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Legendre Polynomials Method for Solving a Class of
Variable Order Fractional Differential Equation

Lifeng Wang1, Yunpeng Ma1,2 and Yongqiang Yang1

Abstract: In this paper, a numerical method based on the Legendre polynomi-
als is presented for a class of variable order fractional differential equation. We
adopt the Coimbra variable order fractional operator, which can be viewed as a
Caputo-type definition. Three different kinds of operational matrixes with Legen-
dre polynomials are derived. A truncated the Legendre polynomials series together
with the products of several dependent matrixes are utilized to reduce the variable
order fractional differential equation to a system of algebraic equations. The solu-
tion of this system gives the approximation solution for the truncated limited n. An
error analysis technique is also given. Some examples are included to demonstrate
the validity and applicability of the approach.

Keywords: Legendre polynomials, variable order fractional, error analysis, nu-
merical solution.

1 Introduction

A lot of scientific and engineering problems involving fractional phenomenon is
already very large and still growing. One of the main advantages of the fractional
phenomenon is that the fractional derivatives and fractional integrals provide an ex-
cellent approach for the different kinds of physical fields, such as dispersive trans-
ports in amorphous semiconductors, tracer transfer in underground water, seepage
in soil or rocks, etc [Anh, Angulo and Ruiz-Medina(2005); Chen(2006); Meer-
schaert and Tadjeran(2004); Sun, Chen, Sheng and Chen(2010)]. Many of the
numerical methods using various fractional derivative operators and integral oper-
ators for solving fractional differential equations have been proposed. Podlubny
[Podlubny(1999)] used the Laplace transform method to solve the fractional partial
differential equations with constant coefficients. Zaid Odibat and Shaher Momani
[Odibat and Momani(2008)] applied generalized differential transform method to
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solve the numerical solution of linear partial differential equations of fractional or-
der. Zhang [Zhang(2009)] discussed a practical implicit method to solve a class
of initial boundary value space-time fractional convection-diffusion equations with
variable coefficients.

In recent years, more and more researchers are finding that a variety of dynamical
problems exhibit fractional order behavior. This indicates that variable order cal-
culus is an effective mathematical framework to describe the complex dynamical
problems [Anh and Leonenko(2001); Blaszczyk and Ciesielski(2011); Chen, Liu,
Anh and Turner(2010)]. In order to deal with the diffusion processes in which the
diffusion behaviors based on time evolution, space variation or system parameters,
the variable order diffusion models were proposed [Chen, Sun and Zhang (2010);
Schulz and Schulz(2006)]. The concept of variable order operator was first intro-
duced by Samko [Samko and Ross(1993)] in 1993 and has received much attention
in the fields of viscoelastic deformation, viscoelasticity, viscous fluid, etc. The vari-
able order operator definitions recently proposed [Samko (1995)] in the literature
include Caputo definition, Marchaud definition, Coimbra definition and Riemann
Liouvile definition. Based on different definition, many numerical methods have
been proposed correspondingly. Lin et al. [Lin, Liu and Anh (2009)] applied an
explicit finite difference method to investigate stability and convergence of approx-
imation for the variable order nonlinear fractional diffusion equation. Zhuang et al.
[Zhuang, Liu, Anh and Turner(2009)] proposed explicit and implicit Euler method
for the variable order fractional advection-diffusion equation. Chen et al. [Chen,
Liu, Anh and Turner(2010)] used two numerical methods to solve the variable order
anomalous sub-diffusion equation.

The main contribution of this paper is that we explored other method to solve the
variable order fractional differential equation. As we all know, there are a lot of
methods to obtain the numerical solution of the constant order fractional differential
equation[Yi and Chen (2012); Wei, Chen, Li and Yi(2012); Wang, Meng, Ma,
and Wu (2013)]. However, the main method to solve the variable order fractional
differential equation is finite difference method. We consider the following variable
order fractional differential equation by using Legendre polynomials.

Dα(t) (u(t)g(t))+Dβ (t) (u(t))+u′ (t) = f (t) (1)

with initial condition

u(0) = a (2)

where 0 < α(t) < 1 and Dα(t) denotes the variable order fractional derivative de-
fined by Coimabra [Coimbra (2003)]. f (t),g(t) is the known function, u(t) is the
unknown function.
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2 Definitions and properties of variable order operator

Here we just recall the most typical definitions which are easy to use in physics.
The Caputo type variable order derivative definition presented by Coimbra is stated
as following [Sun, Chen, Sheng and Chen(2010)]:

Dα(t)u(t) =
1

Γ(1−α(t))

∫ t

0+

u′(τ)
(t− τ)α(t)

dτ +
(u(0+)−u(0−))
Γ(1−α(t))tα(t)

, 0 < α(t)< 1 (3)

We suppose the property of function u(t) at t = 0 is good enough , then we can
write the following Caputo type definition

Dα(t)u(t) =
1

Γ(1−α(t))

∫ t

0

u′(τ)
(t− τ)α(t)

dτ, 0 < α(t)< 1 (4)

The definition of variable order integration proposed by Samko as follows

Iα(t)u(t) =
1

Γ(α(t))

∫ t

0
(t− τ)α(t)−1u(τ)dτ, Re(α(t))> 0 (5)

Then we give following properties for the above definitions which will be used in
this paper.

