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A Hybrid Variational Formulation for Strain Gradient
Elasticity Part I: Finite Element Implementation

N. A. Dumont1 and D. Huamán1

Abstract: The present paper starts with Mindlin’s theory of the strain gradient
elasticity, based on three additional constants for homogeneous materials (besides
the Lamé’s constants), to arrive at a proposition made by Aifantis with just one
additional parameter. Aifantis’characteristic material length g2, as it multiplies the
Laplacian of the Cauchy stresses, may be seen as a penalty parameter to enforce
interelement displacement gradient compatibility also in the case of a material in
which the microstructure peculiarities are in principle not too relevant, but where
high stress gradients occur. It is shown that the hybrid finite element formulation –
as proposed by Pian and generalized by Dumont for finite and boundary elements
– provides a natural conceptual framework to properly deal with the interelement
compatibility of the normal displacement gradients, in which “corner nodes” are
not an issue. Nonsingular fundamental solutions – domain interpolation functions
– are presented for two-dimensional (2D) and three-dimensional (3D) problems,
with the generation of families of finite elements that may be implemented in a
straightforward way. Since the experimental data available in the technical litera-
ture are still scarce and the numerical results are in part questionable, consistency
is assessed by means of patch tests and by investigating the spectral properties
of the matrices derived for some 2D plane strain elements. The present develop-
ments, although of academical relevance, involve too many degrees of freedom to
be considered for practical applications and are actually intended as a step toward
a boundary-only implementation in terms of singular fundamental solutions.

Keywords: Gradient elasticity, variational methods, Hellinger-Reissner poten-
tial, hybrid finite element.

1 Introduction

The mathematical modeling of microdevices, in which structure and microstructure
have approximately the same scale of magnitude, as well as of macrostructures of

1 PUC-Rio – Pontifical Catholic University of Rio de Janeiro, Brazil.
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markedly granular or crystal nature (microcomposites), demands a nonlocal ap-
proach for strains and stresses.

In no detriment to developments due to other researchers [Cosserat and Cosserat
(1909); Toupin (1962); Ericksen and Trusdel (1958)], Mindlin’s works in the 1960s
[Mindlin (1964); Mindlin and Eshel (1968)] may be accounted the basis of the
strain gradient theory. It has recently become the subject of a large number of
analytical and experimental investigations motivated by the development of new
structural materials together with the increasing use of micromechanical devices
in the industry. Starting in the 1990s, Aifantis (2009, 2011) and coworkers man-
aged to develop a simplified strain gradient theory based on only one additional
elasticity constant, which opened up a series of interesting practical applications
[Peerlings and Fleck (2004); Maranganti and Sharma (2007); Nikolov, Han, and
Raabe (2007)]. On the other hand, developments that take into account nonlocal
residuals by means of an integral operator were proposed in the 1970s [Eringen
(1972)] and have been ever since the subject of investigation [Sciarra (2009)].

The stress gradient around crack and notch tips has also been recently studied in
the closely related framework of dipolar gradient elasticity [see Grentzelou and
Georgiadis (2008); Gourgiotis and Georgiadis (2009); Gourgiotis, Sifnaiou, and
Georgiadis (2010) and references in there]. On the other hand, the general non-
local effects in an elastic medium can be efficiently investigated by means of mesh-
less methods, such as proposed by Sellountos, Tsinopoulos, and Polyzos (2012) in
terms of a local boundary integral equation method. In this regard, the paper by
Tang, Shen, and Atluri (2003) is remarkable, as the proposed developments seem
to be simple to implement and allow for generalized non-classical stress-strain rela-
tions (several material constants, besides the Lamé’s ones, as in Mindlin’s seminal
papers in the 1960s), by making use of only displacement quantities, with by far
less degrees of freedom than in a finite element implementation (as in the present
paper). However, the determination of the additional material properties for a prac-
tical application is still an unsurmountable experimental issue [Maranganti and
Sharma (2007)], not to mention the task (from the mechanical, not the numerical,
point of view) of considering appropriate non-classical boundary conditions.

Some recent works done by Beskos and collaborators have largely extended the
field of applications of Aifantis’ propositions [Tsepoura, Papargyri, Polyzos, and
Beskos (2002); Polyzos, Tsepoura, Tsinopoulos, and Beskos (2003); Papargyri-
Beskou, Polyzos, and Beskos (2009); Papargyri-Beskou and Beskos (2009); Tsinop-
oulos, Polyzos, and Beskos (2012)]. Ever since Toupin and Mindlin’s time, in-
vestigations have been under development to establish the variational basis of the
theory and to formulate equilibrium and kinematic boundary conditions consis-
tently [Amanatidou and Aravas (2002); Giannakopoulos, Amanatidou, and Aravas



A Hybrid Variational Formulation for Strain Gradient Elasticity Part I 389

(2006)]. The non-singular formulation for 2D and 3D elasticity problems [Ama-
natidou and Aravas (2002), Zervos, Papanicolopulos, and Vardoulakis (2009)] has
also been developed, which enables the construction of hybrid finite and boundary
element families of general shape and number of degrees of freedom, as already
done in the classical elasticity [Dumont (2003); Dumont and Prazeres (2005); Du-
mont (2005, 2007)]. All these formulations are the subject of the present inves-
tigations, including conceptual studies of the simplest conceivable rod, beam and
2D finite elements implementations, as a sequel of the works done by Dumont and
Huamán (2009, 2010b). Although all developments can be readily extended to
the frequency-domain analysis of time-dependent problems, the present outline is
restricted to the static analysis, which actually involves the most relevant concepts.

This first paper reviews some basic aspects of the strain gradient theory of elastic-
ity, as proposed by Aifantis and endorsed by the immense community of Greek re-
searchers (as briefly reviewed above and which seem to be dominating this research
field), and develops a formulation in the framework of the Hellinger-Reissner po-
tential, which is the basis for a two-field numerical approach, with assumed stresses
in the domain that satisfy a priori all static conditions, and a displacement field on
the boundary, by means of which all boundary conditions must be fulfilled. In this
paper, the domain stress field is approximated by non-singular functions, thus lead-
ing to a hybrid finite element method, similarly to what has been proposed by Pian
several decades ago, although in a complete general framework.

Since nodal displacement gradients and double forces must be represented in the
implemented finite elements, this formulation ends up with a large number of de-
grees of freedom, which is at least not very elegant. However, such a formulation
has some academic value, since it allows drawing a series of conceptual conclu-
sions in the spectral analyses and in the convergence tests performed. A theoretical
counterpart of this paper – Part II – is being finished for publication, in which the
stress field is approximated by singular fundamental solutions [Polyzos, Tsepoura,
Tsinopoulos, and Beskos (2003)], thus leading to a boundary element implementa-
tion, which demands by far less degrees of freedom than in the finite element case.
This boundary element formulation involves sophisticated numerical integration
tools and requires some conceptual interpretations of the involved nodal param-
eters as well as of the ensuing numerical singularities to deserve being handled
separately.

