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A Meshless Method for Solving the 2D Brusselator
Reaction-Diffusion System

M. Mohammadi1, R. Mokhtari2,3 and R. Schaback4

Abstract: In this paper, the two-dimensional (2D) Brusselator reaction-diffusion
system is simulated numerically by the method of lines. The proposed method is
implemented as a meshless method based on spatial trial functions in the reproduc-
ing kernel Hilbert spaces. For efficiency and stability reasons, we use the Newton
basis introduced recently by Müller and Schaback. The method is shown to work
in all interesting situations described by Hopf bifurcations and Turing patterns.
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1 Introduction

Reaction-diffusion equations frequently arise in the study of chemical and biolog-
ical systems. The so-called Brussels school [Herschkowitz-Kaufman and Nico-
lis (1972); Lavenda, Nicolis, and Herschkowitz-Kaufman (1971); Lefever (1968);
Lefever and Nicolis (1971); Nicolis and Prigogine (1977); Prigogine and Lefever
(1968)] developed and analyzed the behaviour of a non-linear oscillator [Lefever
(1968); Prigogine and Lefever (1968)] associated with the chemical system

δ →U,

ρ +U →V +D,

2U +V → 3U,

U → E

(1)
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where δ and ρ are input chemicals, D and E are output chemicals and U and V are
intermediates. Let u(x, t) and v(x, t) be the concentrations of U and V , and assume
that the concentrations of the input compounds δ and ρ are held constant during
the reaction process. Then using the law of mass action, the kinetic equations asso-
ciated with (1) are given by the following system of reaction-diffusion equations,
known as the Brusselator system [Prigogine and Lefever (1968)]:

ut(x, t) = δ +u2v− (ρ +1)u+µ1∆u,

vt(x, t) = ρu−u2v+µ2∆v,
(2)

where u and v represent dimensionless concentrations of two reactants, δ , ρ , and
diffusion coefficients µ1 and µ2 are positive constants. The parameter ρ is often
chosen as a parameter for studying bifurcation. The Brusselator system occurs in
a large number of physical problems such as the formation of ozone from atomic
oxygen, in enzymatic reactions, and arises in laser and plasma physics from multi-
ple coupling between modes. No analytical solution of the system is known so far,
and numerical solutions have to be used. Moreover, there is very little literature on
the numerical solution of the system. Known techniques are the Adomian decom-
position method [Adomian (1995); Lin, Liu, and Li (2012)], second order finite
difference method [Gumel, Langford, Twizel, and Wu (2000); Twizell, Gumel, and
Cao (1999)], modified Adomian decomposition method [Wazwaz (2000)], dual-
reciprocity boundary element method [Ang (2003)], differential quadrature method
[Mittal and Jiwari (2011)], modified cubic B-spline differential quadrature method
[Jiwari and Yuan (2014)], Multistage homotopy perturbation [Lee, Park, and Jang
(2013)], and radial basis functions collocation method [ul Islam, Haq, and Ali
(2010)].

Unlike traditional numerical methods in solving partial differential equations (PDEs),
meshless methods [Dong, Alotaibi, Mohiuddine, and Atluri (2014); Han and Atluri
(2014)] need no mesh generation. Collocation methods are truly meshless and
simple to program, and they allow various approaches for solving PDEs. Taking
translates of kernels as trial functions, meshless collocation in unsymmetric and
symmetric form dates back to [Franke and Schaback (1998b); Franke and Sch-
aback (1998a); Kansa (1986)] and has proven to be highly successful, because
the arising linear systems are easy to generate and allow good accuracy at low
computational cost. In addition, it was proven recently [Schaback (2013)] that
symmetric collocation [Fasshauer (1997); Franke and Schaback (1998b); Franke
and Schaback (1998a)] using kernels is optimal along all linear PDE solvers us-
ing the same input data. This motivates the use of kernels for solving PDEs.
An overview of kernel methods before 2006 is given in [Schaback and Wendland
(2006)], while recent variations of the theme are in [Hon and Schaback (2008);
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Lee, Ling, and Schaback (2009); Mohammadi and Mokhtari (2011); Mohammadi
and Mokhtari (2013); Mohammadi and Mokhtari (2014); Mohammadi, Mokhtari,
and Panahipour (2013), Mohammadi, Mokhtari, and Panahipour (2014), Moham-
madi, Mokhtari, and Toutian Isfahani (2014); Mokhtari and Mohammadi (2010);
Mokhtari and Mohseni (2012); Mokhtari, Toutian Isfahani, and Mohammadi (2012)]
and the references therein.