Property 1: Dα(t)tβ = Γ(β+1)
Γ(β−α(t)+1) t

β−α(t).

Property 2: Iα(t)
(
Dα(t)u(t)

)
= u(t)−u(0).

3 Legendre polynomials and their some properties

The Legendre basis polynomials of degree n in [0,1] (see [Saadatmandi (2010)])
are defined by

Pi+1(t) =
(2i+1)(2t−1)

(i+1)
Pi(t)−

i
i−1

Pi−1(t), i = 1,2, . . . (6)

where P0(t) = 1,P1(t) = 2t−1. The Legendre polynomials of degree i can be also
written as

Pi(t) =
i

∑
k=0

(−1)i+k (i+ k)!
(i− k)!

tk

(k!)2 (7)

Let

ΦΦΦ(t) = [P0 (t) ,P1 (t) , · · · ,Pn (t)]
T (8)
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The Legendre polynomials given by Eq.(7) can be expressed in the matrix form

ΦΦΦ(t) = ATn (t) (9)

where

A =


1 0 0 · · · 0
−1 (−1)22! 0 · · · 0

(−1)2 (−1)3 3!
1! (−1)4 4!

2! · · · 0
...

...
...

. . .
...

(−1)n (−1)n+1 (n+1)!
(n−1)! (−1)n+1 (n+2)!

(n−2)!2! · · · (−1)2n (2n)!
n!

 , (10)

Tn (t) =


1
t
...

tn

 (11)

A function u(t) ∈ L2(0,1) can be expressed in terms of the Legendre basis. In
practice, only the first (n+1) term of Legendre polynomials are considered. Hence

u(t)∼=
n

∑
i=0

ciPi (t) = cT
ΦΦΦ(t) (12)

where c = [c0,c1, · · · ,cn]
T , ci (i = 0,1,2, · · · ,n) are called Legendre coefficients,

and c = Q−1 (u,ΦΦΦ(t)). The dimension of Q is (n+1)× (n+1), it is called as the
inner product matrix which is given by

Q =
∫ 1

0 ΦΦΦ(t)ΦΦΦT (t)dx =
∫ 1

0 (ATn (t))(ATn (t))
T dt

= A
(∫ 1

0 Tn (t)TT
n (t)dt

)
AT = AHAT (13)

where H =


1 1

2 · · · 1
n+1

1
2

1
3 · · · 1

n+2
...

...
. . .

...
1

n+1
1

n+2 · · · 1
2n+1

.

For the function u(x, t) ∈ L2 ([0,1]× [0,1]), we can also obtain its approximation
by using Legendre polynomials

u(x, t)∼=
n

∑
i=0

n

∑
j=0

ui jPi (x)Pj (t) = ΦΦΦ
T (x)UΦΦΦ(t) (14)
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where U =


u00 u01 · · · u0n

u10 u11 · · · u1n
...

...
. . .

...
un0 un1 · · · unn

.

4 The operational matrix of Legendre polynomials

4.1 The first order operational matrix of the form u′ (t)

Let u(t) = cT
1 ΦΦΦ(t), the first order derivative of ΦΦΦ(t) is given by

ΦΦΦ
′ (t) = DΦΦΦ(t) (15)

where the order of matrix D is (n+1)× (n+1). Using Eq.(9), we have

ΦΦΦ
′ (t) = A


0
1
...

ntn−1

 (16)

Suppose the form of matrix V(n+1)×n and vector T∗n (t) is as following

V(n+1)×n =


0 0 0 0
1 0 · · · 0
0 2 · · · 0
...

...
. . .

...
0 0 · · · n

 , T∗n (x) =


1
t
...

tn−1

 (17)

Applying ΦΦΦ(t) to express the T∗n (t), we get

T∗n (t) = B∗ΦΦΦ(t) (18)

where B∗ =
[

A−1
[1] A−1

[2] · · · A−1
[n]

]T
, and A−1

[k] is the kth row of matrix A−1.
Then we obtain

ΦΦΦ
′ (t) = AV(n+1)×nB∗ΦΦΦ(t) (19)

The operational matrix of first order derivative of Legendre polynomials is

D = AV(n+1)×nB∗ (20)

So we have

u′ (t) = cT
1 AV(n+1)×nB∗ΦΦΦ(t) (21)
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4.2 The variable order fractional operational matrix of the form Dβ (t)

According to the Eq.(4), and property 1 and 2, we can get

Dβ (t)u(t) = Dβ (t)cT
1 ΦΦΦ(t) = cT

1 Dβ (t)
ΦΦΦ(t)

= cT
1 Dβ (t)ATn (t)

= cT
1 ADβ (t)


1
t
...

tn

= cT
1 A



0
Γ(2)

Γ(2−β (t))x
−β (t)

Γ(3)
Γ(3−β (t))x

2−β (t)

...
Γ(n+1)

Γ(n+1−β (t))x
n−β (t)



= cT
1 A


0 0 · · · 0
0 Γ(2)

Γ(2−β (t)) t
−β (t) · · · 0

...
...

