
Copyright © 2014 Tech Science Press CMES, vol.101, no.6, pp.421-440, 2014

A Projection Method for the Monolithic Interaction
System of an Incompressible Fluid and a Structure using a
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Abstract: In this study, a projection method for the monolithic interaction sys-
tem of an incompressible fluid and a structure using a new algebraic splitting is
proposed. The proposed method splits the monolithic equation system into the
equilibrium equations and the pressure Poisson equation (PPE) algebraically using
the intermediate velocity in the nonlinear iterations. Since the proposed equilibrium
equation satisfies the interface condition, the proposed method is strongly coupled.
Moreover, the proposed PPE enforces the incompressibility constraint. Different
from previous studies, the proposed algebraic splitting never generates any Schur
complement. The proposed method is applied to a channel with a flexible flap,
which is one of typical test problems, where its superior computational efficiencies
are demonstrated.
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1 Introduction

Theoretical and experimental difficulties, such as a strong nonlinearity and prob-
lems arising during dynamically scaled modeling [Ishihara et al. (2009b)], often
appear in the case of fluid-structure interaction (FSI). Therefore, computational me-
chanics are considered an effective tool for investigating FSI [Taylor and Humphrey
(2009); Ishihara et al. (2009a); Takizawa and Tezduyar (2012); Nakata and Liu
(2012)]. There are essentially two computational methods for FSI, i.e., the mono-
lithic (simultaneous, direct, or fully coupled) and partitioned methods [Rugonyi
and Bathe (2001)].

In the monolithic method, the fluid and structural equations and the interface con-
ditions (comprising geometrical compatibility and equilibrium conditions on the
fluid-structure interface) are discretized and solved simultaneously [Zhang and Hisada
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(2001); Hubner et al. (2004)]. Since this formulation enforces the interface con-
ditions, the method is strongly coupled [Fernandez et al. (2007)]. The major
drawbacks of the monolithic method are that the formulation can lead to an ill-
conditioned equation system [Rugonyi and Bathe (2001); Hubner et al. (2004);
Ishihara and Yoshimura (2005); Ishihara et al. (2008)] and that ad hoc code de-
velopment is required. The straightforward approach addressing the first drawback
is preconditioning for the monolithic equation system based on incomplete LU de-
composition [Hubner et al. (2004); Washio et al. (2005); Badia et al. (2008b);
Badia et al. (2008c)].

In the partitioned method, the fluid and structure are solved separately, and they
are coupled via the transmission of their solutions on the interface. The trans-
mission algorithm is usually the Dirichlet–Neumann algorithm, which imposes the
Dirichlet and Neumann boundary conditions on the interface for the fluid and the
structure, respectively, but other algorithms [Deparis et al. (2008); Badia et al.
(2008a)] are also effective. When the interface conditions are not exactly satisfied,
the partitioned method is said to be weakly coupled and spurious numerical power
on the interface yields numerical instability [Fernandez et al. (2007)]. Therefore,
coupled iterations are required for the partitioned method to enforce the interface
conditions. Relaxed fixed point iterations are widely used since they allow reuse
of existing fluid and structural codes due to the modularity. Nevertheless, relaxed
fixed point iterations suffer numerical difficulties [Causin et al. (2005); Forster
et al. (2007)], typically including the so-called added mass effect [Le Tallec and
Mouro (2001)], such that the convergence of the coupled iterations is too slow or
even fails. This type of the numerical difficulty occurs in the cases that the mass
density ratio of the fluid and the structure exceeds a certain threshold [Causin et
al. (2005)], the domains are considerably constrained [Idelsohn et al. (2009)], and
the structure undergoes a large deformation [Dettmer and Peric (2006); Kuttler and
Wall (2008)]. These cases are typically seen in light or thin structures in water and
in biomechanics applications, such as blood flow in arteries. In these cases, ap-
plying dynamic relaxation to fixed point iterations using the line-search technique
[Kuttler and Wall (2008); Yamada and Yoshimura (2008)] can lead to some im-
provement of the convergence speed of the coupled iterations while maintaining
the modularity.

