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A Regularized Method of Fundamental Solutions for 3D
and Axisymmetric Potential Problems

Csaba Gáspár1

Abstract: The Method of Fundamental Solutions (MFS) is investigated for 3D
potential problem in the case when the source points are located along the boundary
of the domain of the original problem and coincide with the collocation points. This
generates singularities at the boundary collocation points, which are eliminated in
different ways. The (weak) singularities due to the singularity of the fundamental
solution at the origin are eliminated by using approximate but continuous funda-
mental solution instead of the original one (regularization). The (stronger) singu-
larities due to the singularity of the normal derivatives of the fundamental solution
are eliminated by solving special auxiliary subproblems (desingularization). The
desingularization idea is similar to a previously published technique and is com-
pletely independent of the applied regularization technique. The presented method
produces well-conditioned or moderately ill-conditioned matrices in the resulting
linear system of algebraic equations, while the accuracy remains acceptable. No
boundary mesh structure is needed. The method is generalized to 3D axisymmetric
potential problems in a natural way, despite in this case the fundamental solution
does not remain a radial function. The use of extremely ill-conditioned matrices is
still avoided.

1 Introduction

Elliptic partial differential equations play an essential role in a lot of fields of appli-
cation. Modeling stationary phenomena such as diffusion in fluids or in gases, heat
transfer, seepage through porous media etc. lead to solving elliptic problems. The
usual implicit time discretization techniques of many time-dependent problems re-
sult in elliptic problems as well, at every time step. To handle elliptic problems
in a meshless way, a number of methods have been developed. A widely spread
approach is the Method of Fundamental Solutions [see e.g Alves, Chen, and Šarler
(2002)], which is based on the fundamental solution of the applied partial differ-
ential operator. These methods are suitable to handle homogeneous problems. For
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non-homogeneous problems, the approach can be combined with the well-known
principle of the Method of Particular Solutions, where the solution is expressed
as a sum of a particular solution and a homogeneous solution. These terms can
be treated independently and in completely different ways. To calculate a partic-
ular solution, a popular technique is the method of radial basis functions (RBFs),
which introduces a set of inner interpolation points, but no boundary conditions are
prescribed. In contrast to it, the calculation of the homogeneous solution can be
performed in a boundary-only way using e.g. the Method of Fundamental Solu-
tions.

In its original form, the MFS produces an approximate solution of the homoge-
neous equation in the form of a linear combination of the fundamental solutions
shifted to external source points, where the a priori unknown coefficients have to
be calculated by enforcing the boundary conditions at some boundary collocation
points.

It is well known that the MFS generally produces quite accurate approximate so-
lutions; the accuracy increases further if the source points are located far from the
boundary (provided that the exact solution is smooth enough). The price of the
excellent accuracy is that the method results in fully populated, nonsymmetric and
severely ill-conditioned linear systems; the condition number grows rapidly when
the distance of the source points and the boundary increases. In addition to it, for
general, non-convex and/or not simply connected domains, the proper locations of
the external source points can hardly be automatized. On the other hand, if the
source points are loceted close to the boundary, numerical singularities appear in
the approximate solution, which destroys the accuracy of the approximation.

To handle the problem of singularity in a meshless way, several methods have been
developed. In the Boundary Knot Method [BKM, see Chen (2002); Chen, Shen,
Shen, and Yuan (2005)] the solution is approximated by nonsingular general so-
lutions instead of the fundamental solutions. A somewhat similar possibility is to
use fundamental solutions concentrated to lines rather than discrete points [Gáspár
(2013a)]. In both of the above methods , the solution is approximated by nonsin-
gular functions. Unfortunately, though they have excellent accuracy, the resulting
linear system is extremely ill-conditioned, which can cause serious computational
difficulties.

In MFS-context, when the source and the collocation points coincide, the problem
of singularity is always present. It can be circumvented by various tools. In the
pioneering work of Young, Chen, and Lee (2005), the solution is approximated by
a discretized form of a double layer potential; the singular terms are calculated by
extracting the singularities using some simple integral identities. Note, however,
that this procedure needs a boundary mesh structure, but less mesh information is
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utilized than in the case of the conventional boundary element method. In the Mod-
ified Method of Fundamental Solutions [MMFS, see Šarler (2008); Šarler (2009)],
the approximate solution is defined by standard boundary element techniques based
on single layer and double layer potentials; the appearing regular boundary inte-
grals are evaluated by simple boundary quadrature formulas, while the appearing
singular integrals are computed analytically or via auxiliary Dirichlet subproblems.
Note again, that for computing the above boundary integrals, a boundary mesh
structure is still needed.