Sections 2 – 4 are in principle applicable to either a finite or a boundary element
implementation. Some relevant remarks are accrued in the accompanying paper.
Section 2 briefly lays out the proposed gradient theory of elasticity and prepares
the ground for the subsequent developments. Section 3.1 details the requirements
for a domain stress field and Section 3.2 describes the assumed displacements on
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the boundary. The Hellinger-Reissner potential is applied in Section 4 as split into
two virtual work statements in order to best clarify the proposed developments – the
minutious sequence of equations seems necessary for the understanding not only
of the present paper but also of any subsequent paper on this subject area. These
developments are illustrated in Section 5 for the simplest cases of truss and beam el-
ements (although a conceptual restriction applies to the latter kind of formulation),
when already some theoretical conclusions are drawn. Finally, the application to
2D and 3D finite elements is discussed in Section 6, with some 2D numerical ap-
plications presented in Section 7.

2 Problem Formulation

Throughout this paper, repeated indices stand for summation and ( ),i denotes a
derivative with respect to the i-th coordinate direction. Following equations are
given by Aifantis as a development of Mindlin’s work:

εi j = εi j + cε∇2εi j; σi j = σi j + cσ∇2σi j; σi j = λεkkδi j + 2µεi j (1)

where, quoting Aifantis (2009), “(σi j, εi j) denote the stress and strain tensors for
elastic deformation. The quantities (λ,µ) are the usual Lamé constants. The gradi-
ent coefficients c’s are new phenomenological coefficients. . . . (In fact, the simplest
form of gradient elasticity theory corresponds to the case cσ = 0).”

Independently from Mindlin’s works, a nonlocal elasticity theory [Eringen (1972)]
has also been developed, in which the stress field (in equilibrium with applied
forces in the domain Ω) is expressed in terms of a nonlocal attenuation function
α (|x−x′|, τ), which incorporates into the constitutive equations the nonlocal effects
at the reference point x produced by local strain at the source x′, as

σi j(x) =

∫
Ω

α
(
|x−x′|, τ

)
Ci jklεkl(x′)dΩ (2)

where Ci jkl is the elastic module tensor of the classical isotropic elasticity, |x− x′|
is the Euclidean distance, and τ is a material property that depends on external and
internal characteristic lengths (Eringen’s notation). According to Challamel and
Wang (2008), Eq. (1) represents “gradient elastic models (the stress is defined ex-
plicitly from the local strain and its derivatives”, whereas Eq. (2) represents “inte-
gral elastic models (the stress is obtained implicitly from an integral operator of the
local strain)”. Moreover, “(g)radient models can be considered as a ‘weakly’ non-
local model, whereas (the) integral elastic model can be classified as (a) ‘strongly’
nonlocal model”.

In either gradient or nonlocal formulation, the crucial issue is the determination of
the material characteristic length(s). When consistently applied, both formulations
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should lead to similar results. In fact, there may be no strict differentiation be-
tween the formulations when it comes to a computational implementation [Reddy
(2007)]. It is worth pointing out two basic requirements that a gradient or nonlocal
formulation should fulfill for consistency:

1. As proposed by Mindlin in the energy statements for a general 3D problem,
the variation of the normal component n jui, j of the displacement gradient is
independent of the variation of ui on the boundary, with double tractions Ti j

performing virtual work along Γ on the normal gradient variation

n jnlδui,l ≡ δui, j− (δ jl−n jnl)δui,l (3)

In this equation, ni are the Cartesian projections of the outward unit nor-
mal to Γ and δ jl is the Kronecker delta. A mechanical interpretation of the
non-symmetric tensor Ti j, including its correlation with the Cosserat couple-
stress vector, is given by Mindlin (1964).

2. A constant strain state must yield the same results of the classical elastic-
ity [Sciarra (2009)]. This requirement has not been observed by some re-
searchers, with inconsistent results.

Moreover, consistency of the formulation for applied rigid body displacements as
well as for simple displacement fields (patch tests) should be checked, as done in
the present paper. The implementation of the formulation in terms of finite el-
ements is also not straightforward, as unique relations between local and global
non-classical quantities must be ensured. These issues are dealt with later on in the
paper.

3 Basic assumptions for a two-field variational implementation

3.1 Stress assumption in the domain

The stresses are approximated in the domain Ω of a generic 3D elastic body by the
Cauchy stress τs

i j and the double stress µs
ki j, with the superscript ( )s standing for

stress assumption. For the sake of checking equilibrium, τs
i j and µs

ki j are split into
two parts, τs

i j = τ∗i j + τ
p
i j and µs

ki j = µ∗ki j +µ
p
ki j, where the superscript ( )∗ denotes the

homogeneous solution of the differential equilibrium equation and the superscript
( )p stands for some arbitrary, particular solution for the applied body force fi de-
fined per unit volume in Ω. No “body double force” is prescribed [see Amanatidou
and Aravas (2002)]. All quantities are supposed to vary in Ω as functions of the
coordinates x,y,z. Except for analyticity, no concern is made at present about equi-
librium on parts of the boundary Γ where forces are prescribed. According to the
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technical literature on the gradient elasticity, one defines the tensor of total stresses

σs
i j = τs

i j−µ
s
ki j,k (4)

where τs
i j is the Cauchy stress tensor and µs

ki j,k is the double stress tensor. This
definition will be arrived at naturally in the frame of the virtual work statement
below, as well as the equilibrium statement:

σs
ji, j + fi = 0 in Ω (5)

σs
i j, τ

s
i j and µs

ki j are symmetric with respect to the directions i and j. According to
Aifantis’ proposition, the double stress tensor is related to the Cauchy stress tensor
by means of the material characteristic length g2:

µs
ki j = g2τs

i j,k ⇒ σs
i j = τs

i j−g2τs
i j,kk (6)

This stress field description for the gradient elasticity corresponds to a “Type II”
description of three equivalent forms of the strain energy density [Mindlin and Es-
hel (1968); Amanatidou and Aravas (2002)]. The present notation is a simplified
version of the notation proposed by Mindlin and Eshel, with the equivalences τs

i j ≡

σs
i j and µs

ki j ≡ µ̂ki j. The strain field corresponding to τs
ji is ε s

i j = 1
2 (us

i, j + us
j,i) ≡ εi j,

and the strain gradient corresponding to µs
k ji is 1

2 (us
i, jk + us

j,ik) = κ̂ki j.

3.1.1 Stress fundamental solution

The stresses τs
i j are approximated in Ω, in the frame of the present variational for-

mulation, by the sum of a sufficiently large number of “fundamental solutions” τ∗i jm
plus a particular solution:

τs
i j = τ∗i jm p∗m +τ

p
i j (7)

such that the equilibrium Eq. (5) is satisfied a priori for all p∗m. Consequently, the
double stresses µs

ki j as well as the total stresses σs
i j become

µs
ki j = µ∗ki jm p∗m +µ

p
ki j (8)

σs
i j = σ∗i jm p∗m +σ

p
i j (9)

The parameters p∗m are context-dependent in a general formulation, as developed by
the authors in the frame of a finite element implementation [Dumont and Huamán
(2009, 2010a,b)]. When using singular fundamental solutions, as presented in the
companion paper, the set of n∗ parameters p∗m correspond to point forces applied
along the boundary of the elastic body. For a finite element implementation, they
are just some parameters multiplying polynomial or Bessel terms, as shown in Sec-
tion 6.
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3.1.2 Displacement fundamental solution

Displacement solutions us
i are obtained from τs

i j, µ
s
ki j in terms of the fundamental

solutions of Eq. (7) and of the particular solution τp
i j, µ

p
ki j,

us
i = u∗im p∗m + up

i + ur
i in Ω (10)

which formally include a set ur
i of rigid-body displacements. This explicit expres-

sion of the rigid body displacements may be omitted in the above equation with
no conceptual harm, as they are implicitly included as an arbitrary amount of the
particular solution up

i .