As an alternative to fixed point iterations, Newton-type methods have been used
to further accelerate the convergence of coupled iterations [Gerbeau and Vidrascu
(2003); Matthies and Steindorf (2003); Heil (2004); Fernandez (2005); Dettmer
and Peric (2006); Matthies et al. (2006)]. These methods are based on the mono-
lithic equation system [Matthies and Steindorf (2003); Heil (2004); Dettmer and
Peric (2006); Matthies et al. (2006)] or the nonlinear fixed point problem [Gerbeau
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and Vidrascu (2003); Fernandez (2005)]. In both of these two approaches, lin-
earization and decomposition [Fellipa et al., (2001)] of spatially discretized equa-
tions inevitably drive up the cost of the computations. Therefore, the Klyrov
method with a preconditioner based on the block-triangular approximation of the
Jacobian matrix in Heil (2004) and the Jacobian-free Newton–Klyrov method [Knoll
and Keyes (2004)] in Gerbeau and Vidrascu (2003), Matthies and Steindorf (2003),
and Matthies et al. (2006) have been successfully used for the approximation of
these computations. Nevertheless, a loss of robustness can occur, depending on the
degree of the approximation [Heil (2004); Zhang and Hisada (2004); Fernandez
(2005); Minami and Yoshimura (2010)]. Loss of robustness is also an important is-
sue for projection methods applied to the FSI described below, since these methods
usually use splitting of spatially discretized equations or algebraic splitting.

That the added mass effect seems to arise from the fluid incompressibility constraint
is important in the design of the stable and efficient computational methods for the
FSI [Causin et al. (2005)]. Fernandez at al. (2007) is one of the studies that explic-
itly take this into account, where the splitting of the equation system is performed
at the continuous problem level (continuous splitting) using a projection method
in the fluid [Chorin (1968)]. The projection method has been successfully used
for an incompressible fluid, due to the method’s computational efficiency [Codina
(2001)], where the equation system is split into the equilibrium equations and the
pressure Poisson equation (PPE), which enforces the incompressibility constraint.
Therefore, it is expected that this type of method is also effective for the FSI includ-
ing fluid incompressibility. There exist other projection methods applied to the FSI
that use algebraic splitting based on block-LU factorization [Badia et al. (2008b);
Badia et al. (2008c)] or substructuring [Ishihara and Yoshimura (2005); Ishihara
et al. (2008); Idelsohn et al. (2009)]. Nevertheless, their algebraic splitting pro-
duces the Schur complement inevitably. Therefore, its approximation is necessary
required for computational efficiency [Badia et al. (2008b); Badia et al. (2008c);
Idelsohn et al. (2009)].

In this study, a projection method for the monolithic interaction system of an in-
compressible fluid and a structure using a new algebraic splitting is proposed. In
the nonlinear iterations, the monolithic equation system is split into the equilibrium
equations and the PPE algebraically using the intermediate state variables. Since
the proposed equilibrium equations satisfy the interface condition, the proposed
method is strongly coupled. Moreover, the PPE enforces the incompressibility con-
straint. Different from the previous studies, the proposed algebraic splitting never
produces any Schur complement. The proposed method is applied for a channel
with a flexible flap [Mok and Wall (2001); Neumann et al. (2006)], which is one of
typical test problems, in order to demonstrate its computational efficiencies.
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2 Monolithic interaction system of an incompressible fluid and a flexible
structure

2.1 Governing equations

Ωf
t and Ωs

t denote the spatial domains of the fluid and the elastic structure at time
t, respectively, and Γfs

t denotes the fluid–structure interface at time t. The super-
scripts f, s, and fs indicate quantities corresponding to the fluid, structure, and
fluid–structure interface, respectively. The arbitrary Lagrangian–Eulerian (ALE)
method [Hughes et al. (1981)] is used to describe the fluid motion in the deformable
domain. The ALE form of the incompressible Navier–Stokes equations can be ex-
pressed as

