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On the Numerical Solution of the Laplace Equation with
Complete and Incomplete Cauchy Data Using Integral

Equations

Christina Babenko 1, Roman Chapko 2 and B. Tomas Johansson 3

Abstract: We consider the numerical solution of the Laplace equations in planar
bounded domains with corners for two types of boundary conditions. The first one
is the mixed boundary value problem (Dirichlet-Neumann), which is reduced, via
a single-layer potential ansatz, to a system of well-posed boundary integral equa-
tions. The second one is the Cauchy problem having Dirichlet and Neumann data
given on a part of the boundary of the solution domain. This problem is simi-
larly transformed into a system of ill-posed boundary integral equations. For both
systems, to numerically solve them, a mesh grading transformation is employed to-
gether with trigonometric quadrature methods. In the case of the Cauchy problem
the Tikhonov regularization is used for the discretized system. Numerical exam-
ples are included both for the well-posed and ill-posed cases showing that accurate
numerical solutions can be obtained with small computational effort.

Keywords: Laplace equation; Cauchy problem; Corner domain; Mixed problem;
Mesh grading transform; Single-layer potential; Tikhonov regularization.

1 Introduction

Let D ⊂ IR2 be a bounded simply connected domain with boundary ∂D, which
is divided into the two C2-smooth curves (arcs) Γ1 and Γ2 having the points (the
endpoints) P1 and P−1 in common. It is assumed that these two points are corner
points of the boundary ∂D, with interior angles θ1 and θ−1, and θ1, θ−1 ∈ (0,π).

We consider the following linear inverse ill-posed problem: Construct the function
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Figure 1: A solution domain D

u : D→ IR satisfying the Laplace equation

∆u = 0 in D (1)

from the given Cauchy data on Γ2:

u = f2 on Γ2 (2)

and

∂u
∂ν

= g2 on Γ2. (3)

Here f2 and g2 are given functions and ν is the outward unit normal to Γ2. It is
assumed that data are such that there exists a solution. Related to this problem is the
case of incomplete Cauchy data, where for example the Dirichlet data f1 is known
on Γ1 and the Neumann data g2 is given on the boundary part Γ2. This is known as
a mixed problem and is well-posed; for physical applications and history of mixed
problems going back to the model of Nobili’s rings (where on the boundary of a
material there are regions of zero and of very high conductivity, respectively), see
Chapter 2 in Duffy (2008). Both the Cauchy problem and the mixed problem will
be treated in this study in a unified approach.

We shall numerically solve these problems using boundary integral equations. This
seems like a natural choice since only data on the boundary is given, and avoiding
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domain discretisation reduces the dimension of the problem. For the Cauchy prob-
lem it is interesting to note that although this is classical, see Hadamard (1923),
and very well researched, see for example Payne (1975) and Cao, Klibanov and
Pereverzev (2009) and references therein, most numerical results are for smooth
domains without corners, and it also seems that the simple and straightforward ap-
proach of representing the solution in terms of a layer potential ansatz and then
discretising has not been much investigated numerically. It seems like the work
of Cakoni and Kress (2007) is the first where such an approach is mentioned.
Theoretical properties of the method such as solvability of the obtained integral
equations was shown there. However, no numerical results were presented for the
Cauchy problem but for a related non-linear inverse problem (and further investi-
gations for that problem were done in Cakoni, Kress and Schuft (2010 a,b)). Thus,
the main aim and novelty of the present work is to numerically implement and in-
vestigate the potential approach both for mixed problems and Cauchy problem in
domains with corners. In a previous work Chapko, Johansson and Savka (2012),
we utilized this strategy for the slightly simpler situation for the Cauchy problem
in an annular planar domain (separated boundaries), with Cauchy given on one of
these (closed) boundary curves, obtaining reasonable accurate results with small
computational effort. It is this approach that we shall further adjust and apply (also
for the mixed problem) to the above situation for a simply connected domain with
two corner points. Note that there are of course other direct boundary integral ap-
proaches that are possible as well, although not as straightforward; in Chapko and
Johansson (2008) a Green’s function technique was derived and in Chapko and
Johansson (2012) potential theory was used to reduce the Cauchy problem to a
boundary integral equation. Note that the approach we propose, as was pointed out
in Chapko, Johansson and Savka (2012), can be used to obtain in a fast and compu-
tationally efficient way an approximation that can then be used as an initial guess in
more involved methods for the Cauchy problem such as iterative gradient type min-
imization procedures. Note also that integral equation techniques can be adjusted
to for example Cauchy problems in domains with cuts, see Chapko and Johansson
(2008). Furthermore, recently some interesting integral approaches for mixed prob-
lems in corner domains that could potentially be applied for the Cauchy problem
have been proposed, Bremer and Rokhlin (2010); Helsing and Ojala (2008).