According to Eq. (10), a portion of the elastic body whose outward unit normal is
n j has as displacement gradient (ur

i, j , 0 in the case of rigid-body rotation):

qs
i = n j

(
u∗im p∗m + up

i + ur
i

)
, j

in Ω (11)

3.2 Displacement assumption on the boundary

The displacements are approximated on Γ by an independent field ud
i , where the su-

perscript ()d stands for displacement assumption. ud
i satisfies the required boundary

continuity conditions, that is, ud
i = ui on part Γu of the boundary with prescribed

displacement ui. This is the only requirement on ud
i that is made in the present

frame of the Hellinger-Reissner potential. Except for analyticity, no assumption is
explicitly made for the displacement ud

i in Ω whether or not concerning gradient
elasticity. According to the requirement number (1) in Section 2, a normal gradient
field qd

i must be postulated on Γ independently from ud
i, jn j (which is actually not

defined) and such that qd
i = qi on part Γq of the boundary with prescribed normal

gradients qi and also provided that interelement compatibility is satisfied. Then, for
the geometry of Γ described in terms of the parametric variables (ξ,η),

ud
i ≡ ud

i (ξ,η) = uin(ξ,η)dn ≡ uindn

qd
i ≡ qd

i (ξ,η) = qi`(ξ,η)q` ≡ qi`qq

}
on Γ (12)

where uin and qi` are interpolation functions of a total of nd parameters dn and qq

(not to be confounded with qi). These nodal displacements and normal displace-
ment gradients are – together with p∗m of Eq. (7) – the primary unknowns of the
variational problem. The set of functions uin is used to interpolate both displace-
ments (through the components ud

x, ud
y and ud

z ) and geometry data (through the co-
ordinates x, y and z) along each subregion of Γ (a “boundary element”, or, more ad-
equately, a boundary segment) in the present variational context – consistently with
the isoparametric description of the body’s geometry. The interpolation functions
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qi`, used to interpolate normal displacement gradients (through the components qd
x,

qd
y and qd

z ), may be different from uin. In the case of non-smooth surfaces, the nodal
parameters q` must be independently prescribed for each normal direction of the
surfaces adjacent to a node.

4 The Hellinger-Reissner potential applied to gradient elasticity

In the next Sections, the Hellinger-Reissner potential [Dumont (1989)] is split into
two virtual work principles in order to clarify the conceptual aspects affected by
the gradient elasticity. This Section basically repeats the initial outline by Dumont
and Huamán (2010a,b), although some relevant remarks are added. The two-field
assumptions of Sections 3.1 and 3.2 are the starting point to develop all matrix
equations in terms of n∗ and nd stress and displacement parameters.

4.1 Displacement virtual work for equilibrium checking

The following statement is found in similar form in several developments on gra-
dient elasticity as δW int = δWext. Mindlin and Eshel (1968) as well as Amanati-
dou and Aravas (2002), for instance, imply with this expression the equivalence of
the variation of internal and external works, in terms of virtual displacements that
should be referred to herein as δus

i . However, in the present context, δus
i , δu

d
i on

Γ, besides the fact that ud
i is not defined in Ω (except for the trivial cases of truss

and beam elements [Dumont and Huamán (2009)]).

Equilibrium of the stress field is weakly enforced by means of the displacement
virtual work statement∫

Ω

(
τs

jiδu
d
i, j +µ

s
k jiδu

d
i, jk

)
dΩ =

∫
Ω

fiδud
i dΩ+

∫
Γ

Piδud
i dΓ+

∫
Γ

Qisδud
i,sdΓ+

∫
Γ

Riδqd
i dΓ

(13)

In the terms on the right-hand side of the above equation, fi and Pi are classical
body forces and boundary tractions, respectively, which perform virtual work on
displacements, as indicated, whereas Ri and Qis are normal and tangential double
tractions. In the latter expression as well as in the tangential displacement gradient
δud

i,s, the subscript s refers to the natural coordinates that describe the boundary
surface: ξ for a 2D problem or (ξ,η) for a 3D problem. The normal double traction
forces

Ri = T jin j = µs
k jinkn j (14)

perform virtual work on normal displacement gradients δqi ≡ nlδui,l. The relation
of the tangential double tractions Qis with the internal stress field is elucidated at
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the end of this Section. The application of Ri and Qis as Neumann boundary con-
ditions is not a simple matter. These static quantities are investigated later on by
means of some numerical examples.1 The boundary integrals are expressed as if
plain Neumann conditions are applied. However, Eq. (13) is consistent and gen-
eral, as δud

i = 0 and δqd
i = 0 wherever such displacement quantities are prescribed

in a numerical problem, with corresponding boundary classical or double forces
interpreted as reaction forces.

The virtual displacement field is assumed as simply as possible, with the virtual
strain gradient, on which the double stress µs

k ji = µs
ki j performs work, given as the

double derivative δud
i, jk regardless of material properties.

Integration by parts of the terms at the left-hand side of Eq. (13) and application of
the divergence theorem leads to

−

∫
Ω

(
σs

ji, j + fi
)
δud

i dΩ+

∫
Γ

(
σs

jin j−Pi
)
δud

i dΓ (15)

+

∫
Γ

µs
k jinkδud

i, jdΓ−

∫
Γ

Qisδud
i,sdΓ−

∫
Γ

Riδqd
i dΓ = 0

The first two integral terms on the left are already expressed by means of the total
stress σs

ji, defined in Eq. (4) – similarly to the classical elasticity theory. The
domain integral is void, according to Eq. (5). Modifying the third integral term,
according to the identity of Eq. (3), one obtains from Eq. (15)∫

Γ

(
σs

jin j−Pi
)
δud

i dΓ+

∫
Γ

(
µs

k jinkn jnlδud
i,l−Riδqd

i

)
dΓ (16)

+

∫
Γ

(
µs

k jink
(
δ jl−n jnl

)
δud

i,l−Qisδud
i,s

)
dΓ = 0

or, substituting δqd
i for nlδud

i,l, according to Mindlin’s proposition that the variation
of the normal gradient on Γ should be independent from the displacement variation,∫

Γ

(
σs

jin j−Pi
)
δud

i dΓ+

∫
Γ

(
µs

k jinkn j−Ri
)
δqd

i dΓ (17)

+

∫
Γ

(
µs

k jink
(
δ jl−n jnl

)
δud

i,l−Qisδud
i,s

)
dΓ = 0

1 There is some confusion in the literature on the denomination of Ti j and Ri, as both are usually
referred to as double tractions. In this paper, the qualificative normal is used for the latter. The
static action referred to by Mindlin as T ji is not used in the subsequent developments. In general,
the notation proposed by Mindlin (1964) is followed as closely as possible, with the only flagrant
exception that lower case is used for the body forces fi in order to be consistent with previous
developments in the classical elasticity. Moreover, one resorts to the tangential double tractions
Qis proposed by Mindlin, which perform virtual work on tangential displacement gradients δud

i,s,
although in a way that is apparently inedited in the technical literature.
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This is a natural assumption in the frame of a hybrid variational formulation, and
consistent with the boundary-only integral statement just obtained. In fact, ud

i is
defined only on Γ, according to Eq. (12), in terms of boundary parametric vari-
ables, with uin ≡ uin(ξ) for 2D problems or uin ≡ uin(ξ,η) for 3D problems. There
is no possibility of defining how ud

i varies across the boundary, except by explicitly
introducing an independent field qd

i , as done in Eq. (12).