ρ
f ∂vf

i

∂ t
+ρ

f(vf
j− vm

j )
∂vf

i

∂x j
=

∂σ f
ji

∂x j
+ρ

fgf
i , (1a)

and

∂vf
i

∂xi
= 0, (1b)

in Ωf
t , where ρ f is the mass density of the fluid, vf

i is the ith component of the
fluid velocity vector, vm

i is the ith component of the velocity vector of the ALE
coordinate, σ f

i j is the ijth component of the Cauchy stress tensor of the fluid, and
gf

i is the ith component of the body force vector acting on the fluid. The fluid is
assumed to be Newtonian.

The equilibrium equation of the elastic structure is expressed as

ρ
s d2us

i
dt2 =

∂σ s
ji

∂x j
+ρ

sgs
i , (2)

in Ωs
t , where ρs is the mass density of the structure, us

i is the ith component of
the structural displacement vector, σ s

i j is the ijth component of the Cauchy stress
tensor of the structure, and gs

i is the ith component of the body force vector acting
on the structure. The strains remain small, although the structure undergoes finite
deformations. Therefore, a linear elastic material is assumed.

The following geometrical compatibility and equilibrium conditions (the interface
conditions) are imposed on the fluid–structure interface:

The geometrical compatibility condition as

vf
i = vs

i , (3a)
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and the equilibrium condition as

σ
f
i jn

f
j +σ

s
i jn

s
j = 0, (3b)

on Γfs
t , where vs

i is the ith component of the structural velocity vector, and nf
i and

ns
i are the ith components of the outward unit normal vectors corresponding to the

fluid and the structure, respectively.

2.2 Space discretization

The space discretizations are performed in advance to avoid pressure boundary
condition problems associated with the splitting of the continuous problem [Perot
(1993)]. Applying finite element discretization to the equations (1a) and (1b), the
following nonlinear equation system can be obtained in matrix form:

The equilibrium equation as

Qf ≡ LMfaf +Cfvf +Nf−Gfpf = gf, (4a)

and the incompressibility constraint as

τGfvf = 0, (4b)

where Mf is the mass matrix of the fluid, Cf is the diffusive matrix of the fluid, Nf is
the convective term vector of the fluid, Gf is the divergence operator matrix of the
fluid, gf is the external force vector acting on the fluid, af is the acceleration vector
of the fluid, vf is the velocity vector of the fluid, pf is the pressure vector of the
fluid, Qf is the internal force vector including all effects of the fluid, the subscript
L indicates the lumping of the matrix, and the subscript τ indicates the transpose of
the matrix.

Applying finite element discretization to the total Lagrangian formulation of the
equation (2), the following nonlinear equation system can be obtained in matrix
form:

The equilibrium equation as

Qs ≡ LMsas +qs(us) = gs, (5)

where Ms is the mass matrix of the structure, qs is the elastic internal force vector
of the structure, gs is the external force vector acting on the structure, as is the
acceleration vector of the structure, us is the displacement vector of the structure,
and Qs is the internal force vector including all effects of the structure. The finite
deformation is taken into account using the total Lagrangian formulation, where
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the Hooke’s law is used for the relation between the second Piola-Kirchhoff stress
and the Green-Lagrange strain under the assumption of small strain.

The interface conditions (3a) and (3b) can be rewritten in vector form as, respec-
tively,

vfs
c ≡ vf

c = vs
c, (6a)

and

Qf
c +Qs

c = gfs
c , (6b)

where the subscript c indicates the coupled degrees of freedoms (DOFs).