It is well known that representations of kernel-based approximants in terms of the
standard basis of translated kernels are notoriously unstable. The Newton basis
[Müller and Schaback (2009)] with a recursively computable set of functions which
vanish at increasingly many data points, turns out to be more stable. It is orthonor-
mal in the native Hilbert space and complete, if infinitely many data locations are
reasonably chosen. Recently, an adaptive calculation of Newton basis arising from
a pivoted Cholesky factorization which is computationally cheap, has been intro-
duced [Pazouki and Schaback (2011)].

For time-dependent partial differential equations, meshless kernel-based methods
are based on a fixed spatial interpolation, but since the coefficients are time-dependent,
one obtains a system of ordinary differential equations. This is the well-known
method of lines, and it turned out to be accurate in several problems [Dereli and
Schaback (2010)].

In this study, a method of lines, implemented as a meshless method based on spatial
trial spaces spanned by the Newton basis functions in the “native” Hilbert space
of the reproducing kernel is developed for the numerical simulation of the two-
dimensional Brusselator reaction-diffusion system.

The rest of the paper is organized as follows. In Section 2, we describe the be-
haviour of the Brusselator system. In Section 3, we give the governing equations.
Kernel-based trial functions, and particularly the Newton basis functions, are sum-
marized in Section 4. In Section 5, we turn to Newton basis functions satisfying the
Brusselator system and provide a method of lines which leads to an ODE system.
The implementation of the method is given in Section 6. Some numerical examples
are presented in Section 7. The last section is devoted to a brief conclusion.

2 Analysis of the Brusselator system

We first describe the behaviour of the Brusselator system [Ma and Wang (2011);
Roussel (2005)]. As one is interested in the stability analysis of a nonlinear reaction-
diffusion system, one typically first determines the stationary state of the model
in the absence of diffusion. This is done by solving the system (2) with conditions
ut = vt = 0 and µ1 = µ2 = 0. So the only equilibrium point of the ordinary differ-
ential equation (ODE) system is (u∗,v∗) =

(
δ , ρ

δ

)
. The Jacobian at the equilibrium



116 Copyright © 2014 Tech Science Press CMES, vol.101, no.2, pp.113-138, 2014

point is given by

J =

[
ρ−1 δ 2

−ρ −δ 2

]
and its eigenvalues satisfy the characteristic equation

λ
2 +(1−ρ +δ

2)λ +δ
2 = 0.

So the eigenvalues of J clearly depend on 1− ρ + δ 2 and the quantity ∆ ≡ (1−
ρ + δ 2)2− 4δ 2. When the real parts of the eigenvalues are negative , the equi-
librium point is a stable focus and when they cross zero and become positive the
equilibrium point becomes an unstable focus, with orbits spiralling out. The sta-
bility properties and the existence of a limit cycle in the diffusion-free Brusselator
system are summarized in Tab. 1 in relation to the four regions of Fig. 1.

Table 1: Nature of the critical point and existence of the limit cycle.

Region 1−ρ +δ 2 ∆ Eigenvalues Type of critical
point

Limit cycle
exists

1 < 0 ≥ 0 Positive real Unstable node Yes
2 < 0 < 0 Positive real parts Unstable focus Yes

= 0 < 0 Imaginary Stable fine focus No
3 > 0 < 0 Negative real parts Stable focus No
4 > 0 ≥ 0 Negative real Stable node No

The appearance or the disappearance of a periodic orbit through a local change in
the stability properties of an equilibrium point is known as the Hopf bifurcation.
In a differential equation a Hopf bifurcation typically occurs when a complex con-
jugate pair of eigenvalues of the linearized flow at an equilibrium point becomes
purely imaginary. So the equilibrium point

(
δ , ρ

δ

)
undergoes a Hopf bifurcation at

ρ = ρH = 1+δ 2, with oscillations being observed for ρ > ρH .

