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Abstract: In this work, a corrected three-dimensional smoothed particle hydro-
dynamics (CSPH-3D) method is proposed to simulate the polymer free surface
flows in the filling process based on the eXtended Pom-Pom (XPP) model, and
some complex deformation phenomena are also numerically predicted. The pro-
posed CSPH-3D method is mainly motivated by a coupled concept that an extended
kernel-gradient-corrected SPH (KGC-SPH) method is used in the interior of fluid
flow and the traditional SPH (TSPH) method is used near the boundary domain.
The present 3D particle method has higher accuracy and better stability than the
TSPH-3D method. Meanwhile, a density diffusive term is introduced to restrain
the pressure oscillations, and a new boundary treatment is proposed to deal with
multi-complex-wall-boundaries, which is effective and convenient for enforcing.
Moreover, the MPI parallelization means with a dynamic cells neighbor particle
search method is also adopted for enhancing the computational efficiency. The
advantages and ability of the present method combined with other techniques are
first demonstrated by several bench tests and compared with other results. Then
the filling processes confined in two type containers based on the XPP fluid are
simulated using the proposed CSPH-3D method, which including the filling with
two-inlets in a rectangle container and the complex filling of die casting in a ring
container. Some interesting phenomena are observed for example the jet coiling
and race track effect, and the shear thinning behavior of XPP fluid is also shown.
Finally, the influences of macroscopic rheological parameters on the deformation
of complex filling process are numerically predicted and analyzed.
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1 Introduction

In today’s manufacture, the polymer filling process possesses a crucial stage in the
polymer molding, for example the forming process of food or plastic products. It
is well known that it is very important to fill these containers as rapidly as possible
without spillage or deterioration in the product [Tomé et al. (1999); Hwang and
Kwon (2002)]. Some instability phenomena occur when the polymer mould de-
sign or parameters of fluid is inappropriate, which can lead to undesirable shape.
Therefore, it is necessary to develop more effective control of the mould injection
performance, especially for 3D mould filling. In addition, the capture of insta-
bility phenomena are also considered, and which are usually involving the study
of complex free surface flows and entangling of interfaces, such as the splashing,
spluttering, sloshing or jet buckling/coiling . Recently, the numerical simulation
offers a powerful and effective means to track the 3D complex free surface and
study the 3D filling process due to the difficulties of experimental way for 3D
polymer melt molding. In order to better demonstrate the shear or nonlinear be-
havior of polymer melt in the filling process, the branched polymer melts based
on the three-dimensional eXtended Pom-Pom (XPP) model [Vebeeten, Peters and
Baaijens (2001); Oishi et al. (2012)] is mainly studied in this paper, which can
degenerate to the Oldroyd-B fluid.

Many grid-based numerical methods have been developed and applied to treat the
complex viscoelastic free surface and to simulate the filling process with the con-
dition of low pressure or low velocity, such as finite difference method (FDM) and
finite volume method (FVM) coupled with marker and cell (MAC) [Oishi et al.
(2012); Tomé et al. (2002)], volume of fluid (VOF) and level set [Li et al. (2011)]
methods. However, the mesh-based methods based on the Eulerian description are
usually suffer from some difficulties for dealing with the extremely complex free
surface behavior found in high pressure or high velocity filling process, such as
the mesh generation for 3D mould filling is very expensive and so on [Hwang and
Kwon (2002); Tomé et al. (2008)]. For the reasons, the grid-free method is first
considered and explored to study the complex 3D polymer filling process.

In recent decades, the smoothed particle hydrodynamics (SPH) method has been
widely used to simulate large deformation problems in mechanics field [Li and
Liu (2002); Zhou and Ge (2014)], which is a special case of the MLPG approach
[Sladek et al. (2013)] and is regarded as a pure mesh-free particle method based
on Lagrangian description. The main merits of SPH method over than the grid-
based methods lie in: (a) It is easy to program for complex problems especially
for 3D case without mesh reconstruction; (b) Complex free surfaces are modeled
easily and naturally without the need of explicit surface tracking technique. Since
then, The SPH method has been applied and extended to many fluid areas such
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as 3D viscous flows [Ferrari et al. (2009); Ferrari et al. (2009); Cleary et al.
(2007)], 2D multi-phase flows [Colagrossi and Landrini (2003); Hu and Adams
(2006)], 2D incompressible flows [Skillen et al. (2013); Zainali et al. (2013], and
2D viscoelastic fluid flows [Ellero and Tanner (2005); Fang et al. (2006); Ren et
al. (2011)]. In addition, the SPH method combined with the ALE formulation is
well used to handle the Fluid Structure Interaction problems, which can be seen in
recent work [Messahel and Souli (2013)]. However, the numerical simulations of
complex 3D polymer filling process based on viscoelastic constitutive model using
the SPH method are rare.

On the other hand, the traditional SPH (TSPH) method is usually suffer from two
major drawbacks, that is, the low accuracy and numerical/tensile instability. Hence,
some corrective SPH methods based on the concept of Taylor series to restore the
consistency [Chen and Beraun (2000); Liu, Xie and Liu (2005); Zhang and Batra
(2004); Liu and Liu (2006); Zhang and Batra (2007); Batra and Zhang (2008)] of
the kernel and gradient particle approximations of TSPH method and remedy its
accuracy and stability, for example the corrected smoothed particle hydrodynamics
method (CSPM) [Chen and Beraun (2000)], finite particle method (FPM) [Liu, Xie
and Liu (2005)], modified SPH (MSPH) method and the symmetric SPH (SSPH)
method [Zhang and Batra (2004); Liu and Liu (2006); Zhang and Batra (2007);
Batra and Zhang (2008)]. Unfortunately, these improved SPH methods have not
extensively applied to viscous or viscoelastic free surface flows due to some disad-
vantages of themselves: the singularity of formed local matrix may cause serious
instability; it is very complicated to extendedly apply them for complex free sur-
face flows problems, especially for 3D problems which can be seen from their con-
struction process. In order to find a proper improved SPH method by adopting the
concept of Taylor series in the simulation of viscous fluid or free surface flows, the
corrected kernel gradient scheme by adopting the partial concept of CSPM method
has been introduced to the discretization schemes of TSPH and extensively applied
to viscous fluid flows problems [Bonet and Lok (1999); Ren et al. (2011); Stranex
and Wheaton (2011); Fetehi and Manzari (2012); Jiang, Ouyang and Ren (2012)]
in recent years. However, it has not been still extendedly applied to simulate 3D
viscoelastic free surface flows in our knowledge. Moreover, some other techniques
are still need to remedy the tensile instability or decrease pressure oscillations even
if the treatment of complex boundaries and computational efficiency of 3D particle
method are also needed be enhanced.

For all the above reasons, it is necessary to seek an appropriate corrected SPH
method for solving the 3D viscoelastic fluid flows problems and simulating the vis-
coelastic free surface flows. In this work, we mainly focus on a balanced improved
SPH method that can be conveniently extended to simulate the complex filling pro-
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cess based on polymer melts, and the proposed method compromises the accuracy,
the stability and computational efficiency between the traditional SPH and other
improved SPH methods (e.g. FPM, MSPH and SSPH). Then a 2D corrected SPH
scheme combined with a density diffusive term is considered and extended to sim-
ulate the 3D viscoelastic free surface flows, which has been introduced in our pre-
vious work [Bonet and Lok (1999)] and mainly applied to 2D filling process of
viscous fluid. The proposed 3D particle scheme is motivated by a coupled concept
that the extended 2D kernel-gradient-corrected SPH (KGC-SPH) method without
involving kernel derivative in [Ren et al. (2011); Ren et al. (2011)] is used in
inner fluid region and the TSPH method is used near the boundary domain, name
as the corrected 3D SPH (CSPH-3D) method. It is worth noting that the derived
discretization scheme of momentum equation using the KGC-SPH method is dif-
ferent from the momentum discretization scheme in [Ren et al. (2011); Fetehi and
Manzari (2012)]. In addition, a new boundary treatment is also presented to treat
complex multiple solid walls, which is effective and easier to perform than that in
[Xu et al. (2012)]. We can also know that a huge amount of calculation have to
be handled when the proposed CSPH-3D method for solving 3D viscoelastic fluid
problems due to the search of neighbor particle. For enhancing the computational
efficiency, the MPI parallelization means with a dynamic cells neighbor particle
search method is adopted and performed in an IBM HPC Platform with c++ code.