The spatially discretized governing equations (4), (5), and (6) can be rewritten as
the following monolithic equation system:

The equilibrium equation as

Q≡ LMa+Cv+N+q(u)−Gp = g, (7a)

and the incompressibility constraint as

τGv = 0, (7b)

where the matrices and the vectors appearing in these equations are defined as

LM≡
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0 LMfs
cc 0
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i
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c
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 , u≡
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∗

ufs
c

us
i

 , p≡ pf,

LMfs
cc ≡ LMf

cc + LMs
cc, (8a-k)

in which the the subscript i indicates uncoupled DOFs.
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3 Formulation of the proposed projection method

3.1 Monolithic method

The projection method using the algebraic splitting in this study as well as those
in prior studies [Ishihara and Yoshimura (2005); Ishihara et al. (2008); Badia et
al. (2008b); Badia et al. (2008c); Idelsohn et al. (2009)] is based on the mono-
lithic method that solves the equilibrium equation (7a) and the incompressibility
constraint (7b) simultaneously, the details of which are described as follows:

In order to linearize and solve the nonlinear equation system (7) iteratively (the
nonlinear iterations), let us use the following increments of the state variables from
the previous iteration k−1 to the current iteration k:

t+∆ta(k) =t+∆t a(k−1)+∆a, (9a)

t+∆tv(k) = t+∆tv(k−1)+∆v = t+∆tv(k−1)+ γ∆t∆a, (9b)

t+∆tu(k) = t+∆tu(k−1)+∆u = t+∆tu(k−1)+β∆t2
∆a, (9c)

t+∆tp(k) = t+∆tp(k−1)+∆p, (9d)

where a, v, u, and p denote the acceleration, the velocity, the displacement, and the
pressure, respectively, ∆ denotes the increment, t+∆t denotes the current time, and
the relations between these increments are given as ∆u = β∆t2∆a and ∆v = γ∆t∆a
based on Newmark’s β method.

The monolithic equation system (7) is linearized using the relations (9a) - (9d) to
obtain the following equations:

M∗∆a−G∆p = ∆g, (10a)

γ∆tτG∆a+Gε∆p = ∆h, (10b)

where the pressure term and the elastic interior force term are evaluated implicitly,
M∗is the generalized mass matrix, ∆g and ∆h are the residual vectors of the equilib-
rium equation (7a) and the incompressibility constraint (7b), respectively, ∆t is the
time increment, and Gε is come from the pressure stabilization term of the PSPG
method [Tedzduyar et al. (1992)]. Note that the definition of M∗ depends on the
evaluations of the fluid convection and diffusion terms as follows:

(Definition 1) If the fluid convection and diffusion terms are evaluated implicitly,

M∗ ≡ LM+ γ∆t(Ñ+C)+β∆t2K, (11)
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where Ñ is defined as

Ñ =

 Ñf
ii Ñf

ci 0
Ñf

ic Ñf
cc 0

0 0 0

 , (12)

where Ñf is the Jacobian of Nf, and K is defined using the tangential stiffness matrix
of the structure Ks, which is the Jacobian of qs, as

K =

 0 0 0
0 Ks

cc Ks
ci

0 Ks
ic Ks

ii

 . (13)

(Definition 2) If the fluid convection term is evaluated explicitly, while the fluid
diffusive term is evaluated implicitly,

M∗ ≡ LM+ γ∆tC+β∆t2K. (14)

(Definition 3) If the fluid convection and diffusion terms are evaluated explicitly,

M∗ ≡ LM+β∆t2K. (15)

In the definition 2, the following necessary condition is imposed on the time incre-
ment ∆t for the stability of the time integration:

Courant’s number condition as

V f
∆t/∆hf < 1, (16)

where V f is the characteristic fluid velocity, ∆hf is the minimum size of fluid ele-
ments.

In the definition 3, both of the necessary condition (16) and the following neces-
sary condition are imposed on the time increment ∆t for the stability of the time
integration:

Diffusion number condition as

(µ f/ρ
f)∆t/∆hf2 < 1/2, (17)

where µ f is the fluid viscosity.