The Singular Boundary Method [SBM, see Chen and Wang (2010)] produces the
approximate solution in a classical MFS-form, where the source and the colloca-
tion points coincide; however, the singular terms are defined with the help of an
auxiliary Dirichlet subproblem, where the corresponding collocation points are lo-
cated inside the domain. Thus, the approximate solution still exhibits singularities
at the boundary source points; in addition to this, it requires some inner collocation
points as well. In its original form, the SBM could handle pure Dirichlet problems.
Later, improved versions of the SBM have also been developed to treat Neumann
and mixed problems as well [Chen and Gu (2012)]. Here, along the Neumann
boundary, the appearing singular terms (called origin intensity factors) are calcu-
lated by a similar technique as in Young, Chen, and Lee (2005) based on similar
integral identities. Along the Dirichlet boundary, the singular terms are defined by
solving an auxiliary Neumann subproblem. This approach needs no interior collo-
cation points, but a boundary mesh structure is still required. The method can be
generalized to 3D and more general partial differential equations applied to various
physical phenomena [Gu, Chen, and Zhang (2011); Gu, Chen, and He (2012)].

The Boundary Distributed Source method [BDS, see Liu (2010)] uses sources
which are not concentrated to discrete source points but they are uniformly dis-
tributed in small circles (in 2D problems; the approach can be generalized to 3D
problems in a straightforward way). Thus, regularized fundamental solutions are
obtained, which have no singularity, but satisfy the original partial differential equa-
tion outside of small neighbourhoods of the source points only. Consequently, at
Dirichlet boundaries, no singular terms appear. Along the Neumann boundaries,
the singular terms are calculated by solving an auxiliary pure Dirichlet problem
(based on the approach of Šarler (2008)); however, no boundary mesh structure is
needed.

In this paper, a similar, but simpler approach is applied. Instead of using the orig-
inal fundamental solution, regularized fundamental solutions are used, which are
defined by truncation or by a singularly perturbed fourth-order partial differen-
tial operator. The regularized fundamental solution is continuous at the origin, so
that the Dirichlet boundaries can be treated without appearing singularities. Along
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the Neumann boundaries, a desingularization technique similar to that of the BDS
is applied (based on an auxiliary Dirichlet subproblem). See Gáspár (2013c) for
details of the 2D version of the method. Here the method is generalized to 3D
potential problems and also to axisymmetric problems. The resulting algebraic
systems remain well-conditioned or moderately ill-conditioned, while the accuracy
has proved acceptable.

2 The MFS for 3D potential problems

In this section, we restrict ourselves to the 3D Laplace equation:

∆u = 0 in Ω (1)

supplied with mixed boundary conditions:

u|ΓD = uD,
∂u
∂n
|ΓN = vN (2)

Here Ω ⊂ R3 is a bounded, sufficiently smooth domain; denote by Γ := ∂Ω the
boundary. Assume that Γ is decomposed into a Dirichlet part ΓD and a Neumann
part ΓN (one of them may be empty). The boundary data uD, vN are assumed to be
sufficiently regular functions so that the problem (1)-(2) has a unique solution in a
proper function space.

The fundamental solution of (1) has the form

Φ(x) =
1

4π||x||
, (3)

where ||.|| denotes the Euclidean norm in R3. Φ satisfies the equality ∆Φ = −δ ,
where δ is the Dirac distribution concentrated to the origin.

The traditional MFS defines an approximate solution of the problem (1)-(2) in the
following form:

u(x)≈
N

∑
j=1

α jΦ(x− x̃ j), (4)

where α1, ...,αN are a priori unknown coefficients and x̃1, ..., x̃N are so-called source
points located outside of the domain Ω. The function defined by (4) is clearly har-
monic inside the domain Ω and has singularities at the source points. The coef-
ficients α1, ...,αN can be computed by enforcing the boundary conditions at some
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collocation points x1, ...,xN located on the boundary Γ. This results in a linear
system of algebraic equations:

N

∑
j=1

α jΦ(xk− x̃ j) = uD(xk) (xk ∈ ΓD)

N

∑
j=1

α j
∂Φ

∂nk
(xk− x̃ j) = vN(xk) (xk ∈ ΓN),

(5)

where nk denotes the outward normal unit vector at the boundary collocation point
xk.

It is well known that the MFS generally produces quite accurate approximate so-
lutions: the accuracy increases if the source points are located far from the bound-
ary. The price of the accuracy is that the matrix of the system (5) is severely
ill-conditioned (and is always fully populated and non-symmetric); the condition
number grows rapidly when the distance of the source points and the boundary
increases. The system (5) becomes soon so ill-conditioned that it can hardly be
solved by the usual methods such as the Gaussian elimination.

In 3D problems, an additional difficulty arises from the high number of source/ col-
location points, despite only the boundary Γ has to be discretized by the collocation
points (due to the fact that the MFS is a boundary-only method). If the density of
the discretization is doubled in each space direction, the number of the boundary
collocation points increases by a factor of 4. Thus, using a traditional Gaussian
elimination, the number of necessary arithmetic operations increases by a factor of
43 = 64, which may lead soon to severe computational difficulties.