In this paper, the 3D polymer filling process based on the XPP model is mainly
simulated using the proposed CSPH-3D method with density diffusive term and
multiple boundary conditions and it is performed in an IBM HPC Platform with
MPI parallelization means, in which the filling process with two-inlets in a rect-
angle container or in a ring cavity. Some interesting instability phenomena (e.g.
jet coiling) are also observed. Particularly, the influences of the macroscopic rhe-
ological parameters on the complex filling process is numerically predicted and
discussed. This work is organized as follows: The 3D governing equations for the
XPP fluid are introduced in section 2; Section 3 describes the CSPH-3D discretiza-
tion scheme of the Navier-Stokes equations based on the XPP model, including
boundary treatment, density diffusive term and artificial viscosity; In section 4, the
validity and ability of proposed particle scheme is tested by several benchmarks
involving the 3D filling process of XPP fluid with a single inlet, and the merits of
proposed CSPH-3D method combined with the density diffusive term and boundary
treatment are also demonstrated; The 3D filling process with two type containers
will be numerically predicted in section 5 and section 6, respectively; Some com-
plex free surface phenomena have been also illustrated and discussed with different
rheological parameters in sections 5 and 6. Conclusions and remarks are reported
in section 7.
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2 Three-dimensional governing equations for the XPP fluid

2.1 Governing equations

In a 3D Lagrangian frame, the flow of concentrated polymer solutions and melts
is governed by the conservation of mass and momentum equations, together with a
constitutive equation. The fluid flow is usually described by the following govern-
ing equations:

dρ

dt
=−ρ∇ ·u, (1)

du
dt

=
1
ρ

∇ ·σσσ +g, (2)

where u = (u,v,w) is the velocity vector, ρ is the fluid density, t is time, g is the
gravitational acceleration and d

/
dt is the material derivative d

/
dt = ∂

/
∂ t +u ·∇.

The total Cauchy stress tensor σ in Eq. (2) is usually decomposed into the ordinary
isotropic pressure p, viscous 2ηND and polymeric extra stress tensor τττ p

σ =−pI+2ηND+ τττ p, (3)

where I refers to identity matrix, D is the rate of deformation tensor, which is given
by

D =
1
2
(
∇u+(∇u)T ) . (4)

2.2 Constitutive model for the XPP

In this work, the extended pom-pom model (XPP) in multi-mode form [Vebeeten
et al. (2001); Oishi et al. (2012)] is considered to study the influence of shear or
viscoelastic behavior on free surface in polymer filling process. The major features
of XPP model are: the dependence of melt rheology upon the polymer molecular
structure; the spectrum of relaxation time to be taken into account leads to charac-
ters of orientation and stretch. The constitutive model for the XPP fluid is described
as:

f (λ ,τττ p)τττ p +λ0b
∇

τττ p+G0 [ f (λ ,τττ p)−1]I+
α0

G0
τττ p · τττ p = 2λ0bG0D, (5)

where the function f (λ ,τττ p) is given by

f (λ ,τττ p) = 2
1

λ r
eν(λ−1)

(
1− 1

λ

)
+

1
λ 2

(
1−

α0Iτp·τp

3G2
0

)
, (6)
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and the symbol “
∇·” represents the following upper-convected derivative

∇

τττ p =
dτττ

dt
− τττ p · (∇u)− (∇u)T · τττ p, (7)

G0 is the linear relaxation modulus, I refers to the trace of a tensor. λ r = λ0s
/

λ0b(λ0b
and λ0s are the orientation and backbone stretch relaxation time respectively) shows
that small values of λ r correspond to highly entangled backbones [Vebeeten et al.
(2001)], and the anisotropy parameter α0 6= 0. The parameter v in the exponential
term in Eq. (6) is incorporated into the stretch relaxation time to remove the dis-
continuity from the gradient of the extensional viscosity. Its value is found to be
inversely proportional to the number of arms q, ν = 2

/
q. The backbone stretch λ

is related to the viscoelastic stress tensor

λ =

√
1+

∣∣Iτp

∣∣
3G0

, (8)

where the symbol “|·|” represents the absolute value.

Here, the following parameters are introduced, namely the total viscosity η = ηN +
ηp, ηp = G0λ0b, β0 = ηN

/
(ηN +G0λ0b).

In addition, the XPP model can degenerate the Oldroyd-B model when α0 = 0 and
f (λ ,τττ p) = 1 in Eq. (5), and the UCM model is further obtained if β0 = 0. It is
worth noting that two type constitutive models are considered for easy of compari-
son in this paper, i.e. the XPP and Oldroyd-B models.

2.3 Equation of state

In the application of TSPH method, the incompressible flows were usually treated
as slightly compressible flows by adopting a suitable equation of state (see Mon-
aghan [Monaghan (1994)] and Morris et al. [Morris, Fox and Zhu (1997)]). Here,
the incompressible flows are also treated as weakly compressible flows using the
following equation of state [Ellero and Tanner (2005)]

p(ρ) = c2
ρ

2/2ρ0, (9)

where c is the speed of sound and ρ0 is reference density. An artificial, lower sound
speed is usually used to avoid the instability and extremely small time steps. To
keep the density variation of fluid less than 1% of the reference density, the Mach
number M (M≡V

/
c, where V is a typical reference velocity) [Zhou and Ge (2014)]

must be smaller than 0.1.
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3 The Corrected three-dimensional SPH scheme

In this section, a corrected 3D SPH (CSPH-3D) scheme is proposed to solve the
3D viscoelastic fluid problems based on the XPP model, that is mainly derived
a coupled approach between the KGC-SPH-3D method without kernel derivative
and TSPH-3D method. The CSPH-3D scheme has higher accuracy and better sta-
bility than TSPH-3D, in which the KGC-SPH-3D scheme is achieved by introduc-
ing the extended corrected scheme of first-order kernel gradient in the discretiza-
tion schemes of governing equations and the construction process is based on the
alliance of particles interaction. It is worth noting that the achieved KGC-SPH
scheme is different from it in [Ren et al. (2011); Fetehi and Manzari (2012)].
Moreover, the 2D density diffusive term (see [Ren et al. (2011); Antuono, Cola-
grossi, Marrone and Molteni (2010)]) is extended and introduced in the CSPH-3D
method for restraining the pressure oscillations. The CSPH-3D scheme for the XPP
fluid flow is outlined as follows.

3.1 TSPH-3D scheme

In the constitution of TSPH-3D method, the integral interpolation theory is used for
a kernel function. The fluid region Ω is discretized into a finite number of particles
in 3D system, where all the relevant physical quantities are approximated in terms
of the integral representation over neighboring particles. Each particle carries a
mass m, velocity u, and other physical quantities depending on the problem.

For any function f and its first-order derivative defined at the position r=(x,y,z)
are usually expressed by the following integral (see [Li and Liu (2002); Zhou and
Ge (2014)]).

〈 f (r)〉=
∫
Ω

f
(
r′
)

W
(
r− r′,h

)
dr′, (10)

〈∇ f (r)〉=
∫
Ω

f
(
r′
)

∇Wdr′− f (r)
∫
Ω

∇Wdr′, (11)

where W denotes the kernel function (or smoothing function) and h represents the
smoothing length defining the influence area of W . The W is usually needed to
meet three properties (see [Zhou and Ge (2014)], that is the Dirac function prop-
erty lim

h→0
W (|r− r′| ,h) = δ (|r− r′|), the positive property W (r− r′,h)≥ 0, and the

compact property W (|r− r′| ,h)> 0 over Ω, W (|r− r′| ,h) = 0 when |r− r′|> κh
(where κ is a constant).

The integrating principle by parts and the divergence theorem are applied to the
Eqs. (10) and (11), we can get the particle discretization scheme of TSPH for
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a function f (r) and its first derivative at the position ri=(xi,yi,zi), which can be
written in the condensed forms

fi = ∑
j

m j

ρ j
f jWi j, (12)

(
∂ f
∂ri

)
= ∑

j

m j

ρ j
( f j− fi)

∂Wi j

∂ri
, (13)

where the Wi j = W
(∣∣ri− r j

∣∣ ,h), ∂Wi j
/

∂ri = −∂Wji
/

∂r j. The m j and ρ j are the
mass and density of the j–th particle, and f j = f (r j). m j

/
ρ j represents the occu-

pied volume by the j–th particle.

The smoothing function W is related not only with the accuracy but also with the
efficiency and stability of the resulting algorithm. According to reference [Wend-
land (1995)], the Wendland function can produce more accurate results than the
common splines kernel functions (e.g. the cubic or quintic splines function). The
3D quintic Wendland kernel function is used in this work, which is

Wi j =W (r,h) = w0

{ [
2−
(
r
/

h
)]4 [(2r

/
h
)
+1
]
, 0≤ r

/
h<2

0, r
/

h≥ 2
, (14)

where the r =
∣∣ri− r j

∣∣ and the normalization factor w0 is 21/
(
211πh3

)
(w0 is

7
/(

64πh2
)

for 2D quintic Wendland kernel function). Here, the smoothing length
h is given by 1.0d0∼1.5d0 with d0 (as the initial distance) between neighboring
particles. The compact support domain size is 2h.