Now we want to study the stability analysis of the Brusselator reaction-diffusion
system (2). Note that the steady state of the diffusion-free system is also a steady
state of the reaction-diffusion one. If (u,v) = (u∗,v∗), then the spatial derivatives
of this constant function are zero, as are the reaction terms, so the time derivatives
must be zero too. This solution is called the homogeneous steady state. To study
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Figure 1: Stability regions of the diffusion-free Brusselator system.

the behaviour of the system, we will linearize (2) around the equilibrium point, i.e.,
we substitute

u =U +δ ,

v =V +
ρ

δ
,

where U and V are displacements from equilibrium, which now depend both on
time and space, and neglect high order terms in u and v. Then

Ut = (ρ−1)U +δ
2V +µ1∆U,

Vt =−ρU−δ
2V +µ2∆V,

and so[
U
V

]
t
= J

[
U
V

]
+D

[
∆U
∆V

]
,

where

J =

[
ρ−1 δ 2

−ρ −δ 2

]
, D =

[
µ1 0
0 µ2

]
.
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We again want to determine if the steady state is stable against small perturbations.
But this time we want to introduce a spatial aspect. Suppose that perturbations are
inhomogeneous in space. The convenient form is[

U
V

]
=

[
U0
V0

]
eλ teik·x,

where x = (x1,x2), and k represents a vector of two wavenumbers (k1,k2). The
question now will be whether or not conditions can be found under which the steady
state is unstable (Re(λ ) > 0) when a wiggly disturbance is introduced. Since any
disturbance over a finite domain can be synthesized by adding up sine waves, this
will answer the question of whether the steady state is stable against small, but oth-
erwise arbitrary perturbations. If we substitute the perturbation into the linearized
equation, after cancelling off the common factors of eλ teik·x, we get

λ

[
U0
V0

]
= J

[
U0
V0

]
−‖k‖2D

[
U0
V0

]
,

or

(λ I +‖k‖2D− J)
[

U0
V0

]
=

[
0
0

]
,

where I is the identity matrix. This is a homogeneous equation in [U0,V0] which
only has nontrivial solutions if∣∣λ I+2k2D−J

∣∣
= λ

2+λ
(
‖k‖2(µ1+µ2)+1−ρ +δ

2)+‖k‖4
µ1µ2 +‖k‖2 (

µ2(1−ρ)+µ1δ
2)+δ

2

= 0.

Our task will be to determine whether this characteristic equation has solutions for
which the real part of λ is positive, and if so, under what conditions. Because of
the appearance of the unknown wavenumber k in this equation, this equation has a
different solution for every k. This quadratic equation is of the form

λ
2 +qλ + p = 0.

The solutions are

λ =
1
2

{
−q±

√
q2−4p

}
.

There will be at least one root with a positive real part provided one of the following
two conditions are met:
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1. q < 0, which leads to

ρ > 1+δ
2 +‖k‖2(µ1 +µ2)> 1+δ

2.

So the steady state may also go through a Hopf instability if ρ > 1+δ 2 evolv-
ing then into a homogeneous limit cycle characterized by a critical frequency
ω = δ .

2. q > 0 and p < 0, which leads to the following bifurcation conditions:(
1+δ

√
µ1

µ2

)2

< ρ < 1+δ
2.

Note that this bifurcation occurs only when the steady state would be sta-
ble in the absence of diffusion. Thus this is a purely diffusive instability.
Moreover, it occurs for a finite range of wavenumbers k. Therefore, this in-
stability will form a spatial pattern of some sort since adding up a bunch of
sine waves within a finite range of wavelengths should produce a nontrivial
wave pattern. This is a Turing bifurcation. Technically, a Turing bifurca-
tion is the destabilization of an other stable steady state by diffusive terms,
leading to pattern formation.

3 Governing equations

We consider the 2D Brusselator system with the initial and Dirichlet or Neumann
boundary conditions:

ut(x, t) = δ +u2v− (ρ +1)u+µ1∆u

vt(x, t) = ρu−u2v+µ2∆v
x ∈Ω⊂ R2, t ∈ (0,T ], (3)


(u(x, t),v(x, t)) =

(
f D(x, t),gD(x, t)

)
x ∈D ⊆ ∂Ω, t ∈ [0,T ],(

∂u
∂n(x, t),

∂v
∂n(x, t)

)
=
(

f N (x, t),gN (x, t)
)

x ∈N ⊆ ∂Ω, t ∈ [0,T ],

(4)
u(x,0) = u0(x),

v(x,0) = v0(x),
x ∈Ω. (5)

where u0, v0, f D , gD , f N and gN are known functions, Ω⊂R2 is the domain set,
∂Ω = N ∪D is the boundary of the domain set Ω, and ∆ is the Laplace operator.