Example 1: To illustrate the above well-known phenomenon, consider the problem
(1)-(2) defined on the unit cube Ω := (0,1)× (0,1)× (0,1) with the test solution

u(x,y,z) := x2 + z2−2y2, (6)

where we have used the more familiar notations x,y,z for the space coordinates.
Here the edges of the cube were divided into m equal parts, i.e. each side was
divided into m2 congruent subsquares (cells). The boundary collocation points were
defined to be the cell centers, so that the total number of boundary collocation
points is N = 6m2. The source points were located in the outward normal direction
from the collocation points at a distance of k ·h, where h := 1

m denotes the cell size.
The left and the right sides of the cube (i.e. for which y = 0 and y = 1, respectively)
were assumed to be Dirichlet boundaries; the Neumann boundary was formed by
the remaining four sides. The boundary data were defined to be consistent with the
test solution (6). Table 1 shows the relative L2-errors of the approximate solution
defined by the MFS computed on the boundary Γ (in %) with several values of
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Table 1: Traditional MFS, Example 1. Test solution: (6). Mixed boundary condi-
tion. Relative L2-errors (%) on the boundary (upper values) and condition numbers
(lower values).

m\ k 1 2 4 8 16 32
2 6.282 1.989 0.5950 0.1857 0.0039 0.0145

40 371 9.4E+3 5.2E+5 4.4E+7 4.5E+9
4 3.409 0.8877 0.1427 0.0099 3.4E–4 7.9E–6

185 6.1E+3 2.0E+6 8.2E+9 1.7E+14 2.2E+18
8 2.051 0.4455 0.0475 8.0E–4 1.3E–6 1.2E–6

588 3.1E+4 7.1E+7 3.9E+13 3.9E+19 6.7E+20
16 1.363 0.2448 0.0223 2.0E–4 1.1E–6 4.9E–7

1.5E+3 9.9E+4 4.4E+8 5.4E+15 1.5E+20 2.0E+21

the constants m and k defined above (upper values). Table 1 also contains the
corresponding condition numbers (lower values).

Remark: In analyzing the accuracy, it is sufficient to compute the error of the ap-
proximate solution on the boundary only. Once the boundary values of the function
u have been computed, the inner solution can be reconstructed independently by
solving a pure Dirichlet problem, which is often less difficult from computational
point of view than the solution of the original (mixed) problem.

It can clearly be seen that the error decreases rapidly when either the number of
source points or their distance from the boundary increases. However, in both
cases, the condition numbers very rapidly increase at the same time.

An acceptable compromise seems to locate the source points at a distance of the
same order of magnitude as the cell size (i.e. the characteristic distance of the
boundary collocation points; see the first and second columns of Table 1).

In most practical cases, however, the discretization of the boundary is not uniform.
This is the case especially when a surface mesh has been created by a kind of
meshing software (e.g. ANSYS or Nastran). To apply the MFS, there is of course
no need to utilize the whole mesh structure. In the next two examples, the surface
of Ω was discretized by triangular meshes. The boundary collocation points were
defined to be the barycenters of the surface triangles. For each triangle Tj, the
radius ρ j of the inscribed circle was calculated, and the corresponding source point
was located in the outward normal direction from the barycenter at a distance of
k ·ρ j, where k denotes a factor of proportionality. The values of ρ j characterize the
’local fineness’ of the boundary discretization.
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Table 2: Traditional MFS, Example 2. Test solution: (6). Mixed boundary condi-
tion. Relative L2-errors (%) on the boundary and condition numbers.

k 1 2 4 8 16
Relative L2-error (%) 3.094 0.3929 0.0442 0.0030 1.1E–4
Condition number 163 1.2E+3 6.9E+4 2.0E+8 1.7E+16

Example 2: Here the domain Ω is the following cube: Ω := (−5, 5)× (−5, 5)×
(−5, 5). The number of surface triangles (thus, the number of boundary collocation
points as well as the number of source points) is N = 1440. The test solution was
again (6). Along the sides, where the y-coordinates of the points are minimal (resp.
maximal), i.e. along the left and right sides, Dirichlet boundary condition was
prescribed; the remaining boundary points were assumed to be of Neumann type.
Table 2 shows the relative L2-errors of the approximate solution defined by the
MFS computed on the boundary Γ (in %) with different values of the factor k. The
corresponding condition numbers are also shown. It can be seen again that the
farther the source points are located, the more accurate the approximate solution.

Figure 1: The 3D object in Example 3 with a boundary mesh.

Example 3: Now the domain Ω is more realistic. It is a piece of a hybrid engine (see
Figure 1). The shape of the object is axisymmetric (the axis of symmetry is parallel
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Table 3: Traditional MFS, Example 3. Axisymmetric domain, test solution: (6).
Mixed boundary condition. Relative L2-errors (%) on the boundary and condition
numbers.

k 1 2 4 8 16
Relative L2-error (%) 74.85 46.86 2.7202 0.1916 7.5E–4
Condition number 112 2.7E+3 5.2E+6 2.7E+11 6.5E+17

with the y-axis). The number of surface triangles is N = 3318. The test solution
is still (6). Along the sides, where the y-coordinates of the points are minimal or
maximal, Dirichlet boundary condition was prescribed. The remaining boundary
points were assumed to be of Neumann type. Table 3 shows the relative L2-errors
of the approximate solution defined by the MFS computed on the boundary Γ (in
%) with different values of the factor k. The table contains also the corresponding
condition numbers. Comparing the results of Table 3 with those of Table 2, it
can be seen that the tendency is the same: when the distance of the source points
and the boundary increases, the accuracy also increases but the condition number
rapidly grows at the same time. However, due to the more complicated geometry, in
order that an acceptable accuracy is achieved, the source points should be located
at longer distance from the boundary than earlier, which results in much higher
condition numbers.