The paper is organized in the following way. In Section 2, we start by consid-
ering the numerical solution of the situation with incomplete Cauchy data, i.e. the
well-posed mixed Dirichlet-Neumann boundary value problem in simply connected
domains having two corner points (the boundary condition changes type at these
points as well). We start with this case since it is a well-posed problem. Although
the mixed problem is well researched, we think it is valuable to collect and give



302 Copyright © 2014 Tech Science Press CMES, vol.101, no.5, pp.299-317, 2014

an overview and outline of some (known) results as well as outlining a numerical
procedure for it in corner domains. Having these results in the same paper as the
results for the Cauchy problem highlights the similarities of the difficulties that one
faces when solving these problems numerically.

Thus, in Section 2, we show how to reduce the direct mixed problem to a system
of boundary integral equations having various singularities: a logarithmic singu-
larity in the kernel and weak singularities in the densities at the corner points. For
the numerical solution of the obtained integral equations we use a nonlinear mesh
grading transform for weakening of the singularities in densities, and then a quadra-
ture method with trigonometric quadratures for the full-discretization of the integral
equations (extended to a closed curve).

In Section 3, we investigate a corresponding integral equation approach for the
Cauchy problem (1)–(3) as for the mixed problem. Following Section 2, via log-
arithmic potentials, we reduce the Cauchy problem to a similar system of integral
equations with the additional difficulty that this system consists of ill-posed equa-
tions. Singularities at the corner points are handled via the same mesh grading
transform as in the incomplete case. Tikhonov regularization is used to obtain a
stable solution to the linear system that is obtained via discretisation of the bound-
ary integrals. Numerical examples are presented in Section 4, showing that accurate
results, both for the direct and inverse problems, can be obtained in corner domains
with small computational effort.

2 A boundary integral equation approach for a mixed problem in a domain
with corner points

We first consider the following mixed Dirichlet-Neumann boundary value problem:

∆u = 0 in D, (4)

u = f1 on Γ1 (5)

and

∂u
∂ν

= g2 on Γ2, (6)

where f1 and g2 are given functions. We assume that cap(∂D) 6= 1. This condition
for the logarithmic capacity of the boundary is necessary to obtain uniqueness in
the integral equations we use. It is not a severe restriction to put this condition on
the boundary ∂D, since, if necessary, a preliminary rescaling of the solution domain
D can be done such that the condition will hold (examples of boundaries satisfying
the given condition are boundaries of solution domains D contained inside a circle
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of radius r < 1, respectively, convex domains containing a circle of radius r > 1).
It is then known (see for example McLean (2000)) that for f1 ∈ H1/2(Γ1) and g2 ∈
H−1/2(Γ2) the mixed problem (4)–(6) has an unique solution u ∈ H1(D).

2.1 Logarithmic potential approach for the mixed problem (4)–(6)

For the bounded domain D it is known that the solution of the boundary value
problem (4)–(6) can be represented as a single-layer potential

u(x) =
∫

∂D
µ(y)Φ(x,y)ds(y). (7)

Here, Φ(x,y) = (2π)−1 ln |x− y|−1 is the fundamental solution of (4) and µ is an
unknown density. Denote by µ1 = µ|Γ1 and put µ2 = µ|Γ2 . Using the represen-
tation (7) and imposing the boundary conditions for the mixed problem (4)–(6),
this mixed problem can be reduced to the following system of boundary integral
equations

∫
Γ1

µ1(y)Φ(x,y)ds(y)+
∫

Γ2

µ2(y)Φ(x,y)ds(y) = f1(x), x ∈ Γ1,

1
2

µ2(x)+
∫

Γ1

µ1(y)
∂Φ(x,y)
∂ν(x)

ds(y)+
∫

Γ2

µ2(y)
∂Φ(x,y)
∂ν(x)

ds(y) = g2(x), x ∈ Γ2.