120 Copyright © 2014 Tech Science Press CMES, vol.101, no.2, pp.113-138, 2014

4 Kernel-based trial functions

We take a smooth symmetric positive definite kernel K : Ω×Ω→ R on the spatial
domain Ω. Behind each such kernel there is a reproducing “native” Hilbert space

NK = span{K(x, ·) |x ∈Ω},

of functions on Ω in the sense

〈 f ,K(x, ·)〉NK = f (x) for all x ∈Ω, f ∈K ,

and whose inner product is linked to the kernel itself via

〈K(x, ·),K(y, ·)〉NK = K(x,y) for all x ∈Ω.

The most important examples are the Whittle-Matern kernels

rm−d/2Km−d/2(r), r = ‖x− y‖, x,y ∈ Rd ,

reproducing in the Sobolev space W m
2 (Rd) for m > d/2, where Kν is the modified

Bessel function of the second kind [Schaback (2011)]. The following will be in-
dependent of the kernel chosen, but users should be aware that the kernel should
be smooth enough to allow sufficiently many derivatives for the PDE and addi-
tional smoothness for fast convergence [Wendland (2005)]. For scattered nodes
x1, . . . ,xn ∈Ω, the translates K j(x) =K(x j,x) are the trial functions we want to start
with. Since the kernel K is smooth and explicitly available, we can take derivatives
with respect to both arguments cheaply, and this implies that we get cheap deriva-
tives of the K j. But the standard basis of translates leads to an ill-conditioned ker-
nel matrix A= (K(x j,xk))1≤ j,k≤n, and hence the translates are notoriously unstable.
The Newton basis with a recursively computable set of basis functions and vanish-
ing at increasingly many data points turns out to be more stable. It is orthonormal
in the native Hilbert space and complete, if infinitely many data locations are rea-
sonably chosen. The Newton basis functions {Nk(x)}n

k=1 can be expressed by

Nk(x) =
n

∑
j=1

K(x,x j)c jk, 1≤ k ≤ n. (6)

If N(x) = (N1(x), . . . ,Nn(x)) , and T (x) = (K(x,x1), . . . ,K(x,xn)) , from (6) we have
N(x) = T (x) ·C, where C =

(
c jk
)

1≤ j,k≤n is the coefficient matrix. Hence the value
matrix V = (N j(xi))1≤i, j≤n is of the form V = A ·C. It has been proved that the
Cholesky decomposition A = L ·LT with a nonsingular lower triangular matrix L
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leads to the Newton basis N with N(x) = T (x) ·
(
LT
)−1

, and V = L. Hence the con-
dition number of the collocation matrix corresponding to Newton basis functions is
smaller than the one corresponding to translated RBFs. Consequently, using New-
ton basis functions for collocation will lead to more stable methods than using the
basis of translates. The Newton basis functions can be recursively calculated and
have the property N j(xk) = 0, 1≤ k≤ j ≤ n. If the values of the Newton basis and
linear maps L like derivatives are needed to be calculated at other points, we get
the linear systems V ·NT (x) = T (x)T , and V ·L (NT (·)) =L (T (·)T ), respectively.

5 Method of lines

We aim at the method of lines (MOL), which leads to a system of ordinary differ-
ential equations, and this implies that there will be neither time discretization at
all nor artificial linearization of the differential equation. The problem of correct
time-stepping will be automatically solved by the ODE solver we invoke. The dis-
cretization is at points xi,1≤ i≤ n for the PDE, y j, 1≤ j≤m for the Dirichlet and
zk, 1≤ k ≤ l for the Neumann boundary conditions. We reorder these sequentially
into points wi, 1≤ i≤m+n+ l, the y j first and the xi second, and form the Newton
basis N1, . . . ,Nm+n+l for these points. Then Nm+1, . . . ,Nm+n+l vanish on the Dirich-
let points, and Nm+n+1, . . . ,Nm+n+l also vanish on the PDE points. We write our
trial space functions as

ũ(x, t) =
m+n+l

∑
j=1

α j(t)N j(x)

ṽ(x, t) =
m+n+l

∑
j=1

β j(t)N j(x)

(7)

and care for the Dirichlet boundary conditions by solving

ũ(wi, t) = f D(wi, t) =
m

∑
j=1

α j(t)N j(wi), 1≤ i≤ m,

ṽ(wi, t) = gD(wi, t) =
m

∑
j=1

β j(t)N j(wi), 1≤ i≤ m,

for the unknown vectors a1(t)= (α1(t), . . . ,αm(t))
T , and b1(t)= (β1(t), . . . ,βm(t))

T .
This is just the Newton interpolant to the data f D

i and gD
i on the Dirichlet points.