Introducing the discrete gradient equation (13) and the identity formula 1
ρ

∂σαβ

∂xβ
=

∂

(
σαβ

/
ρ

)
∂xβ

+ σαβ

ρ2
∂ρ

∂xβ
, the particle discretization schemes of the governing equations

can be obtained, which are(
dρ

dt

)
i
= ρi ∑

j

m j

ρ j
(uβ

i −uβ

j )
∂Wi j

∂xβ

i

, (15)

(
dvα

dt

)
i
= ∑

j
m j

(
σ

αβ

i

ρ2
i

+
σ

αβ

j

ρ2
j

)
∂Wi j

∂xβ

i

+gα , (16)

where uβ is the β–th component of the fluid velocity, σαβ is the (α,β )–th compo-
nent of the total stress tensor and xβ is the component of 3D spatial coordinate.

The particle discretization form of total stress equation (3) can be defined as

σ
αβ

i =−pδ
αβ +β0η

(
κ

αβ

i +κ
βα

i

)
+
(

τ
αβ
p

)
i
, (17)
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and introducing the expression of velocity gradient:καβ

i =
(

∂uα

∂xβ

)
i
=∑

j

m j
ρ j
(uα

j−uα
i )

∂Wi j

∂xβ

i
.

The discretization scheme of constitutive equation (5)-(6) for the XPP model is(
dτ

αβ
p

dt

)
i

=κ
αγ

i (τp)
γβ

i +κ
βγ

i (τp)
γα

i −
f
(
λ ,(τp)i

)
λ0b

(τp)
αβ

i

− (1−β0)η

(λ0b)
2

[
f (λ ,(τp)i)−1

]
δ

αβ

− α0

(1−β0)η
(τp)

αγ

i (τp)
γβ

i +
(1−β0)η

λ0b

(
κ

αβ

i +κ
βα

i

)
,

(18)

Where

f (λ ,(τp)i)=
2

λ r
eν(λ−1)

(
1− 1

λ

)
+

1
λ 2

(
1−
(

λ0b

3(1−β0)η

)2

α0 (τp)
αβ

i (τp)
αβ

i

)
,

(19)

λ =

√
1+

λ0b
∣∣(τp)

αα

i

∣∣
3(1−β0)η

. (20)

The above mentioned formula (16)-(17) of TSPH-3D method give expression to
particle interaction of neighbor particles.

3.2 CSPH-3D scheme

The 2-D corrected symmetric kernel gradient scheme [Bonet and Lok (1999); Ren
et al. (2011)] and the Taylor expansion concept [Chen and Beraun (2000); Liu,
Xie and Liu (2005); Zhang and Batra (2004); Liu and Liu (2006); Zhang and Batra
(2007); Batra and Zhang (2008)] are extendedly applied to remedy the first-order
derivative of TSPH-3D scheme i.e. the Eqs. (15)-(17), respectively. The obtained
corrected scheme can restore the particle approximations consistency and improve
the numerical accuracy and stability of TSPH-3D method. The extended KGC-
SPH-3D schemes without involving kernel derivative for the viscoelastic fluid flow
based on the XPP model, which are(

dρ

dt

)
i
= ρi ∑

j

m j

ρ j
(uβ

i −uβ

j )
∂W̃ KG

i j

∂xβ

i

, (21)

(
duα

dt

)
i
= ∑

j
m j

(
σ

αβ

i

ρ2
i

+
σ

αβ

j

ρ2
j

)
∂W̃ KG

i j

∂xβ

i

+gα , (22)
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κ
αβ

i =

(
∂uα

∂xβ

)
i
= ∑

j

m j

ρ j
(uα

j −uα
i )

∂W̃ KG
i j

∂xβ

i

(23)

where
∂W̃ KG

i j

/
∂xi

∂W̃ KG
i j

/
∂yi

∂W̃ KG
i j

/
∂ zi

= (As)−1

 x jiWi j

y jiWi j

z jiWi j

 ,

As =



N
∑
j=1

m j
ρ j

x jix jiWi j
N
∑
j=1

m j
ρ j

y jix jiWi j
N
∑
j=1

m j
ρ j

z jix jiWi j

N
∑
j=1

m j
ρ j

x jiy jiWi j
N
∑
j=1

m j
ρ j

y jiy jiWi j
N
∑
j=1

m j
ρ j

z jiy jiWi j

N
∑
j=1

m j
ρ j

x jiz jiWi j
N
∑
j=1

m j
ρ j

y jiz jiWi j
N
∑
j=1

m j
ρ j

z jiz jiWi j

 (24)

Where x ji = x j− xi, y ji = y j− yi, z ji = z j− zi.

It should be noted that the corrected scheme (22) mentioned above is different from
the relevant corrected scheme in [Ren et al. (2011); Fetehi and Manzari (2012)],
which can accurately tracing the phenomenon of jet coiling in the simulation of
polymer filling process in a rectangle container. Moreover, the corrected scheme
does not include kernel derivative (see Eq. (24)) which has some merits of MSPH
and SSPH method (see [Xu et al. (2012); Monaghan (1994)]).

The CSPH-3D method is motivated by the coupled concept between TSPH-3D
method and the KGC-SPH-3D method. Its idea is using the KGC-SPH-3D in the
interior fluid field and using the TSPH-3D near the free surface (or boundary par-
ticles), and the boundary particles or free surface particles may be identified by
particle densities [Zhou and Ge (2014); Monaghan (1994)]].

The CSPH-3D schemes for the XPP fluid flow can be obtained by using Eqs. (15)-
(18) for the boundary fluid particles and using Eqs. (18), (21)–(23) for the interior
fluid particles, which are(

dρ

dt

)
i
= ρi ∑

j

m j

ρ j
(uβ

i −uβ

j )S
β

i j, (25)

(
duα

dt

)
i
= ∑

j
m j

(
σ

αβ

i

ρ2
i

+
σ

αβ

j

ρ2
j

)
Sβ

i j +gα , (26)

κ
αβ

i =

(
∂uα

∂xβ

)
i
= ∑

j

m j

ρ j
(uα

j −uα
i )S

β

i j, (27)
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where

Sβ

i j =


(

∂Wi j

/
∂xβ

i

)
, i ∈ boundary particles(

∂W̃ KG
i j

/
∂xβ

i

)
, i ∈ interior particles

, (28)

At the end of each time-step, the position of each particle is updated using

dxα
i

dt
= uα

i . (29)

3.3 Numerical diffusive and dissipative terms

It is well known that the pressure oscillations easily occur and happen to numeri-
cal noise when the density values are update by using the continuity discretization
equation (25). In order to avoid this problem, a 2D density diffusive term is ex-
tended and introduced in the continuity equation which can effectively eliminate
a large part of the numerical noise (see [Ren et al. (2011); Antuono, Colagrossi,
Marrone and Molteni (2010); Marrone et al. (2011)]). On the other hand, a dissipa-
tive term (name as the “artificial viscosity”, see [Zhou and Ge (2014); Monaghan
(1994)]) is also added to the discrete momentum equation (26) for the purpose of
increasing the stability of numerical simulations. As a result, the discretization
schemes (25) and (26) can be written as(

dρ

dt

)
i
= ρi ∑

j

m j

ρ j
(uβ

i −uβ

j )S
β

i j + ςhc
N

∑
j=1

m j

ρ j
ϕi j ·

∂Wi j

∂xβ

i

, (30)

(
duα

dt

)
i
= ∑

j
m j

(
σ

αβ

i
ρ2

i
+

σ
αβ

j

ρ2
j

)
Sβ

i j +χ
N
∑
j=1

m j ∏i j
∂Wi j
∂xα

i
+gα

, (31)

where the φi j and Πi j are chosen to be

φi j = 2(ρ j−ρi)
r ji

|ri j|2
, Πi j =

{
−αIcφi j+βIφ

2
i j

ρ̄i j
, if ui j · ri j<0;

0, otherwise

and ϕi j =
hui j·ri j
|ri j|2+η2 , ρ̄i j =

ρi+ρ j
2 , ui j = ui−u j,ri j = ri− r j.

All the coefficients mentioned above are positive and have to be properly tuned.
The coefficients ς ,χ control the order of the magnitude of the diffusive term and
viscous term, respectively, which are usually chosen as 0 < ς < 0.1, 0 < χ < 0.2.
The η = 0.1h term is included to prevent numerical divergence when two particles
get too close to each other. The αI and βI are usually chosen approximately equal
to 1.
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3.4 Time integration scheme

In order to solve the system of ordinary differential equations (30), (31), (18) and
(29), the predictor-corrector scheme is used in this paper which possesses second-
order accuracy and better stability. The predictor step consists of an Eulerian ex-
plicit evaluation of all quantities for each particle

X̃n+1
i = Xn

i +
∆t
2

Γ
n
i , (32)

where Xi represents the vector of the unknown variables
(
ρi,uα

i ,(τp)
α

i ,xα
i

)
and Γi

denotes the vector of right-hand sides of Eqs. (30), (31), (18) and (29). In the
corrected step, the updated value of Xi at the end of each time step is given by

Xn+1
i = Xn

i +
∆t
2
(
Γ

n
i + Γ̃

n+1
i

)
, (33)

The time step and space step must satisfy the well-known Courant-Friedrichs-Lewy
(CFL) condition for ensuring the numerical stability. According to [Fang et al.
(2006)], we may choose the following stability condition

∆t ≤min
[

0.25
h
c
,0.125

h2

υ0

]
, (34)

where υ0 = η
/

ρ0 is the kinematic viscosity.