(8)

Note that from results in Costabel and Stephan (1985) it is known that for smooth
boundary data f1 and g2, the densities µ1 and µ2 in (7) have singularities of the
form

µ(x) = O(|x−Pi|λi), x→ Pi, λi = min
{

π

2θi
,

π

2(2π−θi)

}
−1, i =−1,1,

near the corner points Pi. Therefore, the well-posedness of the system (8) can
be shown in a weighted L2-space, see Grisvard (1985), or, in a Sobolev space of
negative order, see Costabel and Stephan (1985).

2.2 Parametrization and a mesh grading transformation for (8)

For the numerical solution of the integral equations (8), we are going to imple-
ment a quadrature method but first, as mentioned in the introduction, we make
a special nonlinear mesh grading transformation (for details see Chapko (2004);
Elschner and Graham (1997); Elschner and Jeon (1997); Kress (1990); Kress and
Tran (2000)). For this transformation to be possible, we have to parametrize the
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integral equations (8). First, we consider a parametrization z̃ : [0,2π]→ ∂D and
z̃([0,π])≡ Γ1 and z̃([π,2π])≡ Γ2. Introducing the cubic polynomial

v(s) =
(

1
q
− π

2

)(
π−2s

π

)3

− 1
q

(
π−2s

π

)
+

π

2
, (9)

where q≥ 2, and setting

w(s) = π
[v(s)]q

[v(s)]q +[v(π− s)]q
, 0≤ s≤ π, (10)

we define the mesh grading transformation

γ(s) =


γ1(s) = w(s), 0≤ s≤ π,

γ2(s) = π +w(s−π), π ≤ s≤ 2π.

Then, clearly

γ ∈Cq−1[0,2π], γ
(`)(0) = γ

(`)(π) = γ
(`)(2π) = 0, `= 1, . . . ,q−1.

Now, we consider a new parametrization of the boundary ∂D, given by

z(s) =


z1(s) = z̃(γ1(s)), 0≤ s≤ π,

z2(s) = z̃(γ2(s)), π ≤ s≤ 2π,

and can then rewrite the integral equations (8) in the parametric form
1

2π

[∫
π

0
ψ1(σ)L11(s,σ)dσ +

∫ 2π

π

ψ2(σ)L12(s,σ)dσ

]
= f1(s),

1
2

ψ2(s)+
|z′2(s)|

2π

[∫
π

0
ψ1(σ)K21(s,σ)dσ +

∫ 2π

π

ψ2(σ)K22(s,σ)dσ

]
= g2(s),

(11)

where in the first equation s ∈ [0,π] and in the second s ∈ [π,2π]. Here, we
introduced the functions f1(s) = f1(z1(s)), g2(s) = g2(z2(s))|z′2(s)| and ψ`(s) =
µ`(z`(s))|z′`(s)|, `= 1,2, and the kernels have the form

Li`(s,σ) =− ln |zi(s)− z`(σ)| for s 6= σ i, `= 1,2

and

Ki`(s,σ) =
< z`(σ)− zi(s),ν(zi(s))>

|zi(s)− z`(σ)|2
for s 6= σ i, `= 1,2,
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with the diagonal term

Kii(s,s) =
< z′′i (s),ν(zi(s))>

2|z′i(s)|2
.

The logarithmic singularity in Lii shall be dealt with later on in this paper.

In the next step, we shall extend each of the parametrizations z1 and z2 to become
2π-periodic. For this, in addition, we define

z1(s)=


z1(s), 0≤ s≤ π,

z1(2π− s), π ≤ s≤ 2π,
and z2(s)=


z2(2π− s), 0≤ s≤ π,

z2(s), π ≤ s≤ 2π,

together with z`(s+2π) = z`(s), `= 1,2.

Thus, each z` is even and 2π-periodic, and clearly these properties then extend to
all functions in the system (11). Now, we can write the system (11) as

1
2π

[∫ 2π

0
ψ1(σ)L11(s,σ)dσ +

∫ 2π

0
ψ2(σ)L12(s,σ)dσ

]
= 2 f1(s),

ψ2(s)+
|z′2(s)|

2π

[∫ 2π

0
ψ1(σ)K21(s,σ)dσ +

∫ 2π

0
ψ2(σ)K22(s,σ)dσ

]
= 2g2(s),

(12)

where s ∈ IR.