We will also need

f D ′(wi, t) =
m

∑
j=1

α
′
j(t)N j(wi), 1≤ i≤ m,
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gD ′(wi, t) =
m

∑
j=1

β
′
j(t)N j(wi), 1≤ i≤ m,

for the formulation of the MOL, where the prime denotes the derivative with respect
to t. Our unknowns in the trial space are only the vectors

a2(t) = (αm+1(t), . . . ,αm+n(t))
T ,

b2(t) = (βm+1(t), . . . ,βm+n(t))
T ,

a3(t) = (αm+n+1(t), . . . ,αm+n+l(t))
T ,

b3(t) = (βm+n+1(t), . . . ,βm+n+l(t))
T .

Now we implement the Neumann boundary conditions at a point wi, m+ n+ 1 ≤
i≤ m+n+ l as follows:

f N (wi) =
m

∑
j=1

α j(t)
∂N j

∂n
(wi)+

m+n

∑
j=m+1

α j(t)
∂N j

∂n
(wi)+

m+n+l

∑
j=m+n+1

α j(t)
∂N j

∂n
(wi),

gN (wi, t) =
m

∑
j=1

β j(t)
∂N j

∂n
(wi)+

m+n

∑
j=m+1

β j(t)
∂N j

∂n
(wi)+

m+n+l

∑
j=m+n+1

β j(t)
∂N j

∂n
(wi).

Thus the unknown vectors a3(t) and b3(t) can be written in terms of the unknown
vectors a2(t) and b2(t) by solving the following equations:

m+n+l

∑
j=m+n+1

α j(t)
∂N j

∂n
(wi, t)= f N (wi, t)−

m

∑
j=1

α j(t)
∂N j

∂n
(wi, t)−

m+n

∑
j=m+1

α j(t)
∂N j

∂n
(wi, t),

m+n+l

∑
j=m+n+1

β j(t)
∂N j

∂n
(wi, t)= gN (wi, t)−

m

∑
j=1

β j(t)
∂N j

∂n
(wi, t)−

m+n

∑
j=m+1

β j(t)
∂N j

∂n
(wi, t),
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for m+n+1≤ i≤m+n+ l. We now write the PDE (3) at a point wi, m+1≤ i≤
m+n as follows:

m

∑
j=1

α
′
j(t)N j(wi)+

m+n

∑
j=m+1

α
′
j(t)N j(wi)

=δ+

(
m

∑
j=1

α j(t)N j(wi)+
m+n

∑
j=m+1

α j(t)N j(wi)

)2(m

∑
j=1

β j(t)N j(wi)+
m+n

∑
j=m+1

β j(t)N j(wi)

)

− (ρ +1)

(
m

∑
j=1

α j(t)N j(wi)+
m+n

∑
j=m+1

α j(t)N j(wi)

)

+µ1

(
m

∑
j=1

α j(t)∆N j(wi)+
m+n

∑
j=m+1

α j(t)∆N j(wi)+
m+n+l

∑
j=m+n+1

α j(t)∆N j(wi)

)
,

m

∑
j=1

β
′
j(t)N j(wi)+

m+n

∑
j=m+1

β
′
j(t)N j(wi)

=ρ

(
m

∑
j=1

α j(t)N j(wi)+
m+n

∑
j=m+1

α j(t)N j(wi)

)

−

(
m

∑
j=1

α j(t)N j(wi)+
m+n

∑
j=m+1

α j(t)N j(wi)

)2( m

∑
j=1

β j(t)N j(wi)+
m+n

∑
j=m+1

β j(t)N j(wi)

)

+µ2

(
m

∑
j=1

β j(t)∆N j(wi)+
m+n

∑
j=m+1

β j(t)∆N j(wi)+
m+n+l

∑
j=m+n+1

β j(t)∆N j(wi)

)
.