3.5 Boundary treatment

In SPH simulations, the treatment of physical boundary including the free surface
and rigid wall is very important. The boundary can be stationary or in motion.
Fortunately, the boundary condition of free surface is satisfied naturally by the SPH
or improved SPH methods according to references [Zhou and Ge (2014); Fang et al.
(2006); Monaghan (1994)]. Therefore, two types of boundary conditions needed to
be properly treated in the simulations of polymer filling process which are the rigid
wall boundary and the inflow boundary except for the free surface.

3.5.1 Rigid wall boundary

In this paper, the multi-wall boundaries are involved due to the complex filling pro-
cess in a closed three-dimensional container (see Fig. 2). The multi-wall bound-
aries mainly consist of the straight and curve boundaries which can be seen in Fig.
1. Several methods for treating rigid wall boundary conditions have been presented
in previous work [Zhou and Ge (2014); Monaghan (1994)]. There are mainly two
methods i.e. the artificial repulsive force method and the image particles method.
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Considering the advantages and disadvantages (see [Zhou and Ge (2014); Fang
et al. (2006)]) of mentioned above methods and the complexity of closed three-
dimensional filling container, a virtual particles refinement method is presented to
implement the multi-wall boundary conditions to prevent fluid particles from pen-
etrating rigid walls in this work, and its convenience and validity are demonstrated
in the following simulations.

- 1 - 

Fig. 1 The profile graphics of different rigid particles distribution  
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Figure 1: The profile graphics of different rigid particles distribution.

The virtual particles refinement method is that the straight or curve rigid wall is
made up of two layer virtual particles, namely “rigid particles”, which is shown
in Fig. 1. For the rigid particles of straight wall (see Fig. 1(a)), the initial dis-
tance between neighboring rigid particles is set to d0

/
2 along a coordinate axis

direction and equal to d0 along another direction (d0 as the initial distance between
neighboring fluid particles). The rigid particles are arrayed with a disc on the curve
rigid wall. For the rigid particles of curve wall (see Fig. 1(b)), the initial distance
between neighboring rigid particles is less than d0

/
2 on the same circumference

and equal to d0 between two circumferences. The rigid particles have fixed density
and positions i.e. the non-slip condition is enforced on the multi-wall boundaries.
The pressure and elastic stress of the rigid particles are calculated each time step
according to the following approximation formulation

Hi = ∑
j

H j (2h− ri j)

/
∑

j
(2h− ri j). (35)

where i represents the index of a rigid particles and j denotes the index of its neigh-
boring fluid particles only. The Hi represents the vector of variables

(
p,(τp)

αβ
)

i
.
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Fig. 2 Initial sketches of filling process: (a) filling with two-inlets in rectangle container; (b) filling 
of die casting in ring container.  

 
(a) Rectangle container                            (b) Ring container 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Initial sketches of filling process: (a) filling with two-inlets in rectangle
container; (b) filling of die casting in ring container.

The proposed solid wall boundary treatment is feasible to prevent fluid particles
from penetrating rigid wall (see section 4) and possesses some advantages overt
than that of proposed wall boundary treatment in [Fang et al. (2006); Xu et al.
(2012)].

3.5.2 Inflow boundary

The enforcement of inflow boundary condition is also taken into account in the
complex filling process, which lies in the initial distribution of fluid particles before
entering the container and the treatment of inlet velocity near the inflow boundary
(see Fig. 2). The numerical accuracy, stability and the capture of some phenomena
in simulations of filling process are all affected by the inflow boundary treatment.
For the purpose of obtaining a desired numerical simulation, the inflow boundary
treatment can be enforce as with different containers (see Fig. 2): (a) At the first
time-step of numerical simulation, many reserved fluid particles are uniformed dis-
tribution and away from the nozzle entry, and only one layer particles just on the
inlet nozzle; (b) The profile sketch of reserving fluid particles is a disc for the injec-
tion process in a rectangle container with two-circle inlets (see Fig. 2(a)), and the
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profile of reserving fluid particles distribution is a rectangle for the filling process
of in a ring container (see Fig. 2(b)); (c) These reserved fluid particles are set the
uniform injection velocity i.e. the inlet velocity.

It is worth noting that the mode of initial fluid particles distribution for the injection
process in a rectangle container (see Fig. 2(a)) is different from the initial particles
distribution mode in [Xu et al. (2012)]. The capture of jet coiling using the initial
fluid particles distribution mode mentioned above is more obvious than that using
the initial particles distribution mode in [Xu et al. (2012)], which can be observed
from the present numerical results in subsection 4.2.

3.6 Computational performance

In the simulations of using present particles method, the ordinary differential equa-
tions (30), (31), (18) and (29) need to be solved and the physical quantities are
evolved using the predictor-corrector scheme (32)-(33) and pressure updated by
formulation (9). Meanwhile, the multi-wall boundaries are considered and the
physical variations of rigid particles are calculated by using the proposed boundary
treatment in subsection 3.5.

As well as known, a key point have to be considered and handled which is the
huge calculate caused by the search of neighbor particles in the 3D computational
performance. In order to enhance the computational efficiency, a neighbor particle
searching technique based on dynamic background mesh following the motion of
fluid particles is adopted that likes the dynamic cell method in the molecule sim-
ulation, which is detailed in [Zhou and Ge (2014); Ferrari et al. (2009); Shen and
Vassalos (2011); Cleary et al. (2007)]. In the whole numerical simulations, our
code is written in visual C++ program and the data are organized in a flexible way
of searching technique of linking lists following the fluid motion. We can also
know that the simulation procedure is usually suffer from the storage problems due
to required million particles in 3D polymer filling process, and the dynamic arrays
method of C++ program is used for overcoming the storage problems. Moreover,
the present particle method has some characters the same as the molecule method in
which the particle method is easy to perform the Message Passing Interface (MPI)
parallelization. Therefore, the MPI parallelization combined with the dynamic cell
particle searching method is performed in an IBM HPC Platform with number of
CPUs for better reducing the computer consumes in this paper. The detail and
merits of using MPI system is described in [Ferrari et al. (2009)].



264 Copyright © 2014 Tech Science Press CMES, vol.101, no.4, pp.249-297, 2014

4 Tests for the validity of present scheme

In this section, the validity and capacity of the proposed CSPH-3D scheme com-
bined with the present boundary treatment is demonstrated by solving several bench-
marks and comparing with other numerical results, and the effect of density diffu-
sive term is also be tested. Meanwhile, the merits of presented particle method over
than the other methods for simulating the free surface flows are illustrated. Noting
that the Oldroyd-B fluid model is considered in this section for comparisons when
α0 = 0, f (λ ,τ) = 1 in the constitutive model of XPP model (5).

4.1 fluid flows in 2D coordinate system

4.1.1 Example 1: viscoelastic flow past a periodic array of cylinders

In the previous works [Ellero and Tanner (2005); Fang et al. (2006); Ren et al.
(2011)], the validity and accuracy of the conventional SPH method and earlier im-
proved SPH method for solving the Newtonian or viscoelastic fluid flow problem
is tested by simulating the benchmark i.e. three dimensional or two dimensional
Poiseuille flow. The profile of three dimensional problems is usually as the key
studied point in the simulation of 3D bench problem, which is actually translated
into the study of 2D problem. Here, the problem of Oldroyd-B fluid flow around a
periodic array of cylinders confined in a channel is simulated in 2D coordinate sys-
tem, for the purpose of further illustrating the capacity and merit of the proposed
CSPH method with a new boundary treatment for solving the viscoelastic fluid
flow. Meanwhile, the influences of elastic stress parameters on the velocity profiles
or phenomenon of vortex flow are discussed and compared with other numerical or
experimental results in [Quesada and Ellero (2012); Liu et al. (1998)].

The problem of polymer fluid flow around a periodic array of cylinders is usually
regarded as a simple model of polymeric suspensions flow through porous media
[Quesada and Ellero (2012], and is often used in a variety of engineering problems
such as the composite manufacturing processes et al. It is a challenge test for
the particle method to simulate the viscoelastic fluid flow past a periodic array of
cylinders. The geometric configuration of flow past a periodic array of cylinders
is shown in Fig. 3(a), and the analog configuration of single cylinder within a
periodic lattice is illustrated in Fig. 3(b) for plotting velocity or pressure values
along different paths. The flow past a periodic array of cylinders is driven by an
effective body force F , and the periodic boundary conditions are applied to model
an infinite periodic array. In this paper, the relevant parameters are set as (see Fig.
3): rc is the cylinder radius, LH is the half height of two parallel channels, Lc is the
distance of two neighbor cylinders, and xc is a variable quantity, which represent
the distance from the positive direction of x-axis to the center of reference cylinder
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(see Fig. 3(b)). Many non-dimensional quantities are introduced as: the ratio of xc

and cylinder radius is Ro=xc
/

rc; the ratio of Lc and cylinder radius is Lr = Lc
/

rc;
the Reynolds number Re = (ρUrc)

/
η and Weissenberg number We = (λobU)

/
rc;

U ′ = u
/

10−km, τ ′αβ = ταβ
/

10−km, P′ = p
/

10−kn (where km and kn is the integer
of scientific computing, km = 4, kn = 3 in these simulations); the first normal stress
difference N′1 = τ ′xx− τ ′yy.