Returning to the logarithmic kernel Lii, we perform the transformation

Lii(s,σ) =−1
2

ln
[

4
e2 (coss− cosσ)2

]
+bi(s,σ), i = 1,2,

where

bi(s,σ) = ln
2|coss− cosσ |
e|zi(s)− zi(σ)|

,

with the diagonal term

bi(s,s) = ln
2|sins|
e|z′i(s)|

.

The functions bi are, as can be seen, not defined at the four corners and the centre
of the square [0,2π]× [0,2π], and we shall take this into account later on.

We then use that all functions in (12) are even implying that the following identity
holds∫ 2π

0
µ(σ) ln

[
4
e2 (coss− cosσ)2

]
dσ=2

∫ 2π

0
µ(σ) ln

(
4
e

sin2 s−σ

2

)
dσ , s∈ [0,2π].
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The Dirichlet data on the boundary part Γ2 can, according to (7), be found from the
representation

u(z2(s)) =
1

2π

[∫
π

0
ψ1(σ)L21(s,σ)dσ +

∫ 2π

π

ψ2(σ)L22(s,σ)dσ

]
and the Neumann data on the boundary part Γ1 is given by

∂u
∂ν

(z1(s)) =
ψ1(s)

2|z′1(s)|
+

1
2π

[∫
π

0
ψ1(σ)K11(s,σ)dσ +

∫ 2π

π

ψ2(σ)K12(s,σ)dσ

]
.

Thus, one can complete the data from the mixed problem to have full Cauchy data
on the boundary ∂D.

2.3 Solution properties of the integral equations (12)

Note that the mesh grading transform gives the possibility to analyse the solvability
of the obtained integral equations in L2-spaces. Therefore, introduce the integral
operators

(S11ϕ)(s) =
1

2π

∫ 2π

0
ϕ(σ) ln

(
4
e

sin2 s−σ

2

)
dσ ,

(A11ϕ)(s) =
1

2π

∫ 2π

0
ϕ(σ)b1(s,σ)dσ ,

(B12ϕ)(s) =
1

2π

∫ 2π

0
ϕ(σ)L12(s,σ)dσ

and

(B2`ϕ)(s) =
1

2π

∫ 2π

0
ϕ(σ)K2`(s,σ)dσ , `= 1,2.

Denote by H p
e [0,2π], p≥ 0, the standard Sobolev spaces of even 2π-periodic func-

tions. It is clear that the operator S11 : H p
e [0,2π]→H p+1

e [0,2π] is bounded and has
a bounded inverse. The operators Bi` : H p

e [0,2π]→ H p
e [0,2π], i, ` = 1,2, i` 6= 1,

have smooth kernels and are therefore compact. Thus, we can rewrite the system
(12) in the following operator form

(A +B)~ψ =~g,

where ~ψ = (ψ1,ψ2)
>,~g = (2 f1,2g2)

> and

A =

(
S11 B12
0 I

)
, B =

(
A11 0
B21 B22

)
.
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Clearly, A : H0
e [0,2π]×H0

e [0,2π]→ H1
e [0,2π]×H0

e [0,2π] is bounded and has a
bounded inverse.

In Elschner and Graham (1997) it is shown by using a technique involving the
Mellin transform that the integral operator I +A −1B : H0

e [0,2π]×H0
e [0,2π]→

H0
e [0,2π]×H0

e [0,2π] is bounded and has a bounded inverse. Thus, we have the
following existence result.

Theorem 2.1 Assume that q≥ 3. Then for every f1 ∈H1
e [0,2π] and g2 ∈H0

e [0,2π]
there exist unique solutions ψ1,n,ψ2,n ∈ H0

e [0,2π] to the equations (12).

2.4 Full discretization of the system (12) by a quadrature method

For the numerical solution of the integral equations (12) we use the quadrature
method Atkinson (1997); Kress (1999). Introduce the equidistant grid

sk =
kπ

n
for k = 0, . . . ,2n−1, (13)

and for this grid consider the following two trigonometric quadrature rules

1
2π

∫ 2π

0
f (σ) ln

(
4
e

sin2 si−σ

2

)
dσ ≈

2n−1

∑
k=0

R|k−i| f (sk), (14)

1
2π

∫ 2π

0
f (s)ds≈ 1

2n

2n

∑
k=0

f (sk), (15)

with the weights

R j =−
1
n

(
1+2

n−1

∑
m=1

1
m

cos
m jπ

n
+

(−1) j

n2

)
, j = 0, . . . ,2n−1.