Mindlin (1964), followed by other researchers, proposed a manipulation of the in-
tegral that contains the term

(
δ jl−n jnl

)
in Eq. (17) in order to enable the im-

plementation of a numerical model. This ends up requiring the computation of
“jumping” terms, for a non-smooth boundary of a 3D problem. Moreover, it in-
troduces the need of special static boundary conditions related to the jumping
terms. Remarkably, several authors show numerical implementations that have be-
come feasible only by artificially smoothing the boundary around corner points.
Three-dimensional implementations seem to be extremely complicated in such a
framework [Amanatidou and Aravas (2002); Polyzos, Tsepoura, Tsinopoulos, and
Beskos (2003)]. However, Mindlin’s proposition is naturally circumvented in the
present outline. Firstly, one recognizes that the term

(
δ jl−n jnl

)
in Eq. (17) is or-

thogonally projecting δud
i,l onto the tangent plane to Γ at a given point ξ, for 2D

problems, or (ξ,η), for 3D problems. As a result, only the projection δqd
i = nlδud

i,l
of δud

i,l onto the normal to Γ requires an independent discretization, which is done
according to Eq. (12).

Two-dimensional numerical models may be formulated from Eq. (17) directly as

∫
Γ

(
σs

jin j−Pi
)
δud

i dΓ+

∫
Γ

(
µs

k jinkn j−Ri
)
δqd

i dΓ+

∫
Γ

(
µs

k jink|J|−2t j−Qiξ
)
δud

i,ξdΓ = 0

(18)

where δud
i,ξ ≡ δdud

i /dξ = u′inδdn on Γ comes from tlδud
i,l ≡ δdud

i /dξ and δ jl − n jnl =

|J|−2t jtl, in which one defines the tangent vector t = [dx/dξ dy/dξ]T and the Ja-
cobian |J| ≡ |t|, always making use of Eq. (12). Of course, no sum is meant by the
repetition of ξ in the last term of the above equation.

Three-dimensional numerical models are also formulated directly from Eq. (17) as

∫
Γ

(
σs

jin j−Pi
)
δud

i dΓ+

∫
Γ

(
µs

k jinkn j−Ri
)
δqd

i dΓ+

∫
Γ

(
µs

k jink|J|−2 t̃ js−Qis
)
δud

i,sdΓ = 0

(19)

To arrive at this equation, one firstly defines the tangent vectors in terms of uin ≡



A Hybrid Variational Formulation for Strain Gradient Elasticity Part I 397

uin(ξ,η) in Eq. (12):

u = [∂x/∂ξ ∂y/∂ξ ∂z/∂ξ]T (20)

v = [∂x/∂η ∂y/∂η ∂z/∂η]T (21)

For |J|2 = |u×v| and defining the matrices t = [u v] and t⊥ = [v −u], one obtains
that

δ jl−n jnl = |J|−2t jrt⊥mrt
⊥
mstls (22)

The indices r and s vary from 1 to 2, as they refer to ξ and η. One identifies in Eq.
(19) that δud

i,s comes from tlsδud
i,l ≡ δu

d
i,s, where ( ),s denotes derivatives with respect

to ξ and η. According to Eq. (22), t̃ js = t jrt⊥mrt
⊥
ms.

2

Taking Eq. (18), for 2D problems, as just a particular case of Eq. (19), in terms of
notation, one writes the numerical expression of the virtual work principle of Eq.
(13), for stresses and displacements approximated according to Eqs. (8,9,10, 11,
12), as:

〈δdn δq`〉




∫
Γ

(
σ∗jimn juin +µ∗k jimnk|J|−2 t̃ jsuin,s

)
dΓ∫

Γ
µ∗k jimnkn jqi`dΓ

 {p∗m}
(23)

+


∫
Γ

(
σ

p
jin juin +µ

p
k jink|J|−2 t̃ jsuin,s

)
dΓ∫

Γ
µ

p
k jinkn jqi`dΓ

−


∫
Γ

(
Piuin + Qisuin,s

)
dΓ∫

Γ
Riqi`dΓ


 = 0

Since this equation holds for arbitrary δdn and δq`, one obtains the matrix equilib-
rium system

HTp∗ = p−pp (24)

in which the equilibrium matrix HT as well as the vectors of nodal forces p and pp,
which are equivalent to the boundary and domain traction forces, respectively, are
inferred from Eq. (23). A detailed discussion of Eq. (24) is carried out in the next
sections. One obtains from this equation the formal relation of the tangential double

2 It is possible to arrive at simpler expressions of Eqs. (18) and (19) by using normalized expressions
of t as well as by referring to the surface length in the definition of Qis and δud

i,s, so that |J|−2 drops
out. However, the proposed expressions seem easier to grasp mechanically and more efficient in
terms of code writing. In the three-dimensional model, |J| ≡ |g|, where grs ≡ gαβ is the surface
metric tensor, according to the literature on differential geometry [Kreyszig (1991)]. The product
|J|−1t⊥mrt⊥ms is the inverse of grs.
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tractions Qis with the double stress µk ji on the boundary, as generally expressed for
a 3D problem:

Qis = µk jink|J|−2 t̃ js (25)

or, in the particular application based on Aifanti’s proposition, according to Eq. (6)
(without the subscript s in order to refer to a general stress field),

Qis = g2τ ji,knk|J|−2 t̃ js (26)

4.2 Stress virtual work for displacement compatibility checking

The second statement that comes from the Hellinger-Reissner potential may be
obtained by weakly enforcing compatibility of the displacements us

i and ud
i in terms

of the stress virtual work equation∫
Ω

(
us

i, j−ud
i, j

)
δτ∗jidΩ+

∫
Ω

(
us

i, jk −ud
i, jk

)
δµ∗k jidΩ = 0 (27)

Integrating by parts the terms of this equation, applying the divergence theorem
and using Eq. (4), one arrives at

−

∫
Ω

δσ∗ji, j
(
us

i −ud
i

)
dΩ+

∫
Γ

δσ∗jin j
(
us

i −ud
i

)
dΓ+

∫
Γ

δµ∗k jink
(
us

i, j−ud
i, j

)
dΓ = 0 (28)

The domain integral of this equation is void, according to Eq. (5). As done in the
preceding Section, one splits the displacement gradient into normal and tangential
contributions, thus obtaining, in the notation for 3D problems ,∫

Γ

δσ∗jin j
(
us

i −ud
i

)
dΓ+

∫
Γ

δµ∗k jinkus
i, jdΓ (29)

−

∫
Γ

δµ∗k jinkn jqd
i dΓ−

∫
Γ

δµ∗k jink|J|−2 t̃ jsud
i,sdΓ = 0

In this equation, one states that the boundary displacement gradient qd
i is described

independently from the displacement ud
i . This is a step forward from the assump-

tion made explicit in the statement before Eq. (17) and with reference to Mindlin,
which refers to the independence of variations. The assumption embedded in the
above equation is in consonance with the proposition made by Polyzos, Tsepoura,
Tsinopoulos, and Beskos (2003) in the frame of the collocation boundary element
method. Introducing the approximations for stresses and displacements given in
Eqs. (8 – 12), one writes the numerical expression of the virtual work principle of
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Eq. (27) as