- 3 - 

Fig. 3 The 2D geometric configuration of periodic array of cylinders: (a) periodic array of 

cylinders; (b) analog configuration of single cylinder.  
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Figure 3: The 2D geometric configuration of periodic array of cylinders: (a) peri-
odic array of cylinders; (b) analog configuration of single cylinder.
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Fig. 4 Comparisons of different numerical results for the flow at stable state along different paths 
(see Fig. 3(b)): (a) u  velocity; (b) pressure p . 
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Figure 4: Comparisons of different numerical results for the flow at stable state
along different paths (see Fig. 3(b)): (a) u velocity; (b) pressure p.

(I) In order to verify the reliability of the present CSPH method combined with the
proposed boundary treatment for simulating the problem of flow past cylinders, the
same example of Newtonian fluid flow in [Morris, Fox and Zhu (1997)] is simulated
by the proposed method and compared with other numerical methods, which are
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shown in Fig. 4. All the physical quantities are the same as those in [Morris, Fox
and Zhu (1997)]: LH = 0.05m, rc = 0.02m, F = 5× 10−5ms−2, ρ = 103kgm−3,
η = 0.1Pa · s, U = 1.5×10−4ms−1, c = 0.01ms−1, and corresponding to the Re =
0.03; the fluid particles are uniformly distributed on the whole domain, and the
particle number Ny = 81 along the y-axis; the time step ∆t = 5×10−3s, smoothing
length h = 1.3d0. Fig. 4 shows the solutions of u velocity and pressure obtained
using different numerical methods for the flow at stable state along different paths
(see Fig. 3(b)). The Newtonian fluid flow reaches the stable state about 2000 time
step. It is worth noting that the fluid domain is not confined in a channel in Fig. 4,
and the Newman boundary condition is considered at the up and down boundary
directions of the fluid domain. We can get some merits of the proposed CSPH
method from the Fig. 4, which are: (1) the CSPH results are much closer the FEM
results than the TSPH and SPH results in [Morris, Fox and Zhu (1997)]; (2) the
phenomenon of pressure oscillations is more evident for the TSPH and SPH results
in [Morris, Fox and Zhu (1997)] than the CSPH results, which implies that the
pressure oscillations can be well controlled by the CSPH method.

(II) Subsequently, the complex rheological behavior of the Odroyd-B fluid flow
past a periodic array of cylinders confined in a channel is studied using the pro-
posed CSPH method, and some phenomena have been numerically predicted which
have not been discussed in [Quesada and Ellero (2012); Liu et al. (1998)]. All
the physical quantities are set as: LH = 0.04m, rc = 0.02m, F = 5× 10−5ms−2,
ρ = 103kgm−3, η = 0.1Pa · s, the U = 1.2× 10−4ms−1, c = 0.02ms−1, and cor-
responding to the Re = 0.024; the fluid particles are uniformly distributed on the
whole domain, and the particle number Ny = 71 along the y-axis; the ratio β0 = 0.2,
Weissenberg number We = 0.06, time step ∆t = 5× 10−3 and smoothing length
h = 1.3d0.

The phenomena of velocity overshooting and vortex flow are mainly shown using
the CSPH method with the ratio Lr = 2.5, which can be observed from the Fig.
5 and Fig. 6. According to the References [Quesada and Ellero (2012); Liu et
al. (1998)], the vortex flow phenomenon occurs between two neighbor cylinders
for the Newtonian or polymeric fluid through a periodic array of cylinders, when
Lr = 2.5. In addition, the overshooting phenomenon of u-component velocity also
appear for the Oldroyd-B fluid before achieving stable stage (see Fig. 5), which has
not been illustrated in [Quesada and Ellero (2012); Liu et al. (1998)].

Fig. 5 shows the velocity profiles for the Newtonian and Oldroyd-B fluid flow
along different paths (with different Ro which is the ratio of xc and cylinder radius)
at different times. From Fig. 5, we can find that: (1) the consumed CPU time
for the Oldroyd-B fluid (t ≈ 8s) is more than that for the Newtonian fluid flow
(t ≈ 4s) before flow achieving steady; (2) the overshooting phenomenon for the
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Fig. 5 Velocity profiles for different fluid flows along different paths at different times ( 2.5rL = ): 
Newtonian fluid (first column); Oldroyd-B fluid (second column).  
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Figure 5: Velocity profiles for different fluid flows along different paths at different
times (Lr = 2.5): Newtonian fluid (first column); Oldroyd-B fluid (second column).
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Fig. 6 The phenomenon of vortex flow for the Oldroyd-B fluid with different Weissenberg 
numbers ( 2.5rL = ): (a) 0.06We = ; (b) 0.6We = ; (c) 1We = .  
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Figure 6: The phenomenon of vortex flow for the Oldroyd-B fluid with different
Weissenberg numbers (Lr = 2.5): (a) We = 0.06; (b) We = 0.6; (c) We = 1.
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Oldoryd-B fluid is more evident than the Newtonian fluid, which is similar the case
of Poiseuille flow in [Ellero and Tanner (2005)]. The mentioned above remarks
have just given expression to the complex non-linear character of viscoelastic fluid.

Fig. 6 shows the vortex flow phenomenon for the viscoelastic fluid with different
Weissenberg number, which is also discussed in [Quesada and Ellero (2012); Liu
et al. (1998)]. The size of shaping vortex flow between two neighbor cylinders is
enlarging with the increase of Weissenberg number, due to that the influence of the
elastic stress on the fluid flow. Moreover, the contour distributions of shear elastic
stress and first normal stress difference have been illustrated in Fig. 7 with Lr = 2.5.
The peak values of τ ′xy or N′1 can be observed, and they appear near the cylinder at
different positions, which is in agreement with the experimental results in [Liu et
al. (1998)].

- 7 - 

Fig. 7 Numerical convergence for different quantities along different paths with increasing the 

particle numbers ( 6rL = , 0.06We = ): (a) u  velocity; (b) shear elastic stress; (c) first normal 

stress difference.   

(a)    (b)  
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Figure 7: Numerical convergence for different quantities along different paths with
increasing the particle numbers (Lr = 6, We= 0.06): (a) u velocity; (b) shear elastic
stress; (c) first normal stress difference.
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In order to further test the reliability of the proposed particle method for simulating
the Oldroyd-B fluid flow around a periodic array of cylinders, the simple numerical
convergence is investigated by increasing the particle numbers Ny or decreasing
the initial distance of particles d0, which can be seen in Fig. 7. Fig. 7 shows the
Numerical convergence for the velocity, shear elastic stress and first normal stress
difference along different paths with increasing the particle numbers Ny at Lr = 6,
We = 0.06, in which the Lxy (see Fig. 7(c)) represents the path over the cylinder
centerline that of a 45o to the horizontal line. The numerical results of u, τ ′xy and
N′1 is change little with the increase of particle numbers from observing the Fig. 7,
and we can believe that the CSPH results is valid and credible. Moreover, from the
Fig. 7, we can deduce that the proposed approach to simulate the problem of flow
past a cylinder at low Reynolds number has desirable numerical convergence.

Example 2: Spin-down problem

Through the simulation of spin-down problem obtained using the present CSPH
method with boundary treatment, the reliability of present boundary treatment is
further verified. Meanwhile, the influences of particles distribution mode on the
numerical accuracy or stability are also studied by this simulation with circle or
square particles distribution. Spin-down is that the fluid confined in a cylindrical
container initially rotating with the same angular velocity then suddenly stopped,
which involves a critical boundary problem and has been studied in [Ren et al.
(2011)].

All the parameters are the same as in [Ren et al. (2011)], the number of rings is 23
(3 rings boundary particles are included) and the centre of the rings is x= 0,y= 1.2.
Fig. 8 shows that the particles positions and pressure field for the spin-down prob-
lem obtained using the proposed method with different initial particles distribution
modes at t = 0 and t = 0.8 after the boundary particles were set to rest. It can be
seen the result of adopting the circle participles distribution mode (Fig. 8 (a)) at
t = 0.8 agrees well with that in [Ren et al. (2011);], but the result of employing the
square particles distribution mode (Fig. 8 (b)) is unacceptable and undesired. From
observing the Fig. 8, we can get: (1) the proposed boundary treatment is credible;
(2) the numerical result using the circle mode of particles distribution has higher
accuracy and better stability than that using the case of square particles distribution
when fluid flow confined in a circle container. It is worth noting that the circle
mode of initial particles distribution is only considered for the jet bulking problem
of filling process in 3D coordinate system in this paper.