To summarize, if the sources are located far from the boundary, the resulting alge-
braic system (5) may become severely ill-conditioned, which causes heavy compu-
tational problems. In addition to it, if the domain is non-convex, it is difficult to
define the locations of the source points in an automatized way. On the other hand,
however, if the sources are too close to the boundary, numerical singularities are
generated, which destroys the accuracy of the approximation. To eliminate these
singularities, special tools are needed. In the next section, some of such techniques
are outlined: they are the generalizations of the methods developed originally to
handle 2D problems, see e.g. Gáspár (2008), Gáspár (2009), Gáspár (2013c).

3 Regularization and desingularization

In the paper, we use the word ’regularization’ when the singularity problems due to
the singularity of the fundamental solution (3) are to be avoided. In the presence of
Neumann boundary conditions, the normal derivative of the fundamental solution
also appears, which has stronger singularity than the fundamental solution itself.
To overcome the computational problems arising from the singularity of the nor-
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mal derivative of the fundamental solution, other tools (called ’desingularization
techniques’) are needed.

The simplest regularization technique is the use of truncated fundamental solution

Φ(x) :=


1

4π · c · ||x||
, if c · ||x|| ≥ 1

1
4π

, if c · ||x||< 1

(7)

instead of the original fundamental solution 1
4π·||x|| . The positive factor c plays a

scaling role and should be defined to be inversely proportional to the characteristic
distance of the boundary collocation points, see Gáspár (2008), Gáspár (2013c). It
is clear that the function Φ defined by (7) is continuous everywhere; the trunca-
tion has influence in a small neighbourhood of the origin only, provided that c is
sufficiently large.

Thus, if the problem (1) is supplied with pure Dirichlet boundary condition, then,
using the truncated fundamental solution, the source and the collocation points may
coincide without generating any singularities. In this case, the approximate solution
has the form

u(x)≈
N

∑
j=1

α jΦ(x− x j), (8)

and the coefficients α1, ...,αN can be computed by enforcing the Dirichlet boundary
conditions:

N

∑
j=1

α jAk j = uD(xk) (k = 1,2, ...,N), (9)

where Φ denotes from now on the truncated fundamental solution (7) and

Ak j := Φ(xk− x j) (k, j = 1,2, ...,N) (10)

Remarks:

• In fact, the expression (8) results in a radial basis function (RBF) type in-
terpolation function, which approximates the Dirichlet boundary condition
uD along the boundary and is harmonic in Ω apart from a narrow vicinity of
the boundary. Roughly speaking, if the boundary approximation is accurate
enough, then u remains a good approximation in the whole domain.
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• Another strategy for the regularization is to replace the fundamental solu-
tion (3) with the fundamental solution of the fourth-order partial differential
operator ∆

(
I− 1

c2 ∆
)
, i.e.:

Φ(x) =
1

4π
·

(
−e−c||x||

||x||
+

1
||x||

)

The scaling parameter c should be again inversely proportional to the charac-
teristic distance of the boundary collocation points. The function Φ approx-
imates the harmonic fundamental solution outside of a small neighbourhood
of the origin but remains continuous at the origin (the singularities of the two
terms cancel out). This is a 3D generalization of the regularization proposed
in Gáspár (2008).

Unfortunately, the approach fails to work in the presence of Neumann boundaries,
since the appearing normal derivatives of the fundamental solution have stronger
singularity at the collocation points, and the derivatives of the truncated funda-
mental solution are completely different from those of the original fundamental
solution. More precisely, the normal derivative of the approximate solution (8) has
the form:

∂u
∂n

(x)≈
N

∑
j=1

α j
∂Φ

∂n
(x− x j), (11)

whence, at Neumann boundaries:

N

∑
j=1

α jBk j = vN(xk) (xk ∈ ΓN) (12)

where

Bk j :=
∂Φ

∂nk
(xk− x j) ( j 6= k), (13)

but the diagonal entries Bkk have to be defined in another way called ’desingular-
ization’. To do this, various techniques have been developed, as overviewed in the
Introduction, see e.g. Young, Chen, and Lee (2005), Šarler (2008), Šarler (2009),
Chen and Wang (2010). Here the idea of Liu (2010) (proposed originally for 2D
potential problems) is applied. Consider the auxiliary pure Dirichlet problem

∆w = 0 in Ω, w|Γ = 1 (14)
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The exact solution is obviously w = 1. Expressing w in the same form as in (8):