(8)

Thus we get an implicit system of first-order ordinary differential equations. The
initial conditions also provide

ũ0(wi) =
m

∑
j=1

α j(0)N j(wi)+
m+n

∑
j=m+1

α j(0)N j(wi), m+1≤ i≤ m+n,

ṽ0(wi) =
m

∑
j=1

β j(0)N j(wi)+
m+n

∑
j=m+1

β j(0)N j(wi), m+1≤ i≤ m+n.
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6 Implementation

If we introduce suitable column vectors and matrices into the system (8), we have
to satisfy[

N3 0
0 N3

][
a′2(t)
b′2(t)

]
=

[
R1(a2,b2)
R2(a2,b2)

]
, (9)

with the initial conditions
a2(0) = (N3)

−1 ((u0(wi), m+1≤ i≤ m+n)T −N2a1(0)
)
,

b2(0) = (N3)
−1 ((v0(wi), m+1≤ i≤ m+n)T −N2b1(0)

)
,

where

R1(a2,b2) = δ ∗1+((N2 ∗a1 +N3 ∗a2) .∧2) .∗ (N2 ∗b1 +N3 ∗b2)

− (ρ +1)(N2 ∗a1 +N3 ∗a2)+µ1 (D1 ∗a1 +D2 ∗a2 +D3 ∗a3)−N2a1
′(t),

R2(a2,b2) = ρ (N2 ∗a1 +N3 ∗a2)−((N2 ∗a1 +N3 ∗a2) .∧2) .∗ (N2 ∗b1 +N3 ∗b2)

+µ2 (D1 ∗b1 +D2 ∗b2 +D3 ∗b3)−N2b1
′(t),

in MATLAB notation for the pointwise product .∗ and power .∧ between two ma-
trices or vectors of the same shape. The necessary matrices and vectors are

N1 = (N j(wi))1≤i≤m,1≤ j≤m , N2 = (N j(wi))m+1≤i≤m+n,1≤ j≤m ,

N3 = (N j(wi))m+1≤i≤m+n,m+1≤ j≤m+n ,

a1(t) = (N1)
−1FD(t), b1(t) = (N1)

−1GD(t),

a1
′(t) = (N1)

−1FD ′(t), b1
′(t) = (N1)

−1GD ′N(t),

FD(t) = ( f D(wi, t), 1≤ i≤ m)T , GD(t) := (gD(wi, t), 1≤ i≤ m)T ,

FD ′(t) = ( f D ′(wi, t), 1≤ i≤ m)T , GD ′(t) := (gD ′(wi, t), 1≤ i≤ m)T ,

a3(t) =
(

∂N3

∂n

)−1(
FN (t)− ∂N1

∂n
a1(t)−

∂N2

∂n
a2(t)

)

b3(t) =
(

∂N3

∂n

)−1(
GN (t)− ∂N1

∂n
b1(t)−

∂N2

∂n
b2(t)

)
FN (t) = ( f N (wi, t), m+n+1≤ i≤ m+n+ l)T ,

GN (t) := (gN (wi, t), m+n+1≤ i≤ m+n+ l)T ,
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∂N1

∂n
=

(
∂N j(wi)

∂n

)
m+n+1≤i≤m+n+l,1≤ j≤m

,

∂N2

∂n
=

(
∂N j(wi)

∂n

)
m+n+1≤i≤m+n+l,m+1≤ j≤m+n

,

∂N3

∂n
=

(
∂N j(wi)

∂n

)
m+n+1≤i≤m+n+l,m+n+1≤ j≤m+n+l

,

D1 = (∆N j(wi))m+1≤i≤m+n,1≤ j≤m ,

D2 = (∆N j(wi))m+1≤i≤m+n,m+1≤ j≤m+n ,

D3 = (∆N j(wi))m+1≤i≤m+n,m+n+1≤ j≤m+n+l ,

where j is the column index and i is the row index.

The system (9) is the ODE system generated by the MOL and one can invoke any
ODE integrator to solve it. The method of lines thus reduces the PDE problem to a
system of ODEs and relies numerically on the ODE solvers invoked to solve these
ODEs. The discretization of the PDE does not involve any time–stepping at all, and
therefore the time integration plays only a role within the ODEs. But since ODEs
are not in the focus of this paper, we ignore time–stepping here.