The validity and capacity of the proposed particle method have been tested by two
challenge examples, and the feasibility of present boundary treatment is also ver-
ified in this subsection. The ability and merits of the proposed CSPH-3D method
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for simulating the surface flows are demonstrated in the following subsection 4.2.

- 8 - 

Fig. 8 Particles positions and pressure field for the spin-down problem obtained using the 
proposed method with different particles distribution modes at 0t =  (first column) and 0.8t =  
(second column) after the boundary particles were set to rest.  
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Figure 8: Particles positions and pressure field for the spin-down problem obtained
using the proposed method with different particles distribution modes at t = 0 and
t = 0.8 after the boundary particles were set to rest.

4.2 free surface flows in 3D coordinate system

Example 1: Stretching of a sphere droplet

All physical quantities of stretching of a sphere droplet are: the reference density
ρ0 = 103 kgm−3, the viscosity µ = 10−3 kgm−1s−1, and the speed of sound c =
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1.4×103 ms−1. The initial geometry of the water drop is a circle of radius R= 1 m.
There is no external forces but a initial velocity field u0(x) =−102x, v0(y) = 102y,
w0(z)=−102z and the initial pressure field p0 =

(
1
/

2
)

ρ0106
[
R2−

(
x2 + y2 + z2

)]
.

The number of fluid particles is 113081 and corresponding to the initial distance
d0 = 0.0167 m, the smoothed length h = 1.3d0, and the time step dt = 10−5 s.

Fig. 9 illustrates the particles distributions obtained using different method for the
stretching of a sphere droplet at t = 0.01 s. The distribution of particles obtained by
the CSPH-3D method are more uniformly than the TSPH-3D method, especially
the external surface particles simulated by the proposed method are far smoother
than the TSPH-3D. Moreover, the comparisons of consumed CPU time using dif-
ferent methods for a sphere droplet stretching problem with different number of
CPUs are shown in Tab. 1 (corresponds to the case of Fig.9). From seeing the Tab.
1, we can know that: (1) the computational efficiency has been enhanced for three
different methods with increasing the number of CPUs; (2) the more number of
CPUs the longer communication time between computer nodes in the simulation,
so the reduced proportion of consumed CPU time is less than the increased pro-
portion of number of CPUs; (3) the present CSPH-3D method has larger calculated
amount than the TSPH-3D method.

Table 1: Comparisons of consumed CPU time using different methods for the
stretching problem with different CPU number (corresponds to the case of Fig.9).

Numerical methods 5 CPUs 10 CPUs 20 CPUs 60 CPUs
TSPH 1262.52s 692.22s 419.71s 208.40s

CSPH-3D 2430.13s 1276.91s 716.91s 319.15s

Example 2: Jet coiling of filling process in a rectangle container with a single inlet

The jet coiling problem of 3D filling process confined in a rectangle container with
a single inlet has been numerically or experimentally studied in [Tomé et al. (1999);
Hwang and Kwon (2002); Tomé et al. (2008); Oishi et al. (2008)] for the New-
tonian or Oldroyd-B fluid, and it is a typical and challenge example for testing
the feasibility of the presented particle method applied to viscoelastic free surface
flow. Moreover, the numerical simulations of 3D filling process for the polymer
fluid usually suffer from two difficulties (see [Hwang and Kwon (2002); Oishi et
al. (2008)]): (a) the treatment of complex multi-boundaries; (b) the enhancement
of computational efficiency, especially using the particle method. Here, the mer-
its and ability of the proposed particle method combined with presented boundary
treatment and MPI parallelization technique are further illustrated by simulating
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Fig. 9 The particles distributions obtained using different method for the stretching of a sphere 
droplet at 0.01 st = .  
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(b) Particles distributions obtained using different method at 0.01 st =  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: The particles distributions obtained using different method for the stretch-
ing of a sphere droplet at t = 0.01 s.

the jet coiling of 3D polymer filling process based on the XPP fluid, and the results
for the case of Newtonian fluid are also shown for comparison.

The geometric of filling process in a rectangle container is demonstrated in Fig. 2
(a) and Fig. 11 (a), and the mode of initial particles distribution is also seen in Fig.
2 (a). The radius of inlet jet nozzle is rc, gravitational force acts downwards with
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Fig. 10 The shape and w− velocity contour of the filling process with single inlet obtained using 
present CSPH-3D method  based on the Newtonian fluid (first column) and the XPP fluid 
(second column).  
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t=0.12s                 
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t=0.18s                

t=0.27s                  

t=0.45s                    

 
 

Figure 10: The shape and w−velocity contour of the filling process with single
inlet obtained using present CSPH-3D method based on the Newtonian fluid (first
column) and the XPP fluid (second column).
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Fig. 11 The sketch of filing process with three different containers  

(a)   

(b)  

(c)  
 

Figure 11: The sketch of filing process with three different containers.
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gz =−9.81 ms−2 , and the entry speed at nozzle is U . The length, width and height
of rectangle container is Lx, Ly and Lz, respectively. The dimensionless parameters
Re = 2ρrc

/
η and We = λ0bU

/
(2rc) are also adopted in the paper.

The problem of a Newtonian jet buckling or jet coiling was predicted by numerical,
experimental or theoretical estimates in [Tomé et al. (1999); Tomé et al. (2008);].
The phenomenon of jet buckling or jet coiling would occur if both Re < 0.5 and
Lz
/

D > 10 (D = 2rc) were satisfied. However, the experimental and theoretical
estimates for a two or three dimensional viscoelastic model fluid jet buckling have
not yet been developed. Until now, a 3D viscoelastic jet flows with a single inlet
based on the Oldroyd-B fluid was rarely studied, which can be seen from [Tomé et
al. (2008); Oishi et al. (2008)]. The phenomenon of jet coiling for the XPP fluid is
shown in Fig. 10 when Re = 0.4 and Lz

/
D = 17.5.

Fig. 10 shows the shape and w−velocity contour of the filling process with sin-
gle inlet obtained using present method based on the Newtonian fluid and the
XPP fluid (see [Oishi et al. (2012)]). In the simulation, the jet width D = 4 mm
and the inlet is located in the center of container, the size of rectangle container
Lx = Ly = 5cm and Lz = 7cm, inlet velocity U = −1 ms−1, the stable time-
step is 5× 10−6. The reference density ρ0 = 1.1× 103 kgm−3, kinematic viscos-
ity υ0 = η

/
ρ0 =0.01 m2s−1, speed of sound c = 8 ms−1, λ0b = 0.01 s, λ r = 0.8,

β0 = 0.3 and α0 = 0.1. The values of parameter mentioned above correspond to
Re = 0.4, We = 2.5, and the ratio Lz

/
D = 17.5. It can be seen that the deformation

process of jet coiling for the Newtonian fluid (see Fig. 10 (first column)) is basi-
cally agree with the results obtained using FDM method in [Tomé et al. (2008);
Oishi et al. (2008)], and the phenomenon of jet coiling for the XPP fluid also ap-
pears which can be observed from the second column of Fig. 10. There are some
small differences between the results of Fig. 10 and those in [Tomé et al. (2008);
Oishi et al. (2008)] due to itself instability of jet coiling and the differences of
numerical techniques. Through the illustration of Fig. 10, we can get that: (1) it
is credible for the proposed method to simulate the complex 3D viscoelastic free
surface; (2) the present boundary treatment is feasible to treat multi-boundaries,
and it is easier to enforce than the boundary method in [Fang et al. (2006)]; (3) the
tendency of coiling is more obvious than that in [Fang et al. (2006)] at the short
time of fluid impact on the container bottom. Moreover, the variation of w-velocity
can also be observed by the demonstration of velocity contours in Fig. 10. In this
simulation, the CPUs (30 CPUs are used) consumed time is about 30 hours and 37
hours for simulating Newtonian fluid and XPP fluid jet , respectively (with 307749
fluid particles reaching 90000 steps).

In order to further demonstrate the ability of extended application of proposed
CSPH-3D method to simulate the 3D polymer filling process, the polymer filling
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processes based on XPP fluid with different containers (see Fig. 11) are numeri-
cally investigated and some instability phenomena are illustrated in the following
section 5 and section 6. The sketch of filing process with three different containers
is shown in Fig. 11. In the following numerical investigations, two typical con-
tainers are mainly considered i.e. the rectangle container with two-inlets (see Fig.
11(a)) and the ring container (see Fig. 11(b)-(c)). Moreover, some size parameters
are introduced and labeled in Fig. 11.

5 Numerical investigation of filling process in a rectangle container

5.1 Jet coiling of filling process with two-inlets

In the previous work [Ren et al. (2011)], the 2D filling process for the Newtonian
fluid with two-inlets is first numerically studied, which has more complex deforma-
tion than the case of a single inlet. In this section, the 3D filling process confined
in a rectangle container with two-inlets is numerically investigated by the proposed
CSPH-3D method. Specially, the instability phenomenon of jet coiling based on
the XPP fluid is discussed with different Reynolds number and Weissenberg num-
ber. It is worth noting that the distance between two-inlets is Lx

/
2 i.e. Lcc = Lx

/
2

(see Fig. 11(a)).