1 = w(x)≈
N

∑
j=1

β jΦ(x− x j)

The coefficients β1, ...,βN can be computed by solving the system

N

∑
j=1

β jAk j = 1 (k = 1,2, ...,N)

Since ∂w
∂n identically vanishes along the boundary:

N

∑
j=1

β jBk j = ∑
j 6=k

β jBk j +βkBkk = 0,

from which Bkk can be defined as:

Bkk =−
1
βk
·∑

j 6=k
β jBk j (15)

Now the method of truncated fundamental solutions can be applied to the mixed
problem (1)-(2) as well. The approximate solution is expressed in the form (8), and
the a priori unknown coefficients can be computed by solving the linear system:

N

∑
j=1

α jAk j = uD(xk) (xk ∈ ΓD)

N

∑
j=1

α jBk j = vN(xk) (xk ∈ ΓN),

(16)

Remarks:

• The diagonal element Bkk is well defined by Eq. (15) provided that βk differs
from zero. If not, other particular solutions (possibly several ones) can also
be used; Eq. (15) is rewritten as:

Bkk =
1
βk
·

(
∂w
∂nk

(xk)−∑
j 6=k

β jBk j

)

• Similar desingularization techniques appear also in other methods such as
the Modified Method of Fundamental Solutions (MMFS, see Šarler (2008),
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Šarler (2009)); the Singular Boundary Method (SBM, see Gu, Chen, and
Zhang (2011), Chen and Gu (2012) for 2D problems and also Gu, Chen, and
He (2012) for 3D problems), and so forth. Note, however, that the above
technique needs no boundary mesh structure at all, similarly to the Boundary
Distributed Source method (see Liu (2010))

• The above desingularization technique can be improved by redefining not
only the singular diagonal elements of the matrix B but also the ’quasi-
singular’ neighbouring elements, using more auxiliary Dirichlet problems,
see Gáspár (2013b) for the 2D version of the method. The technique can
be generalized for 3D problems in a straightforward way. However, this re-
quires information on the neighbouring boundary collocation points, which
can be easily achieved if a boundary mesh structure is given. Otherwise,
this requires some additional preprocessing task, which, however, does not
increase the computational complexity by a significant amount.

• The desingularization techniques can be defined for the dipole formulation
as well, when the approximate solution is defined by the form

u(x)≈
N

∑
j=1

α j
∂Φ

∂n j
(x− x j).

From a computational point of view, the dipole formulation has proved more
advantageous than the above outlined monopole formulation for pure Dirich-
let problems, while for pure Neumann problems, the monopole formulation
overperforms the dipole formulation resulting in much less condition num-
bers (at least in the case of 2D problems, see Gáspár (2014)). Utilizing this
observation, the mixed problems can be converted to a sequence of pure
Dirichlet and pure Neumann subproblems, the solutions of which converge
rapidly to the solution of the original mixed problem but require much less
computational cost. See Gáspár (2014) for details.

Example 4: Consider again the problem (1)-(2) with the test solution (6). The do-
main Ω is the unit cube Ω := (0,1)× (0,1)× (0,1), and the faces are divided into
m2 congruent subsquares (cells). The source and the boundary collocation points
are defined to be the cell centers. Two opposite sides are defined to be of Dirichlet
type, the remaining sides form the Neumann boundary. Table 4 shows the relative
L2-errors of the approximate solution (based on regularization and desingulariza-
tion defined above) computed on the boundary Γ (in %) with several values of the
constant m and the scaling constant c. The table contains also the corresponding
condition numbers (lower values). The results clearly show that the optimal value
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Table 4: Truncated MFS, Example 4. Test solution: (6). Mixed boundary condi-
tion. Relative L2-errors (%) on the boundary (upper values) and condition numbers
(lower values).

m\ c 4 8 16 32 64 128
2 35.15 2.071 68.07 208.9 491.7 1057.9

20.0 6.0 2.5 2.9 5.4 10.9
4 131.0 18.65 0.6774 35.61 108.3 254.7

656.3 83.6 13.7 5.3 2.5 3.7
8 41.88 15.75 9.069 0.1553 18.35 55.33

1.8E+4 1.6E+5 209.2 29.2 11.3 5.2
16 40.48 13.35 6.105 4.365 0.1060 9.262

3.4E+6 2.7E+5 4.4E+4 441.5 60.5 23.5

Table 5: Truncated MFS, Example 5. Test solution: (6). Mixed boundary condition.
Relative L2-errors (%) on the boundary and condition numbers.

k 1.00 1.25 1.50 1.75 2.00 2.25
Relative L2-error (%) 6.270 3.9899 1.670 0.6876 3.039 5.407
Condition number 155.9 75.7 50.1 37.6 30.1 25.1

of the scaling parameter is inversely proportional to the characteristic distance of
the boundary collocation points.

