model 1 (grass)
[Anderson, Catchpole, De Mestre, and Parkes (1982)] was used.

Three scenarios were simulated: a zero-wind situation, a scenario with a 4.5 ms−1

domain-averaged wind and one with a 9 ms−1 domain-averaged wind (measured
at 6.096 meters agl), directed from West to East. The three scenarios are labeled
T0, T10 and T20, for simplicity. Gridded wind vectors were obtained through a
mass-consistent approach [Forthofer (2007)].

According to FARSITE, the surface fire burned a total of 5.96 km2 in 12 hours in
T0, 12.07 km2 in 4 hours in T1 and 7.08 km2 in 1 hour in T2. Figures 5, 6 and
7 show a comparison of the fire shapes predicted by FARSITE and the level-set
solver. The agreement is evident.

Tables 5, 6 and 7 report the shape disagreement factors for the three experiments,
at four intermediate times. The values are lower than the ones reported by state-of-
the-art Cellular Automata simulators on comparable fire-spread scenarios [Trunfio,
D’Ambrosio, Rongo, Spataro, and Di Gregorio (2011)]. Table 8 compares the wall
clock times: for complex simulations (the combined presence of variable slope
and wind), the reduction in wall clock time can be of the order of 90%, larger
than the one claimed by Cellular Automata approaches [Trunfio, D’Ambrosio,
Rongo, Spataro, and Di Gregorio (2011)] and without the need of employing large
neighborhoods [Peterson, Morais, Calson, Dennison, Roberts, Moritz, and Weise
(2009); Finney (2006)] which could result in less accurate predictions in the pres-
ence of heterogeneous weather or landscape conditions but that are essential to re-
duce or eliminate the well known distortion problem or complex corrections to the
basic fire-spread algorithm that inhevitably increase computational time [Trunfio,
D’Ambrosio, Rongo, Spataro, and Di Gregorio (2011)].

Computational times are calculated in the case of a serial implementation: cell-
based methods offer a better scalability in parallel computing environments, with
potentially even more significant time savings. The simulations have been com-
pleted using one core from a dual quad-core 2.53 GHz Intel Xeon processor.

Table 5: Error Factors λs, λu and λo for the T0 experiment
Elapsed Time λs λu λo

3 hrs 0.063 0.029 0.035
6 hrs 0.062 0.025 0.039
9 hrs 0.029 0.018 0.011
12 hrs 0.029 0.010 0.019
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Figure 5: Comparison of fire perimeters predicted by FARSITEand the level-set
solver (zero-wind conditions)

Figure 5: Comparison of fire perimeters predicted by FARSITE and the level-set
solver (zero-wind conditions)

Table 6: Error Factors λs, λu and λo for the T1 experiment
Elapsed Time λs λu λo

1 hr 0.046 0.010 0.036
2 hrs 0.023 0.007 0.016
3 hrs 0.019 0.008 0.014
4 hrs 0.018 0.007 0.011

5 Conclusions

This work presents a level-set approach for wildland fire prediction. Level-set
methods are Eulerian schemes for tracking fronts and present improved computa-
tional agility and better suitability to parallel environments relatively to Lagrangian
approaches (vector-based simulators). With respect to other raster-based approaches
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Figure 6: Comparison of fire perimeters predicted by FARSITEand the level-set
solver (4.5 ms−1 average wind conditions)

Figure 6: Comparison of fire perimeters predicted by FARSITE and the level-set
solver (4.5 ms−1 average wind conditions)

Table 7: Error Factors λs, λu and λo for the T2 experiment
Elapsed Time λs λu λo

15 mins 0.047 0.007 0.040
30 mins 0.044 0.021 0.024
45 mins 0.031 0.016 0.015

1 hr 0.026 0.008 0.018

Table 8: Comparison of Wall Clock Times between FARSITE and the level-set
approach

Experiment FARSITE Level-set
T0 979 s 91 s
T1 738 s 129 s
T2 382 s 44 s
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Figure 7: Comparison of fire perimeters predicted by FARSITEand the level-set
solver (9 ms−1 average wind conditions)

Figure 7: Comparison of fire perimeters predicted by FARSITE and the level-set
solver (9 ms−1 average wind conditions)

(such as Cellular Automata), they do no suffer from the widely-documented distor-
tion problem caused by the restriction of the spread-direction to (small) a number
of fixed angles. The approach has been validated both under homogeneous condi-
tions (with comparison to the theoretical fire shapes) and under realistic conditions
(with comparison to the predictions from FARSITE [Finney (2004)], a well known
vector-based fire-spread simulator). The values obtained for the error functions
have been also compared to the results achieved by two well-known Cellular Au-
tomata [Peterson, Morais, Calson, Dennison, Roberts, Moritz, and Weise (2009);
Trunfio, D’Ambrosio, Rongo, Spataro, and Di Gregorio (2011)]: the level-set ap-
proach achieves lower error factors in the presence of much reduced computational
times.

The level-set method represents an efficient approach for fire-front propagation
simulation. Future work includes further testing in real-world scenarios (includ-
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ing comparison to available experimental data), parallelization and implementation
in Finite Volume formulation to simplify the connection to CFD solvers able to
simulate the two-way interaction between fire and wind.
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