Fig. 12 shows the shape and w−velocity contour of the filling process with two-
inlets obtained using present CSPH-3D method based on the Newtonian fluid.
Meanwhile, the deformation process of the filling process based on the Newtonian
fluid and XPP fluid with different times are also illustrated in Fig. 13 (correspond-
ing to the case of Fig. 12). In this simulations of Fig. 12 and Fig. 13, the size of
rectangle container Lx = 5 cm, Ly = 4cm and Lz = 7cm, the Re = 0.4, We = 2.5,
and the other parameters are the same as in Fig. 10. From observing Fig. 12 and
Fig. 13, we can get that: (1) Under the effect of gravity, the bigger value region of
w−velocity appears on a certain part between the inlet and bottom of container (see
Fig. 12); (2) For the reason of shear thinning of the XPP fluid, the time of fluid jets
reaching the bottom is shorter for the XPP fluid than that for the Newtonian fluid
(see Fig. 13 at t = 0.075s); (3) The jet coiling phenomenon occurs for two jets; (4)
Although two jets are an identical fluid and alike inject condition, the deformation
process of two jets is asymmetric at t = 0.36s and t = 0.41s due to that itself sta-
bility of jet coiling phenomenon. The asymmetric phenomenon also occurs for two
XPP fluid jets after impacting on container bottom which can be seen in Fig. 13
and Fig. 14 (first column), and it is not observed for two Newtonian fluid jets in 2D
coordinate system (see [Ren et al. (2011)]).
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Fig. 12 The shape and w− velocity contour of the filling process with two-inlets obtained using 
present CSPH-3D method based on the Newtonian fluid.  

t=0.045s  t=0.09s  

t=0.3s  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12: The shape and w−velocity contour of the filling process with two-inlets
obtained using present CSPH-3D method based on the Newtonian fluid.

5.2 Influences of macroscopic rheological parameters on the filling process

In order to illustrate the influences of macroscopic parameters on the phenomena
of jet coiling and the asymmetric deformation case of two fluid jets. Figs. 14-16
show that the deformation process of two XPP fluid jets with different macroscopic
parameters We and Re. Meanwhile, the variations of the jet length obtained using
present method based on the XPP fluid versus dimensionless time with different
macroscopic parameters are demonstrated in Fig. 17 (the other parameters corre-
sponds to the case in Fig.12). For the Figs. 14-16, the same parameters are: the
jet width D = 0.4 cm; the height of rectangle container Lz = 7cm; the inlet veloc-
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Fig. 13 The deformation process of the filling process with two-inlets based on the Newtonian 
fluid (first column) and XPP fluid (second column). (Corresponds to the case of Fig. 12)  

t=0.045s   

t=0.075s   

t=0.3s  

 
 
 

Figure 13: The deformation process of the filling process with two-inlets based on
the Newtonian fluid (first column) and XPP fluid (second column). (Corresponds
to the case of Fig. 12).
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Fig. 14 The shape and w− velocity contour of the filling process with two-inlets obtained using 
present CSPH-3D method based on the XPP fluid. 18CPUs 2.5We =  (first 
column), 100We = (second column).  

t=0.045s   

t=0.15s   

t=0.27s   

 
 

Figure 14: The shape and w−velocity contour of the filling process with two-inlets
obtained using present CSPH-3D method based on the XPP fluid. 18CPUs We =
2.5 (first column), We = 100(second column).
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Fig. 15 The shape of filling process obtained using present CSPH-3D method based on the XPP 
fluid with two-inlets: 0.8Re = , 25We =  (first column), 4Re = , 2.5We =  (second column). 

t=0.045s  

t=0.12s  
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t=0.21s  

t=0.39s  

 
 
 
 
 
 
 
 
 
 

Figure 15: The shape of filling process obtained using present CSPH-3D method
based on the XPP fluid with two-inlets: Re = 0.8,We = 25 (first column), Re =
4,We = 2.5 (second column).
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Fig. 16  The shape and w− velocity contour of the filling process with two-inlets obtained using 
present CSPH-3D method based on the XPP fluid ( 8Re = , 2.5We = ).   

 t=0.09s t=0.21s  

t=0.36s t=0.57s  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16: The shape and w−velocity contour of the filling process with two-inlets
obtained using present CSPH-3D method based on the XPP fluid (Re = 8,We =
2.5).
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Fig. 17 The variations of the jet length obtained using present method based on the XPP fluid 
versus dimensionless time with different model parameters (the other parameters corresponds to 
the case in Fig.12).  
 

(a)   

(b)  

(c)  

 
 
 
 

Figure 17: The variations of the jet length obtained using present method based on
the XPP fluid versus dimensionless time with different model parameters (the other
parameters corresponds to the case in Fig.12).
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ity U =−1 ms−1; the reference densityρ0 = 1.1×103 kgm−3; the speed of sound
c = 8 ms−1; the λ r = 0.8, β0 = 0.3 and α0 = 0.1; the ratio Lz

/
D = 17.5. The other

parameters are: (1) in Fig. 14, the Lx = Ly = 5cm, the time-step dt = 5× 10−6,
the kinematic viscosity υ0 = η

/
ρ0 =0.01 m2s−1 and Re = 0.4, the λ0b = 0.01 s

(We = 2.5) or λ0b = 0.4 s (We = 100); (2) in Fig. 15, the Lx = Ly = 4cm, the time-
step dt = 5× 10−6 (corresponds to υ0 = 5× 10−3 m2s−1) or dt = 1× 10−5 (cor-
responds to υ0 = 1× 10−3 m2s−1), the kinematic viscosity υ0 = 5× 10−3 m2s−1

(Re = 0.8) or υ0 = 1×10−3 m2s−1 (Re = 4), the λ0b = 0.01 s (We = 2.5) or λ0b =
0.1 s (We = 25); (3) in Fig. 16, the Lx = Ly = 4cm, the time-step dt = 1×10−5, the
kinematic viscosity υ0 = 5×10−4 m2s−1 (Re = 8), the λ0b = 0.01 s (We = 2.5).

It can be seen that the phenomenon of jet coiling doesn’t occur when the Weis-
senberg number is increased to 100 from Fig. 14, due to that the higher We lead
to the bigger effect of shear thinning of XPP fluid (see [Oishi et al. (2012)]), and
the deformation of two jets become symmetric at We = 100. With increasing Weis-
senberg number is, the longer jet length is achieved before fluid jets reaching the
container bottom, which also can seen in Fig. 17 (a). Meanwhile, the variations
of w−velocity are illustrated at different times in Fig. 14, and some fluid particles
near the bottom after jets impacting on the container bottom are not moving.

Through observing the Fig. 15 and Fig. 16, we can get that: (1) the phenomenon of
jet coiling is disappear when the Reynolds number is increased; (2) the thinner disk
near the container bottom is gained with bigger Re, which can be seen in Fig. 15
at t=0.12s (Re = 4) and Fig. 16 at t=0.09s (Re = 8); (3) the filling process is stable
when Re = 0.8 and We = 25 (see Fig. 15 (first column)); (4) the phenomenon of
concave near the fluid jet appear after two fluid jets collided and the filling process
is unstable with Re = 4 and Re = 8; (5) the bigger value region of w−velocity is
decreased versus time after two jets impacting on the bottom with Re = 8 (see Fig.
16); (6) with increasing the Reynolds number (it increased from 0.8 to 8), the shape
of two fluid jets has well symmetric at different times even if the filling process is
unstable; (7) the longer jet length is gained before fluid jets reaching the container
bottom when the Reynolds number is increased, which also can seen in Fig. 17 (b).
Moreover, we can know that the shorter jet length is achieved with increasing the
ratio β0 due to that the shear thinning become weak.

In a word, the influences of We and Re on the deformation of filling process are
important. The phenomenon of jet coiling may be occur when the physical pa-
rameters are adopted appropriately for the XPP fluid, and the deformation process
of two fluid jets is more complex than that of a single jet. The asymmetric phe-
nomenon of two fluid jets is observed in the simulations of 3D filling process at
lower Reynolds number (for example Re = 0.4). Moreover, Comparing the Oishi’s
works [Oishi et al. (2012); Figueiredo et al. (2013)] with the present work, the
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main differences or novelties lie in two points: 1) the deformation process of two
XPP jets coiling is asymmetric at some time which can be not observed in the case
of a single jet process; 2) the required time of container filled for two jets is less
than that for single jet in the stable filling process.