The matrix of the left-hand side is time-independent, and in the case of the invert-
ibility of it, the approximate solutions u(x, t) and v(x, t) will satisfy the differential
equations at all points w1, ...,wm+n+l and all times, the latter within the accuracy
limit of the ODE integrator. Note that the nonlinearity of the PDE is preserved, and
a good ODE solver will automatically use a reasonable time-stepping and detect
stiffness of the ODE system. The matrices N1, N2, and N3 are the nonzero blocks
of the value matrix of the Newton basis, which is upper triangular and nonsingular.
Thus the square matrices N1 and N3 are upper triangular and nonsingular. However,
there is no guarantee that the matrices of normal derivatives are nonsingular.

7 Numerical results

In this section we present the results of our scheme for the numerical solution of
the Brusselator reaction-diffusion system (3)-(5). In all test problems, we take the
Matern kernel with RBF parameter ν = 2= m−d/2 and RBF scale c = 10, i.e. we
work with the kernel

K(x,y) =
(
‖x− y‖2

10

)2

K2

(
‖x− y‖2

10

)
.

We also assume that Ω = [0,1]× [0,1], such that we work in the Hilbert space
W 3

2 (R2). We take 121 uniformly distributed discretization points in the region Ω as
shown in Fig. 2. We also take 51 grid points along each axis for plotting of figures.
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Figure 2: Points distribution in the region Ω.

7.1 Test problem 1

Consider the Brusselator system together with the Dirichlet boundary conditions
with ρ = 1, δ = 0, and µ1 = µ2 = 0.25. The initial and boundary conditions are
extracted from the exact solutions{

u(x,y, t) = exp(−x− y−0.5t),
v(x,y, t) = exp(x+ y+0.5t).

The concentrations profiles of u and v at different time levels T = 1, T = 3, T =
5, and T = 20 are shown in Figs. 3-6, respectively. Absolute and relative error
distributions at time T = 2 are shown in Figs. 7 and 8, respectively. The results are
in agreement with the results of [Jiwari and Yuan (2014)].

7.2 Test problem 2

In the second experiment, we choose parameters ρ = 2, δ = 1, and µ1 = µ2 = 0.25,
and start from zero initial conditions and fixed boundary conditions taken as the
homogeneous steady state (u,v) = (δ , ρ

δ
). Since the exact solutions are not known,

we plot the error between the left and right hand sides of the 2 equations of system
(3) for the grid points of the region in Fig. 9. The plots of the values of u and v at the
collocation point (0.3,0.3) versus time shown in Fig. 10, indicate that the solutions
converge toward the stationary ones (δ , ρ

δ
) as t increases, whenever 1−ρ +δ 2 > 0.

In the next two test problems, we investigate the behaviour of the system when the
sign of 1−ρ +δ 2 changes and the Hopf bifurcation occurs.
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Figure 3: Plots of u and v at T = 1, ρ = 1, δ = 0. (Test problem 1)
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Figure 4: Plots of u and v at T = 3, ρ = 1, δ = 0. (Test problem 1)
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Figure 5: Plots of u and v at T = 5, ρ = 1, δ = 0. (Test problem 1)
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Figure 6: Plots of u and v at T = 20, ρ = 1, δ = 0. (Test problem 1)
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Figure 7: Absolute error graph at time T = 2. (Test problem 1)
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Figure 8: Relative error graph at time T = 2. (Test problem 1)
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Figure 9: Error graph of PDE at time T = 2. (a) Equation 1; (b) Equation 2. (Test
problem 2)
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Figure 10: Plots of u(0.3,0.3) and v(0.3,0.3) versus time. (Test problem 2)

7.3 Test problem 3

Consider the Brusselator system with the following initial and Neumann boundary
conditions:{

u(x,y,0) = 2+0.25y,
v(x,y,0) = 1+0.8x,{
∂u(x,y,t)

∂x |x=0 =
∂u(x,y,t)

∂x |x=1 =
∂u(x,y,t)

∂y |y=0 =
∂u(x,y,t)

∂y |y=1 = 0,
∂v(x,y,t)

∂x |x=0 =
∂v(x,y,t)

∂x |x=1 =
∂v(x,y,t)

∂y |y=0 =
∂v(x,y,t)

∂y |y=1 = 0.