〈
δp∗m

〉([∫
Γ

(
σ∗jimn ju∗in +µ∗k jimnku∗in, j

)
dΓ+

∫
Γ

(
σ∗jimn jur

is +µ∗k jimnkur
is, j

)
dΓCsn

] {
p∗n

}
−

[∫
Γ

(
σ∗jimn juin +µ∗k jimnk|J|−2 t̃ jsuin,s

)
dΓ

∫
Γ

µ∗k jimnkn jqi`dΓ

]{
dn

q`

}
+

{∫
Γ

(
σ∗jimn ju

p
i +µ∗k jimnkup

i, j

)
dΓ

})
= 0 (30)

Since δp∗m is arbitrary, one obtains the matrix compatibility system

F∗p∗ = Hd−b (31)

4.3 A first assessment of the matrices from the Hellinger-Reissner potential

The expressions of the flexibility matrix F∗ and of the kinematic transformation
matrix H for the finite element implementation are:

F∗ =

[∫
Γ

(
σ∗jimn ju∗in +µ∗k jimnku∗in, j

)
dΓ

]
(32)

since the term multiplying Csn in Eq. (30) is void by definition, and

H =
[ ∫

Γ

(
σ∗jimn juin +µ∗k jimnk|J|−2 t̃ jsuin,s

)
dΓ

∫
Γ
µ∗k jimnkn jqi`dΓ

]
(33)

Moreover, the vector p of equivalent nodal forces, for applied boundary tractions,
is, according to Eqs. (23) and (24),

p =


∫
Γ

(
Piuin + Qisuin,s

)
dΓ∫

Γ
Riqi`dΓ

 (34)

Finally, the vectors of equivalent nodal forces pp and equivalent nodal displace-
ments b, for body forces (or any particular solution of the problem’s differential
equation one may know in advance) are obtained from Eqs. (23) and (30):

pp =


∫
Γ

(
σ

p
jin juin +µ

p
k jink|J|−2 t̃ jsuin,s

)
dΓ∫

Γ
µ

p
k jinkn jqi`dΓ

 (35)

b =

{∫
Γ

(
σ∗jimn ju

p
i +µ∗k jimnkup

i, j

)
dΓ

}
(36)
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4.4 Stiffness matrix of the finite/boundary element formulation

Solving for p∗ in Eq. (31) and substituting into Eq. (24), one obtains the nodal
equilibrium equation

HTF∗(−1)Hd = p−pp + HTF∗(−1)b (37)

In this equation, one recognizes that a stiffness matrix

K = HTF∗(−1)H (38)

has been naturally arrived at. The terms on the right in Eq. (37) account for the ac-
tion of boundary and domain forces, according to the assumptions previously made.
The vector d comprises both nodal displacements dn and nodal normal gradients q`.
The flexibility matrix F∗ is symmetric by construction. For elastostatics problems,
F∗ is a singular matrix whether coming from a formulation with singular (boundary
element) or non-singular (finite element) fundamental solutions. In fact, F∗ and H
feature the same spectral properties of the classical elasticity formulation [Dumont
(2003); Dumont and Huamán (2009)], in which respects the nodal displacements
dn of Eq. (30), which are accompanied by sets of the normal gradients q` related to
rigid body rotations. This is numerically illustrated in Section 5 and explained in
detail in Section 6. In the finite element implementation of Eq. (37), one constructs
the kinematic matrix H of Eqs. (23, 24) with n∗ rows and nd columns and rank
equal to nd − nrig, where nrig is the number of columns of W = N(HTH) that span
the space of rigid body displacements. One also constructs the flexibility matrix F∗
of Eqs. (30, 31) of order n∗ and rank n∗−nrig, where V = N(F∗) is a matrix with nrig

columns. For homogeneous materials and non-singular fundamental solutions, the
generalized boundary displacements ud

i and qd
i of Eq. (12) are linear combinations

of u∗im in Eq. (10), and V = N(F∗)⇒HTV = 0. As already developed in the frame of
the hybrid finite/boundary element method [Dumont (2003); Dumont and Prazeres
(2005); Dumont and Aguilar (2009)], the generalized inversion of F∗ in Eq. (37) is
carried out by simply replacing F∗(−1) with

(
F∗+ VVT

)−1
.

For non-singular fundamental solutions, H is usually a rectangular matrix, as, for
the adequate representation of the deformed state in the domain, the dimension
of p∗ must be at least equal to the dimension of d added with the dimension of
q [Dumont and Huamán (2009); Huamán (2013)]. As shown in Table 1, H is a
square matrix only for the 3D, eight-node brick element H8, besides the trivial
cases of truss and beam elements (which topologically fit into the case of singular
fundamental solutions [Dumont and Huamán (2009); Huamán (2013)]).
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5 Application to truss and beam elements

5.1 Truss element

The homogeneous differential equation of a truss element of length L, constant
cross section A and elasticity modulus E is

d2u∗

dx2 −g2 d4u∗

dx4 = 0, with solutions u∗ =
〈
ex/g e−x/g x 1

〉
(39)

As outlined by Dumont and Huamán (2009), the corresponding stiffness matrix, for
the degrees of freedom given in the first scheme of Fig. 1 and substituting ḡ, C and
S for g/L, cosh(L/g) and sinh(L/g), is

K =
EA/L

S + 2ḡ−2Cḡ



S g(C−1) −S g(C−1)

g(C−1) gL(C−S ḡ) g(1−C) gL(S ḡ−1)

−S g(1−C) S g(1−C)

g(C−1) gL(S ḡ−1) g(1−C) gL(C−S ḡ)


(40)

The null space of this stiffness matrix is the vector of rigid body displacements
W = 〈1 0 1 0〉T. One checks that a constant strain state given by the vector of
displacements 〈−1/2 1/L 1/2 1/L〉 yields only classical forces EA

L 〈−1 0 1 0〉
as a response (which also clarifies the meaning of the non-classical displacement
degrees of freedom in terms of the global coordinates schematically represented
in Fig. 1). Moreover, if one assembles the stiffness matrices of two elements of
lengths αL and (1−α)L, for any 0 ≤ α ≤ 1, and performs static condensation of the
internal degrees of freedom, the above stiffness matrix K is retrieved.

Figure 1: Schematic representation of the generalized, globally oriented, displace-
ment and force degrees of freedom of truss and beam elements.

5.2 Slender beam element

The application of the Euler-Bernoulli hypothesis to thin beams, plates and shells
in the frame of the strain gradient elasticity is an oxymoron, to say the least. An
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attempt to consistently assess general bending problems in the present framework
is in progress. Nevertheless, it may be academically worth applying the present de-
velopments to a slender beam, which has already been the subject of many research
works [Challamel and Wang (2008); Papargyri-Beskou and Beskos (2008, 2009);
Papargyri-Beskou, Polyzos, and Beskos (2009); Reddy (2007); Kahrobaiyan, As-
ghari, Rhaeifard, and Ahmadian (2011)]. The homogeneous differential equation
is

d4u∗

dx4 −g2 d6u∗

dx6 = 0, with solutions u∗ =
〈
g4ex/g g4e−x/g x3 x2 x 1

〉
(41)