In the standard monolithic method, the following simultaneous equation system
that consists of equations (10a) and (10b) is solved:[

M∗ −G
γ∆tτG Gε

]{
∆a
∆p

}
=

{
∆g
∆h

}
. (18)
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The example of the coefficient matrix (18) can be written as follows:
LMf

ii 0 0 −Gf
i

0 LMfs
cc +β∆t2Ks

cc β∆t2Ks
ci −Gf

c
0 β∆t2Ks

ic LMs
ii +β∆t2Ks

ii 0
γ∆tτGf

i γ∆tτGf
c 0 Gε

 , (19)

where the definition 3 of M∗ is used.

The predictor-multicorrector algorithm (PMA) for the FSI [Zhang and Hisada (2001)]
is used for the time integration. The loop of the iterative procedure corresponds to
the multicorrection loop of PMA and the relation (9) corresponds to the corrector
of the PMA. The predictor of the PMA is provided using Newmark’s β method as

t+∆ta(0) = 0, (20a)

t+∆tv(0) = tv +∆t(1− γ)ta, (20b)

t+∆tu(0) = tu +∆ttv+∆t2(1/2−β )ta, (20c)

t+∆tp(0) = tp, (20d)

where ta, tv, tu, and tp are the known acceleration, velocity, displacement, and
pressure that are obtained in the previous time step t.

3.2 Projection method

When the interface conditions are not exactly satisfied, spurious numerical power
on the interface yields numerical instability [Fernandez et al. (2007)]. The mono-
lithic method satisfies the interface conditions and is strongly coupled. However,
the formulation leads to an ill-conditioned monolithic equation system [Rugonyi
and Bathe (2001); Hubner et al. (2004); Ishihara and Yoshimura (2005); Ishihara et
al. (2008)]. In the projection methods [Badia et al. (2008b); Badia et al. (2008c);
Ishihara and Yoshimura (2005); Ishihara et al. (2008); Idelsohn et al. (2009)], the
monolithic equation system is split into its subsystems algebraically. Therefore,
the ill-condition of the monolithic equation system will be reduced. Their alge-
braic splitting is based on block-LU factorization [Badia et al. (2008b); Badia et al.
(2008c)] or substructuring [Ishihara and Yoshimura (2005); Ishihara et al. (2008);
Idelsohn et al. (2009)] that produces the Schur complement inevitably. Therefore,
a major concern in these studies is how to approximate the Schur complement with-
out loss of robustness [Heil (2004); Zhang and Hisada (2004); Fernandez (2005);
Idelsohn et al. (2009); Minami and Yoshimura (2010)]. The proposed method dif-
fers from those in these prior studies, the details of which are described as follows:
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The state variables is predicted as the intermediate state variables from the equilib-
rium equation (7a) for the known pressure t+∆tp(k−1), which is linearized as

M∗∆â = ∆g, (21)

where the intermediate state variables and their increments are defined as

t+∆t â(k) =t+∆t a(k−1)+∆â, (22a)

t+∆t v̂(k) =t+∆t v(k−1)+∆v̂ =t+∆t v(k−1)+ γ∆t∆â, (22b)
t+∆t û(k) =t+∆t u(k−1)+∆û =t+∆t u(k−1)+β∆t2

∆â, (22c)

where â, v̂ and û are the intermediate acceleration, velocity and displacement, re-
spectively, and they are the predictions of the acceleration, velocity and displace-
ment, respectively.

Subtracting both sides of equation (21) from those of equation (10a) and similarly
subtracting equation (22b) from equation (9b) and substituting the result into the
first difference gives, after suitable rearrangement,

γ∆tG∆p = M∗(t+∆tv(k)− t+∆t v̂(k)). (23)

Left multiplying both sides of equation (23) by τGLM−1, the following equation is
obtained:

γ∆tτGLM−1G∆p = τGt+∆tv(k)− τGt+∆t v̂(k)

+τGLM−1M̄∗(t+∆tv(k)− t+∆t v̂(k))
, (24)

where the matrix M̄∗ equals M∗− LM.