The use of the quadrature formulas (14) and (15) for the integrals in (12) and col-
location at the quadrature points, lead to a linear system. As remarked earlier all
functions in (12) are even with respect to the midpoint of the interval [0,2π], and
ψ`(0) = 0 for `= 1,2. Therefore, we can write the linear system (12) in the form

n−1

∑
i=1

[
ψ1,i

(
R|i−k|+Ri+k +

1
n

b1(sk,si)

)
+ψ2,i

1
n

L12(sk,si)

]
= 2 f1(sk),

ψ2,k +
|z′2(sk)|

n

n−1

∑
i=1

[ψ1,iK21(sk,si)+ψ2,iK22(sk,si)] = 2g2(sk),

(16)
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where ψ`,k ≈ ψ`(sk), k = 1, . . . ,n−1, ` = 1,2. Here, we note that we do not need
to calculate the function b1 at the singular points.

The numerical solution of (4)–(6) can be calculated as

ũ(x) =− 1
2n

n−1

∑
k=1

2

∑
`=1

ψ`,k ln |x− z`(sk)|, x ∈ D (17)

and values of the Dirichlet data on Γ2 can be calculated from

ũ(z2(sk)) =
n−1

∑
i=1

(
ψ1,i

1
2n

L21(sk,si)+ψ2,i[
1
2
(R|i−k|+Ri+k)+

1
2n

b2(sk,si)]

)
,

and the Neumann data on Γ1 is given by

∂ ũ
∂ν

(z1(sk)) =
ψ1,k

|z′1(sk)|
+

1
2n

n−1

∑
i=1

2

∑
`=1

ψ`,iK1`(sk,si)

for k = 1, . . . ,n− 1. Thus, it is possible to numerically complete the data of the
mixed problem (4)–(6) to obtain values of the Cauchy data on all of the boundary
∂D.

Convergence analysis and error estimates for the above quadrature method can be
carried out much in the same way as in Kress and Tran (2000) to obtain the follow-
ing.

Theorem 2.2 Let Γ1,Γ2 ∈ C∞, and let the two corner points of ∂D have inte-
rior angles (1− β1)π and (1− β2)π with 0 < |β1|, |β2| < 1, and assume that
f1 ∈ Hm+5/2(Γ1), g2 ∈ Hm+5/2(Γ2), m ∈ IN, where q is sufficiently large. Then

||ψ`− ψ̃`||H0
e [0,2π] ≤C`n−m, `= 1,2.

Here, ψ̃` are the trigonometric interpolation functions obtained from (16).

3 A boundary integral equation approach for the Cauchy problem (1)–(3)

Now, we consider the original Cauchy problem (1)–(3). Similar to the previous
section, we represent the solution in the following integral form

u(x) =
∫

Γ1

φ1(y)Φ(x,y)ds(y)+
∫

Γ2

φ2(y)Φ(x,y)ds(y), x ∈ D, (18)

with unknown densities φ1 on Γ1 and φ2 on Γ2. Imposing the boundary conditions
on Γ2 constituting the given Cauchy data give the following system of boundary
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integral equations

∫
Γ1

φ1(y)Φ(x,y)ds(y)+
∫

Γ2

φ2(y)Φ(x,y)ds(y) = f2(x), x ∈ Γ2,

1
2

φ2(x)+
∫

Γ1

φ1(y)
∂Φ(x,y)
∂ν(x)

ds(y)+
∫

Γ2

φ2(y)
∂Φ(x,y)
∂ν(x)

ds(y) = g2(x), x ∈ Γ2.

(19)

Clearly, the system (19) can by rewritten as

A~φ = ~f

with ~φ = (φ1,φ2)
> and ~f = ( f2,g2)

>.

One can show, see Theorem 4.1 in Cakoni and Kress (2007), that the operator
A : L2(Γ1)×L2(Γ2)→ L2(Γ2)×L2(Γ2) is injective and has dense range. Therefore,
the standard Tikhonov regularization approach can by applied to the system (19).

We point out that once the densities φ1 and φ2 have been found from (18), using
the integral representation for the solution u one can construct, for example, the
function value f1 on Γ1. Then our densities also satisfies the system (8). Thus, as
was mentioned after (8), even for smooth data, solutions to (8) will have singular-
ities near the corner points. Therefore, it is expected that solutions to (18) have
singularities near the same points, motivating the use of a mesh grading transform
also when numerically solving the Cauchy problem.