For a constant moment of inertia I, the corresponding stiffness matrix is

K =



K11 K11L/2 K13 −K11 K11L/2 −K13

sym K22 K23 −K11L/2 K11L2/2−K22 K23−K13L

sym sym K33 −K13 K13L−K23 −K36

sym sym sym K11 −K11L/2 K13

sym sym sym sym K22 −K23

sym sym sym sym sym K33


(42)

where

K11 = 12(2C−2−S/ḡ)∆, K22 = 4L2(3C−3S ḡ−S/ḡ)∆,
K33 = L4

(
4S ḡ−C−24(S −Cḡ + ḡ)ḡ3 + 12ḡ2

)
∆,

K13 = 6L2
(
4(1−C)ḡ2 + 4S ḡ−1−C

)
∆,

K23 = 2L3
(
12(1−C)ḡ2−1 + 9S ḡ−2C

)
∆,

K36 = L4
(
2S ḡ + 1 + 24(S −Cḡ + ḡ)ḡ3−12Cḡ2

)
∆

(43)

with ∆ = (8C + 24ḡ(Cḡ−S − ḡ)−S/ḡ + 4) EI/L3, for ḡ, C and S as before. This
matrix has rank four and its null space is spanned by the vectors of rigid body
displacements 〈1 0 0 1 0 0〉 and 〈0 1 0 L 1 0〉. Resorting to the second
scheme of Fig. 1 for the global orientation of the degrees of freedom, one checks
that classical pure bending EI

L 〈0 − 1 0 0 1 0〉 is obtained from the vector of
constant curvature 〈0 − 1/2 1/L 0 1/2 1/L〉. Moreover, if one assembles the
stiffness matrices of two elements of lengths αL and (1−α)L, for any 0≤ α≤ 1, and
performs static condensation of the internal degrees of freedom, the above stiffness
matrix K is also retrieved.
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6 Conceptual assessments of 2D and 3D problems

6.1 Basic formulation

The homogeneous differential equation to be solved is [Polyzos, Tsepoura, Tsinop-
oulos, and Beskos (2003); Huamán (2013)](
1−g2∇

) (
u∗im,kk +

1
1−2ν

u∗km,ki

)
= 0 (44)

Expressing u∗im in terms of a potential function, u∗im = δimΦ0,kk −Φ0,im/(2−2ν), one
arrives at the basic differential equation (1−g2∇2)(∇4Φ0) = 0, which must provide
n∗ solutions. The subscript of Φ0 is justified because a general solution Φ for time-
dependent problems in the frequency domain can be easily obtained. The solution
of Φ0 for 2D problems is expressed in polar coordinates (r, θ) as

Φ0 = rn [C1n cos(nθ) +C2n sin(nθ)] + In(r/g) [C3n cos(nθ) +C4n sin(nθ)] (45)

where In(r/g) is the modified Bessel function of the first kind and order n, with
argument (r/g). The trigonometric terms in θ correspond to n∗ = 4(2n+1) complete
polynomials or order n, rigid body displacements included. For 3D problems, the
solution is expressed in spherical coordinates (r, θ,φ) as

Φ0 = Pn
`
(cosθ)

{
rn

[
(r2 + 4n + 6)g2 + 4n

]
)
[
C1` cos(`φ) +C2` sin(`φ)

]
(46)

+I 1
2 +n(r/g)

[
C3` cos(`φ) +C4` sin(`φ)

]
/
√

r
}

where the Bessel function I 1
2 +n(r/g) of fractional order is actually a polynomial

and Pn
`
(cosθ) is the associated Legendre function of first kind, degree n and order `

with argument (cosθ), also a polynomial in Cartesian coordinates. Pn
`
(cosθ) exists

only for ` ≤ n. There are 4n + 2 solutions in Eq. (46), with a total of n∗ = 6(n + 1)2

solutions u∗im comprised by a complete polynomial of degree n, rigid body displace-
ments included.

6.2 Finite element implementation and results

To make sure that the formulation is always well posed and the final expression
of the stiffness matrix K in Eq. (38) is independent from the location of the finite
element in the Cartesian coordinate frame, the number n∗ of internal parameters
must correspond to a complete polynomial, whose order n is chosen in such a way
that n∗ ≥ nd. Table 1 illustrates the results for some common finite element patterns
(one obtains n∗ = nd only for CST and Te4 elements in classical elasticity [Dumont
and Prazeres (2005)], but this also happens for the H8 element shown in the Table).
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Since the evaluation of H and F∗ is carried out only in terms of boundary integrals,
according to Eqs. (23) and (30), one may construct finite elements of any shape,
provided that n∗ is not too large, as ill-conditioning will certainly arise (differently
from which occurs in a boundary element formulation based on singular fundamen-
tal solutions). Figure 2 illustrates the assemblage of three quadrilateral elements

Table 1: Illustration of the number n∗ of solutions necessary for the implementation
of some 2D and 3D finite elements (CST, T6 = 3, 6 node triangles; Q4, Q8 = 4, 8
node quadrilaterals; Te4, Te10 = 4, 10 node tetrahedrons; H8, H20 = 8, 20 node
hexahedrons).

2D problems 3D problems
Polynomial order n 2 3 4 5 2 3 4 5

n∗ internal 4(2n + 1) 6(n + 1)2

degrees of freedom 20 28 36 42 54 96 150 216
Element type CST Q4 T6 Q8 Te4 H8 Te10 H20

nd external d.o.f. 18 24 30 40 48 96 102 204

with linear boundary interpolation functions for ud
i and qd

i (Q4). Two classical de-
grees of freedom are represented at each node (numbered from 1 to 14). Pairs of
non-classical, globally oriented, degrees of freedom are also schematically repre-
sented at each edge extremity (in the drawing, they are shown at a small distance
from the extremities only to characterize to which edge they actually correspond).
While the classical degrees of freedom are nodal attributes, the non-classical ones
are either edge or face attributes, for 2D or 3D elements. This accounts for the
huge number of extra degrees of freedom that must be taken into account in a finite
element implementation, as illustrated in Table 1 and in the Figure. As already
mentioned for the truss and beam elements, the non-classical degrees of freedom,
for the stiffness matrix obtained as in Eq. (37), are negatively oriented at negative
faces or edges. Since one can tell that the left edges of the truss and beam elements
are the negative ones, for the schemes of Fig. 1, the expressions of K in Eqs. (40)
and (42) already take this fact into account, so that elements can be assembled in a
straightforward way. For general 2D and 3D finite elements, however, which can
be of any shape and orientation, one must always decide which edges or faces are
negative (in terms of their outward normals) and multiply the corresponding rows
and columns of the non-classical degrees of freedom by (−1) before assemblage.
Such a need of reversing orientation was already mentioned by Mindlin (1964),
although not in the context of a finite element implementation.