It is shown from equation (24) that the incompressibility constraint (7b) for the
unknown fluid velocity t+∆tv(k) is satisfied solving the following PPE:

γ∆tτGLM−1G∆p =−τGt+∆t v̂(k). (25)

If the PPE (25) is solved, then equation (24) is reduced as

τGt+∆tv(k)+ τGLM−1M̄∗(t+∆tv(k)− t+∆t v̂(k)) = 0. (26)

The intermediate or predicted velocity t+∆t v̂(k) satisfies the equilibrium equation
(7a) for the previous pressure t+∆tp(k−1), while the velocity t+∆tv(k) satisfies that
for the current pressure t+∆tp(k). Therefore, when the present nonlinear iterations
are convergent, t+∆t v̂(k) agrees with t+∆tv(k) asymptotically as

|t+∆tv(k)−t+∆t v̂(k)| → 0 as k→ ∞. (27)
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Since the nonlinear iterations using the definition (11) are the Newton type itera-
tion, it is convergent in a quadratic way, while the linear convergence is expected
for the definition (14) or the definition (15). Therefore, the second term of equation
(26) will vanish asymptotically, and the incompressibility constraint for the current
fluid velocity is satisfied as follows:

τGt+∆tv(k) = 0. (28)

It follows from the above formulation that the monolithic equation system is split
into the equilibrium equations (21) and (10a) and the PPE (25) using the proposed
algebraic splitting, where the intermediate velocity is used and, different from the
previous studies using block-LU factorization or substructuring, the Schur comple-
ment matrix is never produced.

The proposed method is summarized as follows:

Step 1: The increment of the intermediate acceleration ∆â is derived from the lin-
earized equilibrium equation for the previous pressure t+∆tp(k−1) (21) and then the
intermediate velocity t+∆t v̂(k) is obtained from equation (22b).

Step 2: The pressure increment ∆p is derived from equation (25).

Step 3: The acceleration increment ∆a is derived from the linearized equilibrium
equation for the current pressure t+∆tp(k) (10a) and then the acceleration t+∆ta(k),
the velocity t+∆tv(k), and the displacement t+∆tu(k) are obtained from equation (9).

3.3 Partitioning of equilibrium equations using explicit evaluation

For further computational efficiency, we partitioned the equilibrium equation into
the fluid interior part and the structural part using the explicit evaluation of the
fluid convective and diffusive terms. Note that the structural part includes the fluid-
structure interface to satisfy the interface conditions. Let us use the definition (15);
then, the fluid interior DOFs of M∗ is reduced to the diagonal matrix. Therefore,
the equilibrium equations (10a) and (21) can be partitioned into its fluid interior
part and the structural part without any algebraic operation. For example, the equi-
librium equation (21) can be partitioned into

LMf
ii∆âf

i = ∆gf
i (29a)

and[
LMfs

cc +β∆t2Ks
cc β∆t2Ks

ci
β∆t2Ks

ic LMs
ii +β∆t2Ks

ii

]{
∆âfs

c
∆âs

i

}
=

{
∆gfs

c
∆gs

i

}
. (29b)

Since the coefficient matrix (29a) is diagonal, the solution can be easily obtained.
The present partitioning reduces the computational cost dramatically when the
fluid’s number of DOFs becomes large.
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3.4 Algebraic characteristics of equations

Since the mass density of the fluid is mostly smaller than or comparable to that of
the structure, the algebraic characteristic of the coefficient matrix (29b) is similar
to the structural generalized mass matrix. The coefficient matrix of the PPE (25)
can be rewritten as

γ∆t[τGf
iLMf−1

ii Gf
i + τGf

c(LMf
cc + LMs

cc)
−1Gf

c]. (30)