Example 5: The test problem as well as the boundary conditions remain the same
as in Example 4, but here we have a triangular surface mesh introduced in Example
2 (Ω := (−5, 5)× (−5, 5)× (−5, 5), the mesh consists of 1440 non-congruent
triangles, the barycenters of which play the role of the boundary collocation points).
Here we applied scaling factors c j varying from triangle to triangle defined as

c j := k · 1
ρ j

,

where k is a factor of proportionality and ρ j denotes again the radius of the inscribed
circle belonging to the jth triangle. Table 5 shows the relative L2-errors of the
approximate solution (based on regularization and desingularization defined above)
computed on the boundary Γ (in %) with some different values of the factor k as
well as the corresponding condition numbers.
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Table 6: Truncated MFS, Example 6. Axisymmetric domain, test solution: (6).
Mixed boundary condition. Relative L2-errors (%) on the boundary and condition
numbers.

k 1.25 1.50 1.75 2.00
Relative L2-error (%) 0.3559 0.2460 0.2284 0.4846
Condition number 5.8E+5 289.8 363.7 722.0

Example 6: Now the domain was replaced with the axisymmetric domain described
in Example 3. The same surface mesh was used (the mesh consists of 3318 non-
congruent triangles; the boundary collocation points are defined to be their barycen-
ters). The scaling factors c j are defined exactly as in Example 5. Table 6 shows
the relative L2-errors and the corresponding condition numbers with some different
values of the factor k.

From Tables 5 and 6, it can be seen that the factor k should be defined to be approx-
imately 1.50 ...1.75, which results in acceptable accuracy in both cases though the
domain in Example 6 is much more complicated than in Example 5. In addition to
it, the system (16) remains well-conditioned in contrast to the traditional version of
the MFS shown in Tables 1-3.

4 Axisymmetric problems

If both the domain Ω and the boundary data have axial symmetry, the original 3D
problem can be reduced to a 2D one:

∆u =
1
r

∂

∂ r

(
r · ∂u

∂ r

)
+

∂ 2u
∂ z2 =

∂ 2u
∂ r2 +

1
r
· ∂u

∂ r
+

∂ 2u
∂ z2 = 0, (17)

where we used the more familiar cylindrical coordinates r, z, and, without loss of
generality we assumed that the axis of symmetry is the z-axis.

The domain of Equation (17) is now lies on the upper half-plane (i.e. r > 0 for each
point (r,z) of Ω). The boundary of Ω (still denoted by Γ) consists of a Dirichlet part
ΓD and a Neumann part ΓN . However, due to the axial symmetry, the intersection of
the boundary and the z-axis can be omitted from Γ since a homogeneous Neumann
boundary condition is automatically satisfied here. Along the remaining part, mixed
boundary condition is prescribed:

u|ΓD = uD,
∂u
∂n
|ΓN = vN (18)
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The axisymmetric potential ΦA generated by a point source at (r0,z0) can be ob-
tained by integrating a single layer potential concentrated to a circle with center
(0,z0) and radius r0 over this circle which implies (apart from a multiplicative con-
stant):

ΦA(r,z,r0,z0) =
4
R
·K(κ), (19)

(see Karageorghis and Fairweather (1999)), where K denotes the complete elliptic
integral of the first kind:

K(x) :=
∫ 1

0

1√
1− t2 ·

√
1− x2t2

dt =
∫

π/2

0

1√
1− x2 sin2

θ

dθ ,

where 0≤ x < 1, and R, κ are defined as follows:

R :=
√
(r+ r0)2 +(z− z0)2, κ :=

2 ·√r · r0

R
.

The function defined by (19) is considered a fundamental solution of (17). As
a function of r and z, ΦA solves Equation (17) everywhere, except for the point
(r0,z0).

The problem of singularity appears again. If r→ r0, z→ z0, then obviously κ → 1
and Φ(r,z,r0,z0)→+∞. More precisely, using the well-known asymptotic expan-
sion formula of the complete elliptic integrals:

K(1− x) = log2
√

2− 1
2

logx+O(|x · logx|),

one can easily deduce that, if r→ r0, z→ z0:

ΦA(r,z,r0,z0) =
4
R

log
√

8R(R+2
√

rr0)−
4
R

logd +O(d · | logd|),

where d :=
√

(r− r0)2 +(z− z0)2. This means, that, as expected, Φ has a logarith-
mic singularity at the point (r0,z0).

Note that (19) is not a radial function, however, from this point, the main ideas of
the MFS can be utilized without difficulty.