Computations are carried out with the parameters ρ = 1, δ = 2, and µ1 = µ2 =
0.002. The algorithm is tested up to time T = 5. The concentration profiles of u
and v at time from T = 1 to T = 8 are shown in Fig. 11. It can be noted from Fig.
11 that (u,v)→ (δ , ρ

δ
) as t increases, whenever 1−ρ + δ 2 > 0. The results show

an agreement with the results of [Jiwari and Yuan (2014)]. The plots of the values
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of u and v at the collocation point (0.3,0.3) versus time are shown in Fig. 12. It
can be noted from Fig. 12, that (u(0.3,0.3),v(0.3,0.3))→ (2,0.5) as t → ∞. The
results show an agreement with the results of [Twizell, Gumel, and Cao (1999)]
and [ul Islam, Haq, and Ali (2010)].

7.4 Test problem 4

The algorithm is repeated with ρ = 3.4, δ = 1 up to time T = 40. The concentra-
tions profiles of u and v at T = 40 are shown in Fig. 13. The plots of the values
of u and v at the collocation point (0.3,0.3) versus time are shown in Fig. 14. It
can be noted from Figs. 13 and 14 that the solutions are stable but oscillatory and
the numerical method is seen not to converge to any fixed concentration. The re-
sults show an agreement with the results of [Twizell, Gumel, and Cao (1999)] and
[ul Islam, Haq, and Ali (2010)].

7.5 Test problem 5

Consider the Brusselator system with the following initial and Neumann boundary
conditions:{

u(x,y,0) = 0.5+ y,
v(x,y,0) = 1+5x,{
∂u(x,y,t)

∂x |x=0 =
∂u(x,y,t)

∂x |x=1 =
∂u(x,y,t)

∂y |y=0 =
∂u(x,y,t)

∂y |y=1 = 0,
∂v(x,y,t)

∂x |x=0 =
∂v(x,y,t)

∂x |x=1 =
∂v(x,y,t)

∂y |y=0 =
∂v(x,y,t)

∂y |y=1 = 0.

The plots of the values of u and v at the collocation point (0.2,0.2) versus time are
shown in Fig. 15 with the parameters ρ = 0.5, δ = 1, and µ1 = µ2 = 0.002. It
can be noted from Fig. 15, that (u(0.2,0.2),v(0.2,0.2))→ (1,0.5) as t → ∞. The
concentration profiles of u and v at time from T = 1 to T = 15 are shown in Fig. 16
with the parameters ρ = 3.4, δ = 1, and µ1 = µ2 = 0.002. The results are similar
to those obtained in [Jiwari and Yuan (2014)]. In the next test problem, we show
the Turing pattern occuring in the Brusselator system by our scheme.

7.6 Test problem 6

Consider the Brusselator system with the parameters ρ = 8.72, δ = 4.5, µ1 = 1,
and µ2 = 8. Fig. 17 shows the Turing pattern obtained at time T = 20 starting
from the initial conditions which are random perturbations around the stationary
state (δ , ρ

δ
), with no flux boundary conditions. This spotty pattern verifies the fact

that in two dimensions, reaction-diffusion systems typically exhibit either stripes
or spots [Leppänen (2004)].
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Figure 11: Plots of u and v at times T = 1,3,5,7,8, ρ = 1, δ = 2. (Test problem 3)
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Figure 12: Plots of u(0.3,0.3) and v(0.3,0.3) versus time. (Test problem 3)

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0.7

0.72

0.74

0.76

0.78

xy

u

0
0.2

0.4
0.6

0.8
1

0

0.5

1
2.35

2.4

2.45

2.5

xy

v

Figure 13: Plots of u and v at T = 40, ρ = 3.4, δ = 1. (Test problem 4)

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

t

u(
0.

3,
0.

3)

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

t

v(
0.

3,
0.

3)

Figure 14: Plots of u(0.3,0.3) and v(0.3,0.3) versus time. (Test problem 4)
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Figure 15: Plots of u(0.2,0.2) and v(0.2,0.2) versus time. (Test problem 5)
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Figure 16: Plots of u and v at times T = 1,3,5,7,10,15, ρ = 3.4, δ = 1. (Test
problem 5)
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Figure 17: Turing pattern with the parameters ρ = 8.72, δ = 4.5, µ1 = 1, µ2 = 8,
and no flux boundary conditions. (Test problem 6 )
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8 Conclusion

In this paper, the Newton basis functions were successfully used as spatial trial
functions in the method of lines for the numerical solution of the 2D Brusselator
reaction–diffusion system. The method is shown to work in all interesting Hopf
bifurcations and Turing patterns.
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