Let us assume a uniform mesh division, then, the components of the matrix (30) are
proportional to 1/ρ f or 1/ρ f+1/(ρ f+ρs). These terms have a relationship of 1/ρ f <
1/ρ f+1/(ρ f+ρs) < 2/ρ f. Therefore, the components of the matrix (30) are almost
homogeneous irrespective of the material properties and the time increment. On
the other hand, the ill-conditioned coefficient matrix for the monolithic equation
system (19) can result since the differences among the coefficient matrix compo-
nents are quite sensitive to the material properties and the time increment [Rugonyi
and Bathe (2001); Hubner, Walhorn and Dinkler (2004); Ishihara and Yoshimura
(2005); Washio et al. (2005); Ishihara et al. (2008)].

4 Numerical example

4.1 Problem setup

The proposed method is applied for the channel with a flexible flap shown in Fig. 1
[Mok and Wall (2001)] in order to discuss its convergence properties and computa-
tional efficiencies. This problem is known as one of typical problems in order to test
the convergence and stability performances of partitioned methods, some of which
suffer from the numerical troubles of non-convergent coupled iterations and even
instability [Mok and Wall (2001); Neumann et al. (2006); Minami and Yoshimura
(2010)]. The flexible flap is fixed in the channel with a slope, as sketched in Fig.
1. The mass density and the Young’s modulus of the flap are ρs = 1500 kg/m3 and
Es = 2.3×106 Pa, respectively. The mass density and the viscosity of the fluid are
ρ f = 956 kg/m3 and µ f = 0.145 kg/(m·s), respectively. As shown in Fig. 1, the
inlet velocity has a parabolic profile and its velocity at the top vin is given as Vin
(1-cos2πft)/2 (Vin = 0.06067 m/sec and f = 0.05 Hz) until 10 sec and Vin after 10
sec.

The critical time increment ∆tc is given as approximately 0.4 sec from the Courant
number condition (16), where the characteristic fluid velocity V f is defined as the
maximum inlet velocity Vin, and the minimum fluid element size ∆hf is 0.025 m.
The structural mesh of the flap consists of shell elements using a mixed interpo-
lation of tensorial components (MITC) [Bathe and Dvorkin (1985); Noguchi and
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Figure 1: Setup of the flexible flap in the channel with a slope

Hisada (1993)] (22 nodes and 10 elements), while the fluid mesh of the channel
consists of P1P1 elements [Tedzduyar et al. (1992)] (2,982 nodes and 8,400 ele-
ments). The Streamline-Upwind Petrov-Galerkin (SUPG)/PSPG method [Tedzdu-
yar et al. (1992)] is used for the stability of the fluid analysis. This problem is
two-dimensional, as shown in Fig. 1. Therefore, the analysis is restricted within
the xy plane, i.e., there is a single division of the fluid and structural meshes in the
z direction, no rotation around the y direction and no translation in the z direction
of the flap, and no inlet or outlet flow in the z direction.

The coefficient matrices of the equations (10a), (21) and (25) are symmetric and
positive definite. Therefore, these equations are solved by the conjugate gradient
(CG) method with diagonal scaling, while Eq. (18) is solved by the biconjugate
gradient stabilized (BiCGSTAB) method with diagonal scaling. The iterations are
repeated until the current residual norm reaches 0.0001 % of the initial residual
norm.

4.2 Results and discussion

First, we present the convergence properties of the iterative solvers. Fig. 2 shows
the relationship between the time increment ∆t and the number of the iterations of
the iterative solvers at the first time step. As shown in Fig. 2, the convergence
property of the iterative solver in the monolithic method becomes drastically worse
as ∆tincreases. Moreover, in the case using ∆t larger than approximately 0.11sec,
the iterations failed to converge. On the other hand, those in the proposed method
are stable irrespective of ∆t due to the algebraic characteristics discussed in Sec-
tion 3.4. It follows from this result that the proposed method is computationally
efficient.
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Figure 2: Convergence properties of the iterative solvers. The white circles indicate
the result for the monolithic equation system (18), the black circles indicate the
result for the pressure Poisson equation (25), the squares indicate the result for the
equilibrium equation (21), and the triangles indicate the result for the equilibrium
equation (10a).