Let (r j,z j) (resp. (r̃ j, z̃ j)) be boundary collocation (resp. source) points (r j, r̃ j > 0),
where the source points are located outside of the domain Ω. Then the solution of
(17)-(18) can be approximated in the form:

u(r,z)≈
N

∑
j=1

α j ·ΦA(r,z, r̃ j, z̃ j), (20)
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where the coefficients α j can be determined by enforcing the boundary conditions:

N

∑
j=1

α jΦA(rk,zk, r̃ j, z̃ j) = uD(rk,zk) ((rk,zk) ∈ ΓD)

N

∑
j=1

α j
∂ΦA

∂nk
(rk,zk, r̃ j, z̃ j) = vN(rk,zk) ((rk,zk) ∈ ΓN),

(21)

Note, however, that the calculation of the derivatives of ΦA is not trivial. Denote
by E the complete elliptic integral of the second kind:

E(x) :=
∫ 1

0

√
1− x2t2
√

1− t2
dt =

∫
π/2

0

√
1− x2 sin2

θ dθ

Using the well-known equalities for the derivatives of the complete elliptic inte-
grals:

K′(x) =−K(x)
x

+
E(x)

(1− x2) · x

E ′(x) =−K(x)
x

+
E(x)

x
,

after some calculations, the derivatives of ΦA can be determined (see Karageorghis
and Fairweather (1999)), yielding:

∂ΦA

∂ r
=− 2

rR
·K(κ)+

2(−r2 + r2
0 +(z− z0)

2)

rR((r− r0)2 +(z− z0)2)
·E(κ)

∂ΦA

∂ z
=− 4(z− z0)

R((r− r0)2 +(z− z0)2)
·E(κ)

(22)

Remark: Direct calculations show that

∂ΦA

∂ r
=

2
R · ((r− r0)2 +(z− z0)2)

·

·
(
−(K(κ)+E(κ))r+2K(κ)r0 +

−K(κ)+E(κ)
r

· (r2
0 +(z− z0)

2)

)
Hence, using the well-known asymptotic expansion formulas of the complete ellip-
tic integrals

K(x) =
π

2
+

π

8
x2 +O(x4),
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E(x) =
π

2
− π

8
x2 +O(x4),

it follows that

lim
r→0

∂ΦA

∂ r
(r,z,r0,z0) = 0

(with r0 > 0). This means that the normal derivative of the fundamental solution
ΦA, as a function of r and z, vanishes along the z-axis. Thus, the approximate
solution (20) automatically satisfies a homogeneous Neumann boundary condition
along the intersection of the boundary and the z-axis, as expected.

4.1 Regularization and desingularization

Since ΦA has a logarithmic singularity at the point (r0,z0) a regularization tech-
nique is needed. The truncation applied in the previous section is not quite straight-
forward due to the fact that ΦA is not a radial function. First define a truncation for
the function κ . By definition:

κ
2 =

4rr0

(r+ r0)2 +(z− z0)2 ,

whence

1−κ =
1−κ2

1+κ
=

(r− r0)
2 +(z− z0)

2

R(R+2
√

rr0)

which implies that

κ = 1− (r− r0)
2 +(z− z0)

2

R(R+2
√

rr0)

Now let c > 0 be a scaling factor, and, instead of κ , use the following redefined
function (still denoted by κ):

κ(r,z,r0,z0) :=

:=


1− (r− r0)

2 +(z− z0)
2

R(R+2
√

rr0)
, if (r− r0)

2 +(z− z0)
2 >

1
c2

1− 1
R(R+2

√
rr0)
· 1

c2 , if (r− r0)
2 +(z− z0)

2 ≤ 1
c2

Observe that this function is continuous everywhere in the upper half-plane i.e. for
r > 0, r0 > 0. Clearly, the values of κ do not exceed the value 1. On the other hand,
κ is always nonnegative provided that r0 ≥ 1

c . Indeed, since R≥ r+ r0, therefore

c2R(R+2
√

rr0)≥ c2(r+ r0) · (r+ r0 +2
√

rr0)≥ c2r2
0 ≥ 1,



382 Copyright © 2014 Tech Science Press CMES, vol.101, no.6, pp.365-386, 2014

which implies the statement.

Consequently, with this ’truncated’ function κ , the ’truncated’ fundamental solu-
tion

ΦA(r,z,r0,z0) :=
4K(κ(r,z,r0,z0))

c ·R
(23)

is well-defined and has no singularity at (r0,z0).

The scaling parameter should be defined as earlier: it should be inversely propor-
tional to the characteristic distance of the boundary collocation points. Moreover,
the condition cr j ≥ 1 should also be satisfied for each boundary collocation point
(r j,z j).

With this modified function ΦA defined by (23), the approximate solution of (17)-
(18) has the form:

u(r,z)≈
N

∑
j=1

α jΦA(r,z,r j,z j), (24)

where the a priori unknown coefficients α1, ...,αN can be computed by solving the
linear system:

N

∑
j=1

α jAk j = uD(xk) (xk ∈ ΓD)

N

∑
j=1

α jBk j = vN(xk) (xk ∈ ΓN),

(25)

Here the matrix entries are as follows:

Ak j := ΦA(rk,zk,r j,z j)

(k, j = 1,2, ...,N). Moreover, based on the formulas (22), the matrix entries

Bk j :=
∂ΦA

∂nk
(rk,zk,r j,z j)

can also be calculated except for the diagonal entries Bkk. To define the diagonal
terms, a desingularization process defined in the previous section can be applied
based on the particular solution w = 1 (or, possibly, on other particular solutions of
the axisymmetric Laplace equation).