We are then in a similar situation as for the mixed problem of the previous sys-
tem, compare (19) with the system (8). Thus, the same techniques and quadratures
can be applied. This shows that the Cauchy problem (1)–(3) and the mixed prob-
lem (4)–(6), are from the point of numerical solution closely connected via our
approach. For the sake of completeness, we outline the details below for the solu-
tion of the system (19)

3.1 Parametrization of the boundary integrals (19)

Employing the mesh grading transformation in (19), given in detail in Section 2.2,
leads to the following parametric system

1
2π

[∫ 2π

0
ϕ1(σ)L21(s,σ)dσ +

∫ 2π

0
ϕ2(σ)L22(s,σ)dσ

]
= 2 f2(s),

ϕ2(s)+
|z′2(s)|

2π

[∫ 2π

0
ϕ1(σ)K21(s,σ)dσ +

∫ 2π

0
ϕ2(σ)K22(s,σ)dσ

]
= 2g2(s),

(20)

for s ∈ IR, where f2(s) = f2(z2(s)), g2(s) = g2(z2(s))|z′2(s)| and ϕ`(s) = φ`(z`(s))
|z′`(s)|, `= 1,2. All kernels are defined as in Section 2.
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3.2 Discretisation of (20)

The use of the quadrature method described in Section 2.4, applied to the integrals
(20), leads to the following linear system

n−1

∑
i=1

[
ϕ1,i

1
n

L21(sk,si)+ϕ2,i

(
R|i−k|+Ri+k +

1
n

b2(sk,si)

)]
= 2 f2(sk),

ϕ2,k +
|z′2(sk)|

n

n−1

∑
i=1

[ϕ1,iK21(sk,si)+ϕ2,iK22(sk,si)] = 2g2(sk),

(21)

where ϕ`,k ≈ϕ`(sk), k = 1, . . . ,n−1, `= 1,2. Similar to (17) the numerical solution
of (1)–(3) can be calculated as

ũ(x) =− 1
2n

n−1

∑
k=1

2

∑
`=1

ϕ`,k ln |x− z`(sk)|, x ∈ D. (22)

The matrix corresponding to the system (21) has a large condition number due to
the ill-posedness of the Cauchy problem (1)–(3), and therefore to obtain a stable
solution regularization of this system is necessary. One possible way is to apply
to (21) Tikhonov regularization with a regularization parameter α > 0. Although
there are optimal choices for α (the discrepancy principle), it is often simpler and
faster to use a heuristic choice such as the L-curve rule, see Hansen (2000).

4 Numerical examples

We then demonstrate the applicability of our approach for a direct mixed problem
as well as two Cauchy problems. The following L2-errors will be calculated

e(`)2 =

√
1
n

n−1

∑
i=1

(uex(z`(si))− ũ(z`(si)))2|z′`(si)|

and

de(`)2 =

√
1
n

n−1

∑
i=1

(
∂uex

∂ν
(z`(si))−

∂ ũ
∂ν

(z`(si)))2|z′`(si)|

for ` = 1,2. Here, uex is the sought solution that is known analytically in the first
two examples and only numerically in the third example. For both of the solution
domains that we shall use, and which are introduced below, one can check that
cap(∂D) 6= 1.
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Figure 2: Solution domains for the numerical examples

Example 1. Let the bounded domain D be bounded by the union of the boundary
curves (see Fig.2a)

Γ1 = {z̃1(t) = (cos t,sin t), t ∈ [0,π]}

and

Γ2 = {z̃2(t) = (cos t,0.2sin t), t ∈ [π,2π]}.

We consider the harmonic function uex(x) = x2
1 − x2

2, x ∈ D, and the necessary
boundary data functions for the mixed problem (4)–(6) is generated as the nec-
essary restrictions of uex and its normal derivative to the corresponding boundary
parts.