Next, we present the convergence property of the nonlinear iterations. Here, ∆t
is fixed at 0.1 sec, which is approximately ∆tc/4, because it was typically used
in the previous studies. Fig. 3 shows the transition of the difference between the
intermediate velocity and the velocity in the nonlinear iteration at the first time step,
where we defined the difference as

ndo f s

∑
i=1

∣∣∣t+∆t v̂(k)i −
t+∆tv(k)i

∣∣∣/ ndo f s

∑
i=1

∣∣∣t+∆tv(k)i

∣∣∣. (31)

Here, ndofs is the total number of DOFs, and i indexes the DOF. As shown in Fig. 3,
this difference linearly converged, as discussed in Section 3.2. Therefore, the PPE
(25) was solved so as to satisfy the incompressibility constraint asymptotically for
the current fluid velocity (28), as proven by the relation (26).

Finally, we present the number of the nonlinear iterations in order to obtain the
convergent solution. Again, ∆t is fixed to 0.1 sec. The computation was executed
for the complete analysis period with the number of nonlinear iterations fixed at
one, two, or three. Fig. 4 shows time histories for the x displacement of the flap’s
free end. As shown in this figure, the result with the number of iterations fixed at
two is hardly distinguishable from that with the number of iterations fixed at three,
while that with the number of iterations fixed at one diverged after it oscillated.
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Figure 3: Transition of the difference between the intermediate velocity and the
velocity during the iterative procedure at the first time step.
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Figure 4: Time histories of the horizontal displacement of the flap’s free end. The
gray line indicates the result for three iterations, the red line indicates the result for
two iterations, and the black line and circles indicate the result for no iteration.
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Figure 5: The fluid velocity and pressure fields in the channel, and the deformation
of the flap at a time of 24 sec. The magnitude of the pressure is expressed as a color
contour from blue (-0.5 Pa) to magenta (10 Pa), and the magnitude of the velocity
is expressed as the color of the vector from blue (0 m/sec) to magenta (0.15 m/sec).

Therefore, two iterations are sufficient for the proposed method, which is less than
the number of iterations required for some of sophisticated methods in the previous
studies [Neumann et al. (2006); Idelsohn et al. (2009); Minami and Yoshimura
(2010)]. It follows from this result that the proposed method is computationally
efficient.

Fig. 5 shows the fluid velocity and pressure fields of the channel and the structural
deformation of the flap. The results shown in Figs. 4 and 5 are in good agreement
with those shown in the previous study [Neumann et al. (2006)].

5 Conclusions

We proposed a projection method for the monolithic interaction system of an in-
compressible fluid and a structure using a new algebraic splitting. The proposed
method was based on the monolithic method in order to be strongly coupled, but
split the monolithic equation system into the equilibrium equations and the PPE
using the intermediate state variables algebraically in order to be computationally
efficient. Different from the previous splitting using block-LU factorization or sub-
structuring, the proposed splitting never produces any Schur complement.

The proposed method was applied for a channel with a flexible flap, which is one
of typical test problems, in order to investigate its convergence properties, and the
following results were obtained: Different from the monolithic method, the conver-
gence property of the iterative solver for the proposed method was stable irrespec-
tive of the time increment of the analysis. The nonlinear iterations were linearly
converged, and therefore, the PPE satisfied the incompressibility constraint asymp-
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totically. Moreover, the number of nonlinear iterations for the convergence of the
solution was far less than the number of coupled or nonlinear iterations required in
some of sophisticated methods proposed in the previous studies. It follows from
these results that the proposed method is computationally efficient.
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