The matrix W of rigid body displacements, as introduced in the paragraph after
Eq. (38), depends only on the structure’s geometry. The vector of rigid body
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Figure 2: Assemblage of three quadrilateral elements with linear boundary inter-
polation functions.

rotations include coefficients of the normal gradient displacements q` that render
only tangential components, which means that their normal projections, as defined
in Eq. (3), are void in such a case. The matrix V, required in the inversion of
F∗, can be constructed directly from the fundamental solutions derived from the
potential functions of Eqs. (45) and (46), independently from geometry [ Huamán
(2013)]. They are arranged as

W =

[
Wd

Wq

]
, V =

[
Vd

Vq ≡ 0

]
(47)

Both matrices Wd and Vd coincide with the ones obtained for the classical elasticity
developments, as given by Dumont and Prazeres (2005) for 2D and 3D problems.
The submatrices Wd and Wq of rigid body displacements are straightforward to
construct, as given below (not normalized), with the subscripts n and ` referring
exceptionally to classical and non-classical nodes (and not to degrees of freedom, as
in the rest of the paper) for a discrete model with nodal points of coordinates either
(xn,yn) or (xn,yn,zn) and outward normal components (nx` ,ny`) or (nx` ,ny` ,nz`):

Wdn =

[
1 0 yn

0 1 −xn

]
, Wq` =

[
0 0 ny`
0 0 −nx`

]
, 2D (48)
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Wdn =



1 0 0
0 1 0
0 0 1
0 −zn yn

zn 0 −xn

−yn xn 0



T

, Wq` =



0 0 0
0 0 0
0 0 0
0 −nz` ny`

nz` 0 −nx`
−ny` nx` 0



T

, 3D (49)

As shown, the coefficients of W span all degrees of freedom of a model. Since
V = N(F∗), its non-zero coefficients affect only four of the simplest solutions for
2D problems or nine of the simplest solutions for 3D problems, Eqs. (45) and (46),
as given below in non-normalized format [Dumont and Prazeres (2005); Huamán
(2013)]:

Vd =

1 0 0 0 0 0 · · · 0
0 1 0 0 0 0 · · · 0
0 0 0 1 −1 0 · · · 0


T

, 2D (50)

Vd =



1 0 0 0 0 0 0 0 0 0 0 0 · · · 0
0 1 0 0 0 0 0 0 0 0 0 0 · · · 0
0 0 1 0 0 0 0 0 0 0 0 0 · · · 0
0 0 0 0 0 0 0 0 −1 0 1 0 · · · 0
0 0 0 0 0 1 0 0 0 −1 0 0 · · · 0
0 0 0 0 −1 0 1 0 0 0 0 0 · · · 0



T

, 3D (51)

The numerical code presently implemented applies to 2D finite elements of any
shape and any number of straight or curved edges with linear, quadratic or cubic
boundary interpolation functions. In Huamán (2013), a rectangular element was
tested with the length increasingly larger than the hight. The coefficients of the
stiffness matrix corresponding to longitudinal degrees of freedom tended to the co-
efficients of the stiffness matrix of a truss element of corresponding mechanical
properties, Eq. (40), drawing the authors’ attention to the fact that negative faces
require reverse orientation of the non-classical degrees of freedom. A second run
consisted in evaluating the stiffness matrices of several irregular quadrilaterals, as
shown in Fig. 2, for a series of patch tests. Equivalent nodal forces p were evaluated
according to Eqs. (23) and (24) for linear, quadratic and cubic fields comprised by
the fundamental solutions u∗im. Equation (31) was also checked for the correspond-
ing nodal vectors d that comprise both displacements and normal gradients. For the
linear field, complete agreement was achieved, also leading to only classical forces,
as required. The quadratic and cubic fields are not exactly represented by the Q8
elements. However, the assemblage of the elements led to zero forces for classical
and non-classical resultants along the edges between two elements, and particularly
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at the node that joins all three elements in Fig. 2, which is a strict consistency check
of the whole formulation.

According to the explanation after Eq. (46), the 3D non-singular solution of the
homogeneous differential Eq. (44) is actually polynomial. The complete 2D solu-
tion, Eq. (45), involves the evaluation of modified Bessel functions of the first kind
and order n, where n increases with the number of required solutions. However,
this Bessel function also has a polynomial expansion, although convergence of the
resulting series may become difficult to deal with for large arguments r/g. On the
other hand, one obtains from Eq. (44) that a solution of the classical elasticity is
also a solution of the present problem, only that the number of polynomial terms
required in the matrix formulation of Section 4 may become very large, as shown in
Table 1, with ensuing ill-conditioning. Numerical tests have been performed with
both formulation possibilities of the problem – with and without the use of Bessel
functions. The results have turned out similar, although the use of plain polynomial
solutions – the first part of Eq. (45) – have become by far easier to deal numeri-
cally. Plain polynomial solutions have been consequently adopted in the ultimate
numerical implementation of the developed matrices.

7 Two-dimensional finite element applications

7.1 A convergence test for linear quadrilateral elements

A convergence test is carried out for a parallelogram-shaped elastic body modeled
with either 2×2, 4×4 (illustrated in Fig. 3), 8×8, 12×12 or 16×16 linear quadri-
lateral elements (elements Q4 of Table 1). Since each finite element node has 6
degrees of freedom (dof), the proposed meshes correspond to either 66, 210, 738,
1586 or 2754 dof, respectively. The mechanical properties are, in consistent units,
G = 105, ν = 0.2 and g equal to either 0, 0.1, 0.2 or 0.3.

A cubic displacement field (the subscript stands for polynomial),

up
i =

{
3x3−8x3ν−21xy2 + 24xy2ν

3(x2 + y2)y

}
(52)

which satisfies Eq. (44), is applied to the elastic body, with corresponding classical
traction forces Pi as well as double tangential and normal forces Qi and Ri, defined
in Section 4.1, given as

Pi
p = 6G

{
(3−4ν)n1x2−2(3−4ν)n2xy + (4ν−7)n1y2 + 8n1g2

(1 + 4ν)n2x2−2(3−4ν)n1xy + (3−4ν)n2y2−8n2g2

}
(53)

Qp
i =

12G
J2

{
(3−4ν)(n1t1−n2t2)xg2 + (−(3−4ν)n1t2− (7−4ν)n2t1)yg2

((1 + 4ν)n1t2− (3−4ν)n2t1)xg2 + (3−4ν)(−n1t1 + n2t2)yg2

}
(54)
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Ri
p = 12G

{
(3−4ν)xg2(n2

1−n2
2)−2(5−4ν)yg2n1n2

−2(1−4ν)xg2n1n2− (3−4ν)yg2(n2
1−n2

2)

}
(55)

In these equations, ni are the components of the outward unit normal to the bound-
ary, and ti are the tangent components, with J representing the Jacobian of the
boundary parametric transformation, as introduced before. Two other polynomial
fields, of fourth and fifth degrees, are also applied:

ui
p =

{
−x4(1−4ν) + x2y2(18−24ν)− y4(5−4ν)

−4xy(x2 + y2)

}
(56)

ui
p =

{
15x5−30x3y2−45xy4

3y(−5x4(9−8ν) + 10x2y2(5−8ν)− y4(1−8ν)

}
(57)

The corresponding boundary forces are not shown, for space restriction, but can be
easily evaluated [Huamán (2014)].

7.1.1 Convergence tests for nodal force equilibrium in the domain

In order to estimate the magnitude of the errors one should expect in the numerical
calculations, the errors in the evaluation of classical nodal forces at the center node
of the parallelogram, for g = 0, is shown on the right of Fig. 3, according to the
norm

error(pi) =

∣∣∣Ki jd j
∣∣∣∣∣∣Ki j

∣∣∣ ∣∣∣d j
∣∣∣ (58)

where K is the stiffness matrix defined in Eq. (38) and d are nodal displacements
and gradient displacements corresponding to the applied polynomial fields. This
error should be equal to zero, since there are no applied domain forces inside the
parallelogram. “Classical nodal forces” P actually represent the upper subvector of
the equivalent nodal forces p of Eq. (34), which depend of g, as illustrated in Eqs.
(53) and (54). Figure 3 show results only for the quartic and quintic polynomials.
Results for applied cubic displacements are by far more accurate.