6 Further numerical investigation of filling process in a ring container

In this section, the 3D filling processes of die casting with two different form
ring containers (see Fig. 11 (b)-(c)) are numerically predicted using the proposed
CSPH-3D method. The closed ring container has more complex multi-boundaries
than that of the closed rectangle container in section 5, so the proposed particle
method combined with present boundary treatment can be further tested by sim-
ulating the 3D filling process of die casting with ring container. Indeed, the only
multi-straight-boundaries (see Fig. 1 (a)) are treated in the simulations of filling
process in a rectangle container (see Fig. 11 (a)), and the multi-straight-boundaries
and multi-curve-boundaries (see Fig. 1) are needed to treat in the simulations of
filling process in a ring container (see Fig. 11 (b)-(c)). In the previous work [Ren
et al. (2011)], the 2D filling process in a ring cavity based on the Cross fluid is
numerically investigated using an improved particle method. Here, the 3D fill-
ing process in a ring container based on the XPP fluid is numerically studied, and
the case of Newtonian fluid is also considered for comparisons. It is noting that
the main differences of proposed CSPH-3D method over than the improved SPH
method in [Ren et al. (2011); Fetehi and Manzari (2012)] lie in: (1) the discretized
form of momentum equation is more adapted to simulate unstable filling process
than the case in [Ren et al. (2011); Fetehi and Manzari (2012)]; (2) the proposed
boundary treatment is more easier performed than that in [Fang et al. (2006); Ren
et al. (2011); Xu et al. (2012)].

The unstable filling processes are demonstrated in Figs. 18-19, in which the de-
formation process of die casting in a ring container (see Fig. 11 (b)) based on the
Newtonian fluid and XPP fluid with Re = 90 (see Fig. 18). The center of internal
circle is located in the center of big ring in the ring containers of Fig. 11 (b)-(c).
The physical parameters of Fig. 18 are: the size of container Lx = 4L, Ly = 3L,
Lh = L

/
2, rs = L

/
2 and rb = 1.6L (L = 4.5cm); the inject velocity U = 4 ms−1,

the stable time-step is 1×10−5; the reference density ρ0 = 1.0×103 kgm−3, kine-
matic viscosity υ0 = η

/
ρ0 =1×10−3 m2s−1, speed of sound c = 8U , λ0b = 0.02 s,

λ r = 1
/

3, β0 = 0.3 and α0 = 0.1; the values of parameter mentioned above cor-
respond to Re =ULh

/
υ0 = 90, We = λ0bU

/
Lh =3.5. From observing the Fig. 18

and 19, it can be seen that : (1) the filling process is unstable, and the numerical
results are basically similar to the results in [Ren et al. (2011)] but there are some
differences because that the present inject fluid is also affected by the upper-down
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Fig. 18  The deformation process of die casting in ring container obtained using the present 
CSPH-3D method based on the Newtonian fluid (first column) and XPP fluid (second column) 
with 90Re = .  

t=0.006s  

 t=0.016s  

  t=0.032s  

 t=0.046s   
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 t=0.06s  

 t=0.08s  

         
               t=0.10s                                    t=0.092s 

        
             t=0.102s                                   t=0.10s 
 
 Figure 18: The deformation process of die casting in ring container obtained using

the present CSPH-3D method based on the Newtonian fluid (first column) and XPP
fluid (second column) with Re = 90.
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Fig. 19 The u − velocity and pressure distribution of die casting in ring container based on the 
Newtonian fluid (first column) and XPP fluid (second column) with different times, which 
corresponding to the case of Fig. 18.  
(a) u − velocity distribution 

 
                                 t=0.006s 

   
                               t=0.016s 

   
                               t=0.06s 
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(b) Pressure distribution ( 0p ρ ) 

   
                              t=0.016s 

   
                             t=0.052s 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 19: The u−velocity and pressure distribution of die casting in ring container
based on the Newtonian fluid (first column) and XPP fluid (second column) with
different times, which corresponding to the case of Fig. 18.

rigid walls in a 3D cavity; (2) the fracture phenomena near the front surface are
observed in the larger inject velocity for the Newtonian and XPP fluid at about
t=0.05s; (3) the reflux phenomenon for the XPP fluid is more obvious than that
for the Newtonian fluid due to the effect of shear thinning of XPP fluid, and the
required time is shorter for the XPP fluid than that for the Newtonian fluid when
the container is full; (4) the thickness (which along z−axis) near front fluid region
is thinner than the initial thickness of fluid due to the effect of upper-down rigid
walls, which is agree with the results in [Hwang and Kwon (2002)], and it also can
be observed in Fig. 20; (5) the larger u−velocity value region happen to near the
middle part of container along the x−axis before the fluid impacting on the internal
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cylinder rs (see Fig. 19 (a) at ); (6) the u−velocity distribution is nonuniform after
the fluid impacting on the external ring rb due to the instability of filling process;
(7) the larger pressure value is increased at short time after the fluid impacting on
the internal cylinder (see Fig. 19 (b)), and it is decreased versus time.

- 24 - 

Fig. 20 The deformation process of ring filling container obtained using the present CSPH-3D 
method based on the Newtonian fluid (first column) and XPP fluid (second column) with 

12Re = .  

 

                                t=0.003s 

 

                                  t=0.006s 

 

                                 t=0.015s 

Fig. 20 shows that the deformation process of ring filling container (see Fig. 11 (c))
based on the Newtonian fluid and XPP fluid with Re = 12. The physical parameters
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                t=0.029s                                t=0.025s 

 

              t=0.045s                                  t=0.036s 
 
 
 

Figure 20: The deformation process of ring filling container obtained using the
present CSPH-3D method based on the Newtonian fluid (first column) and XPP
fluid (second column) with Re = 12.

of Fig. 20 are: the size of container Lx = 4L, Ly = 3L, Lh = L
/

2, rs = 0.4L and rb =
1.15L (L = 2cm); the inject velocity U = 6 ms−1, the stable time-step is 2×10−6;
the reference density ρ0 = 1.0×103 kgm−3, kinematic viscosity υ0 = η

/
ρ0 =5×

10−3 m2s−1, speed of sound c = 8U , λ0b = 0.005 s, λ r = 1
/

3, β0 = 0.5 and α0 =
0.1; the values of parameter mentioned above correspond to Re = ULh

/
υ0 = 12,

We = λ0bU
/

Lh =3. The 3D numerical results of Fig. 20 is similar with the 2D
results in [Ren et al. (2011)], but the feature of point (4) mentioned above in Fig.
18 is observed only for 3D case. Though the deformation process for the Newtonian
fluid is basically similar with that for the XPP fluid, the moving front free surface
for the XPP fluid flow is faster than that for the Newtonian fluid after the fluid
impacting on the internal cylinder due to the effect of shear thinning for the XPP
fluid. Moreover, the front free surface likes a convexity, and the track effect is
obviously observed about t=0.025s in Fig. 20.

Through the numerical investigations mentioned above, we can know that: (1)
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the present boundary treatment is valid and convenient to treat the complex multi-
boundaries; (2) some complex phenomena are observed in the numerical simula-
tions of 3D polymer filling process, but not seen in the 2D case, for example the jet
coiling and the thickness of front surface region is thinner (see Fig. 20 at t=0.006s);
(3) the polymer filling process is more complex than that for the Newtonian fluid
filling due to the characteristics of the fluid flow itself.

7 Some conclusions

In this paper, a corrected 3D parallel SPH (CSPH-3D) method is first proposed to
simulate the polymer filling process in a rectangle or ring container for the XPP
fluid, and some complex instability phenomena are also numerically investigated.
The present CSPH-3D method is based on a coupled concept that an extended
kernel-gradient-corrected SPH method is used in the interior of fluid region and
the traditional SPH (TSPH) method is used near the boundary domain, which has
higher accuracy and better stability than the TSPH-3D. In order to restrain the pres-
sure oscillations and treat the complex multi-boundaries, a density diffusive term is
introduced and a new boundary treatment is proposed, respectively. Moreover, the
MPI parallelization means with a dynamic cells neighbor particle search method is
adopted for enhancing the computational efficiency. Subsequently, several bench
tests are solved using the proposed particle method for demonstrating the validity
and merits of proposed CSPH method, and some remarks can be obtained which
are: (1) it is reliable and accurate for the CSPH method to solve the viscoelastic
fluid flow; (2) the present CSPH method has higher accuracy and better stability
than the TSPH method; (3) it is it is validate and feasible for the proposed CSPH-
3D method to capture the viscoelastic free surface; (4) the proposed boundary treat-
ment is feasible and convenient to treat straight or curve boundary.

Subsequently, the deformation processes in a rectangle container filling with two-
inlets and in a ring cavity molding for the XPP fluid are numerically predicted using
the CSPH-3D method, and the influences of rheological parameters on the filling
process are studied. All the numerical results show that: (1) the present boundary
treatment is valid and convenient to treat complex multi-boundaries; (2) some com-
plex phenomena are observed in the numerical simulations of 3D polymer filling
process, but not seen in the 2D case, for example the jet coiling and the asymmet-
ric character of two jets; (3) the polymer filling process based on the XPP fluid is
more complex than that for the Newtonian fluid filling due to the characteristics of
the fluid flow itself; (4) the influences of We and Re on the deformation of filling
process are important; (5) the phenomenon of track effect is observed in the 3D
polymer filling process in a ring container. The proposed CSPH-3D method is fur-
ther expected to be extended and applied to more complex fluid dynamic problems.
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