We then investigate our numerical procedure for the mixed boundary value problem
(4)–(6) with the above constructed data. In Table 1 are errors for the calculated
boundary data on Γ1 and Γ2 for various numbers n used to generate the grid points
in (13), together with the absolute error |uex(x∗)− ũ(x∗)| at the point x∗ = (0,0) in
the domain D (with ũ being given by (17)). All results were obtained for the degree
q = 7 of the polynomial in (9) used for the mesh grading transformation.
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Table 1: Errors for the numerical solution in Example 1 (mixed problem)

n e(2)2 de(1)2 |uex(x∗)− ũ(x∗)|
8 7.101928E-03 3.202661E-01 3.837358E-03

16 2.934899E-04 5.990996E-02 4.540162E-05
32 1.335491E-07 1.775584E-04 2.861962E-10
64 1.727974E-10 3.578890E-06 7.370935E-13

128 8.345351E-15 3.028298E-07 2.259076E-15

The algebraic convergence of high order is clearly demonstrated. Varying the solu-
tion domain gives much the same results and no further issues can be reported, as
expected, since the mixed problem is well-posed.

Example 2. We use the same analytical solution uex and solution domain D as in
Example 1, and consider the Cauchy problem (1)–(3). The results of the numer-
ical reconstruction ũ given by (22) of the function uex with the proposed method,
on the boundary part Γ1 of the domain D, for the case of exact and noisy data,
are presented in Figs.3–5. Here, the degree q = 3 in (9) and to generate the grid
points n = 64 in (13). Note that for noisy data, random errors are added pointwise
to the corresponding boundary function, with the percentage given in terms of the
L2 norm. As expected, the reconstruction of the normal derivative is less accurate.
Note though, as mentioned in the introduction, our proposed approach is straight-
forward and requires little computational effort. Thus, we can not expect very ac-
curate results but taking into account the simplicity of the proposed approach and
comparing with results in the literature, the employed approach is doing well. One
can, to try to improve the reconstructions, use some post processing or filtering,
or use the obtained reconstruction as an initial guess in gradient type minimization
procedures.

Example 3. Let now the boundary curves Γ1 and Γ2 be given as (see Fig.2b)

Γ1 = {z̃1(t) = (−2t
π
+1,0), t ∈ [0,π]}

and

Γ2 = {z̃2(t) = (cos t,0.4sin t−0.3sin2 t), t ∈ [π,2π]}.

The Cauchy data on Γ2 are generated by solving the mixed boundary value problem
(4)–(6) with

f1(x) = cos(x1 + x2), x ∈ Γ1, g2(x) = sin(x1 + x2), x ∈ Γ2,
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Figure 3: Reconstruction on the boundary part Γ1 in Example 2 (exact data, α =
10−10)
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ũ

∂
ν
(z

1
(s
))

 

 

0.5 1 1.5 2 2.5 3

−2

−1

0

1

2
exact
reconstructed

b). The normal derivative (de(1)2 = 0.22)
Figure 4: Reconstruction on the boundary Γ1 in Example 2 (3% noise in the func-
tion g2, α = 10−6)
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Figure 5: Reconstruction on the boundary Γ1 in Example 2 (3% noise in the func-
tion f2, α = 10−4)
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and the obtained numerical solution is denoted uex (altought not analytically known).

The results of the reconstructions for the Cauchy problem (1)–(3) with the proposed
approach are presented in Fig.6 and Fig.7. Here, we used the parameters q= 3 in (9)
and for generating the grid points n = 64 in (13). The numerical approximation ũ
is given by (22). Again, as pointed out in the previous example, taking into account
the simplicity of the proposed approach, the results are good and comparable with
results obtained with more involved methods.
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Figure 6: Reconstruction on the boundary Γ1 in Example 3 (exact data, α = 10−4)
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Figure 7: Reconstruction on the boundary Γ1 in Example 3 (3% noise in the func-
tion g2, α = 10−3)

5 Conclusion

We considered a unified approach for mixed boundary value problems and Cauchy
problems in planar simply connected domains having two corner points. The solu-



Numerical Solution of the Cauchy Problem Using Integral Equations 315

tion is sought as a single-layer potential over the boundary of the solution domain
and imposing the given boundary conditions gives, for both problems, a system
of boundary integral equations. Via a mesh grading transformation technique, sin-
gularities in these boundary integrals could be weakened and the integrals can be
extended to all of the boundary, and therefore standard quadrature rules can be used
for discretisation. For the Cauchy problem, it was shown that the integral equations
had the necessary properties such that Tikhonov regularization could be applied to
obtain a stable solution. Numerical examples were presented both for the direct
mixed problem as well for Cauchy problems. These confirmed that the proposed
approach can give accurate results with small computational effort both for direct
and inverse problems. To further improve the reconstructions, some post process-
ing or filtering can be used, or the obtained reconstruction can be used as an initial
guess in gradient type minimization procedures.
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