Example 7: Let Ω be the following rectangle of the (z,r)-plane: Ω := (−1, 1)×
(0, 1). A rotation around the z-axis results in a cylinder, the axis of which is the
z-axis. Consider the test function:

u(r,z) := r2−2z2, (26)
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Table 7: Regularized axisymmetric MFS, Example 7. Test solution: (26). Mixed
boundary condition. Relative L2-errors (%) on the boundary (upper values) and
condition numbers (lower values).

N(M)\ c 8 16 32 64 128 256 512
12 (8) 19.44 12.10 42.67 73.18 103.5 133.9 164.2

6.5 5.2 5.6 6.3 7.0 7.7 8.5
24 (16) 26.57 10.55 5.190 20.82 36.42 51.98 67.52

52.8 22.9 15.8 12.7 11.0 10.0 9.3
48 (32) 21.31 12.89 5.237 2.551 10.36 18.19 26.03

402.8 181.0 62.7 40.8 31.6 26.6 23.6
96 (64) - 9.046 6.325 2.558 1.291 5.172 9.070

- 3.7E+3 488.1 151.2 94.7 71.6 59.3
192 (128 - - 4.985 3.136 1.257 0.6532 2.579

- - 5.9E+3 1.1E+3 340.3 207.9 154.6
384 (256) - - - 1.709 1.563 0.6228 0.3287

- - - 9.3E+4 2.6E+3 735.5 442.2

which obviously satisfies (17). Along the boundary of Ω, N boundary collocation
points are located in an equidistant manner; however, the points lying on the z-axis
are not taken into account as boundary collocation points, since the approximate
solution (24) automatically satisfies a homogeneous Neumann boundary condition
along the intersection of the boundary and the z-axis, as pointed out earlier. The
number of the remaining boundary collocation points is denoted by M, while c de-
notes the scaling factor in (23). At the boundary points for which the z-coordinate
is minimal or maximal, i.e. along the left and right sides, Dirichlet boundary con-
dition was prescribed, while the remaining boundary points were assumed to be
of Neumann type. Table 7 shows the relative L2-errors of the approximate solu-
tion (24) computed on the boundary (in %) with several values of N and c (upper
values). Table 7 also contains the corresponding condition numbers (lower val-
ues). The results indicate again that the scaling parameter c should be inversely
proportional to the characteristic distance of the boundary collocation points. The
missing elements of Table 7 correspond to the situation when the condition r j ≥ 1

c
is not fulfilled for some j due to the fact that 1

c is not small enough, therefore the
evaluation of the function κ results in negative values, thus, the evaluation of the
elliptic integrals fails.

Example 8: Consider the axisymmetric domain of Examples 3 and 6; the axis of
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Table 8: Regularized axisymmetric MFS, Example 8. Test solution: (26). Mixed
boundary condition. Relative L2-errors (%) on the boundary and condition num-
bers.

k 1.0 3.0 5.0 7.0 9.0
Relative L2-error (%) 18.75 1.112 0.4812 1.360 5.152
Condition number 1.9E+5 1.0E+3 1.2E+3 1.5E+3 2.5E+3

symmetry is the z-axis. The applied surface mesh consists of 3318 non-congruent
triangles again. The z,r-coordinates of the barycenters of the surface triangles de-
fines 3318 boundary points on the (z,r)-plane (some of them might coincide) From
these points, a much smaller subset of boundary points was selected using a cri-
terion that the distance of the selected points should exceed a predefined value ε .
The scaling factor varied from point to point defined as follows:

c j := k · 1
ρ j

where k is a factor of proportionality and ρ j is the minimal distance between the
jth boundary collocation point and the remaining boundary collocation points.

In this example the value of ε was set to ε := 0.25, which resulted in N = 167
boundary points. Along the side where the z-coordinate of the points were minimal
or maximal, Dirichlet boundary condition was prescribed; the remaining part of
the boundary points was treated as Neumann boundary points. Table 8 shows the
relative L2-errors of the approximate solution (20) computed on the boundary (in
%) with some different values of the factor k. Table 8 contains the corresponding
condition numbers as well. The results show that the method produces acceptable
accuracy; the algebraic system (25) is much smaller than in 3D case and remains
moderately well-conditioned.

5 Summary and Conclusions

A regularized version of the Method of Fundamental Solutions has been developed
for 3D potential problems. The source and boundary collocation points were as-
sumed to coincide. This causes singularities, which have been eliminated by several
techniques. The singularities caused by the singularity of the original fundamental
solution has been avoided by using a truncated (or other approximate) fundamen-
tal solution controlled by a carefully chosen scaling constant. The stronger sin-
gularities caused by the Neumann boundary condition i.e. the normal derivatives
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of the fundamental solution have been eliminated by a special desingularization
technique based on an auxiliary subproblem supplied with pure Dirichlet boundary
condition. This results in acceptable accuracy while the problem of the severely
ill-conditioned matrices is avoided. The approach has been extended to 3D ax-
isymmetric problems as well, using a truncation technique for the complete elliptic
integrals which appear in the fundamental solution of the axisymmetric Laplace
operator.
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