The same error estimates in the evaluation of classical nodal forces are shown for
for g = 0.1 and g = 0.2 on the left of Fig. 4 and on the right of Fig. 5. For the non-
classical forces, Eq. (58) does not apply to an individual degree of freedom. In fact,
such an equilibrium statement seems to apply only to the sum of concurring non-
classical forces at a given node. Figures 4, 5 and 6 display the convergence results
of such forces grouped for the horizontal edges (H) and inclined edges (V) adjacent
to the center node of the parallelogram. Since the results converge separately to
zero, their sums also converge to zero.
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Figure 3: Left: Parallelogram-shaped elastic body modeled with either 4, 16, 64,
144 or 256 quadrilateral elements. Right: Error in the evaluation of classical nodal
forces, for g = 0, at the center node of the parallelogram.
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Figure 4: For g = 0.1, errors in the evaluation of classical forces at the center node
of the parallelogram, on the left, as well as of the sum of non-classical forces on
the horizontal edges at the same point.
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Figure 5: Left: Errors in the evaluation of the sum of non-classical forces ate the
inclined edges at the center node of the parallelogram, for g = 0.1, on the left, as
well as in the evaluation of classical forces, for g = 0.2.
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Figure 6: Errors in the evaluation of the sum of non-classical forces at the center
node of the parallelogram on the horizontal as well as on the inclined edges, for
g = 0.2.
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7.1.2 Convergence tests for the evaluation of edge forces

For the same example of the previous Section, the balance of forces at the central
node on the right edge of the parallelogram is investigated. The error norm is

error(pi) =
|Kd−p|
|Kd|

(59)

where K is the stiffness matrix defined in Eq. (38), d are nodal displacements
and gradient displacements corresponding to the applied polynomial fields and the
equivalent nodal forces p are defined as in Eq. (34) for boundary traction values ob-
tained as illustrated in Eqs. (53)-(55) for the cubic polynomial. Figure 7 shows on
the left the convergence pattern one should expect according to the classical elas-
ticity theory. The results on the right of Fig. 7 and left of Fig. 8 are the convergence
studies carried out for g = 0.1 and g = 0.2. Only results related to the "classical"
forces in the horizontal direction (Px) are ploted, recalling that they correspond to
the upper subvector of p in Eq. (34). The convergence pattern is no longer a straight
line in the loglog graphics. The same results, now accrued by values for g = 0.3, are
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Figure 7: Errors in the evaluation of classical forces at the center node on the right
edge of the parallelogram of Fig. 3, for g = 0 and g = 0.1.

grouped on the right of Figs. 8 and 9 for each polynomial field. Increasing values
of g lead to slower convergence patterns, which is unwanted and actually frustrates
the author’s expectations. These results are still under analysis, but a possible ex-
planation is related to the interpretation of the equivalent boundary forces, to which
values obtained for all edges concurring in the nodal point should contribute. On
the other hand, this convergence pattern is not inedited in the technical literature
[see Zervos, Papanicolopulos, and Vardoulakis (2009), for instance].
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Figure 8: Errors in the evaluation of classical forces at the center node on the right
edge of the parallelogram, for g = 0.2, on the left, as well as comparison of the
results for different values of g, grouped for the cubic displacement field.
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Figure 9: Errors for different values of g, grouped for the quartic and quintic dis-
placement fields.
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7.2 A convergence test for quadratic quadrilateral elements

Another series of tests was carried out for a square-shaped elastic body shown
on the left of Fig. 10, using 2× 2, 4× 4, 8× 8 or 12× 12 quadratic quadrilateral
elements (elements Q8 of Table 1), with corresponding 98, 338, 1250 or 2738
degrees of freedom. Figure 11 shows several convergence results at the center node
of the square body, for the error norm shown in Eq. (58), with the values of all
non-classical (Ri) forces adjacent to the node added as a single result. Maybe as
a result of the simple, square-shaped solid, the observed convergence pattern has
turned out by far better the in the previous examples.
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Figure 10: Left: Square-shaped elastic body modeled with either 4, 16, 64 or 144
quadratic quadrilateral elements. Right: Curved elastic body modeled with either
16, 36, 64 or 100 quadratic quadrilateral elements.

7.3 A convergence test for curved quadratic quadrilateral elements

An elastic body with 6×6 curved quadratic elements is shown on the right of Fig.
10. In a convergence test, this solid is discretized with either 4× 4, 6× 6, 8× 8 or
10× 10 elements. Since an edge node has four dof and a corner node six dof, the
corresponding total number of dof for each discretization case is 418, 818, 1362 or
2050, respectively. Besides the cubic, quartic and quintic of Eqs. (52)-(57), this
solid is submitted to one linear and two different quadratic fields, represented by
the columns of the matrix

ui
p =

[
x(−5 + 8ν) (−1 + 2ν)x2 + 2(1− ν)y2 2xy(−3 + 4ν)

y 0 x2 + y2

]
(60)
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Figure 11: Errors for classical and non-classical forces evaluated for the center
node of a square solid discretized with quadratic elements.

The convergence results for classical and non-classical forces at the central node
of the solid, according to the error norm of Eq. (59) and as described in previous
examples, are displayed in Figs. 12 and 13. Once more, excellent convergence
pattern is observed, showing consistency of the whole formulation.
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Figure 12: Convergence results for the evaluated classical nodal forces at the central
node of the irregular solid of Fig. 10.
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Figure 13: Convergence results for the evaluated non-classical nodal forces at the
central node of the irregular solid of Fig. 10.

8 Concluding remarks

The present developments consolidate several years of research in the frame of the
second author’s M.Sc. and Ph.D works [Huamán (2013)], with results already par-
tially presented in some conferences, but brought together for the first time as a pub-
lishable manuscript. This paper presents a concise hybrid finite/boundary element
formulation of gradient elasticity problems based on two virtual work principles
that stem from the Hellinger-Reissner potential. General non-singular fundamental
solutions – the homogeneous solutions of Eq. (5) – are derived in a comprehensive
framework [Huamán (2013)]. An important contribution is the variational evidence
that the proposed hybrid formulation naturally approximates normal displacement
gradients along the boundary Γ independently from displacements, which is a step
forward from the proposition made by Mindlin and Eshel (1968) on the basis of a
single displacement field. This assumption is in consonance with the proposition by
Polyzos, Tsepoura, Tsinopoulos, and Beskos (2003) in the frame of the collocation
boundary element method. The finite element implementation of gradient elasticity
requires a huge number of degrees of freedom, as compared with the classical elas-
ticity [and as compared with a skilled meshless implementation, according to Tang,
Shen, and Atluri (2003)], and the computational developments still lack a complete
mechanical interpretation. Consistency of the formulation as well as convergence
of some key numerical results could be systematically assessed for a series of patch
tests that also have made possible to correlate external and internal non-classical
quantities. Then, although meaningful non-classical boundary conditions are still
difficult to understand and establish, the authors hope to have contributed to the
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improvement of this delicate research area. The next step is the application of the
developed numerical tool to problems actually tested in the laboratory. The basic
developments outlined in this paper are directly applicable to a boundary element
formulation. In this case, the displacement fundamental solution of the problem,
for linear gradient elasticity, is non-singular, but the solution related to the total
stresses is singular, while the non-classical forces require dealing with hypersin-
gular integrals [Polyzos, Tsepoura, Tsinopoulos, and Beskos (2003)]. All these
peculiarities are being prepared for publication in a companion paper.
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