. . .
...

0 0 · · · Γ(n+1)
Γ(n+1−β (t)) t

−β (t)




1
t
...

tn


= cT

1 ANA−1
ΦΦΦ(t)

(22)

Let N =


0 0 · · · 0
0 Γ(2)

Γ(2−β (t)) t
−β (t) · · · 0

...
...

. . .
...

0 0 · · · Γ(n+1)
Γ(n+1−β (t)) t

−β (t)

, then we acquire the dif-

ferential operational matrix of Dβ (t):

Dβ (t)u(t)=cT
1 ANA−1

ΦΦΦ(t) (23)
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4.3 The variable order fractional operational matrix of the form Dα(t) (u(t)g(t))

Similarly, let g(t) = cT
2 ΦΦΦ(t), then we have the following

Dα(t) (u(t)g(t))
= Dα(t)

(
cT

1 ΦΦΦ(t)ΦΦΦ
T (t)c2

)
= Dα(t)

(
cT

1 AT∗n (t)(AT∗n (t))
T c2

)
= Dα(t)

(
cT

1 AT∗n (t)T∗Tn (t)AT c2
)

= cT
1 ADα(t)

(
T∗n (t)T∗Tn (t)

)
AT c2

= cT
1 ADα(t)




1
t
...

tn

[ 1 t . . . tn
]
AT c2

= cT
1 ADα(t)


1 t . . . tn

t t2 . . . tn+1

...
...

. . .
...

tn t2n . . . t2n

AT c2

= cT
1 A


0 Γ(2)

Γ(2−α(t)) t
1−α(t) . . . Γ(n+1)

Γ(n+1−α(t)) t
n−α(t)

Γ(2)
Γ(2−α(t)) t

1−α(t) Γ(3)
Γ(3−α(t)) t

2−α(t) . . . Γ(n+2)
Γ(n+2−α(t)) t

n+1−α(t)

...
...

. . .
...

Γ(n+1)
Γ(n+1−α(t)) t

n−α(t) Γ(n+2)
Γ(n+2−α(t)) t

n+1−α(t) . . . Γ(2n+1)
Γ(2n+1−α(t)) t

2n−α(t)

AT c2

= cT
1 AMAT c2

(24)

Let

M =


0 Γ(2)

Γ(2−α(t)) t
1−α(t) . . . Γ(n+1)

Γ(n+1−α(t)) t
n−α(t)

Γ(2)
Γ(2−α(t)) t

1−α(t) Γ(3)
Γ(3−α(t)) t

2−α(t) . . . Γ(n+2)
Γ(n+2−α(t)) t

n+1−α(t)

...
...

. . .
...

Γ(n+1)
Γ(n+1−α(t)) t

n−α(t) Γ(n+2)
Γ(n+2−α(t)) t

n+1−α(t) . . . Γ(2n+1)
Γ(2n+1−α(t)) t

2n−α(t)


(25)

Hence, we obtain the differential operational matrix of Dα(t) (u(t)g(t)):

Dα(t) (u(t)g(t)) = cT
1 AMAT c2 (26)
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5 Numerical solution of Eq.(1)-(2)

Substituting Eq.(21), Eq.(23) and Eq.(26) into Eq.(1), we obtain

cT
1 AMAT c2 + cT

1 ANA−1
ΦΦΦ(t)+ cT

1 AV(n+1)×nB∗ΦΦΦ(t) = f (t) (27)

In this paper, we use Legendre polynomials collocation method to determine the
coefficients c1. By solving this system we can obtain the approximate solution of
Eq.(1) as following

u(t) = cT
1 ΦΦΦ(t) (28)

6 Error analysis

Suppose function u : [x0,1] → R is m + 1 times continuously differentiable u ∈
Cm+1[0,1], and Y = Span{P0,P1,P2 · · · ,Pn}. If cT ΦΦΦ(x) is the best approximation
of u out of Y, then the mean error bound is presented as follows:∥∥u− cT

ΦΦΦ(x)
∥∥

2 ≤
√

2MS
2m+3

2

(m+1)!
√

2m+3
(29)

where M = max
x∈[0,1]

∣∣u(m+1)(x)
∣∣ , S = max{1− x0,x0}.

Proof. Considering the Taylor polynomials, we have

u1(x) = u(x0)+u′(x0)(x− x0)+u′′(x0)
(x− x0)

2

2!
· · ·+u(m)(x0)

(x− x0)
m

m!
(30)

Using the mean value theorem, we have

|u(x)−u1 (x)|=
∣∣∣u(m+1) (ε)

∣∣∣ (x− x0)
m+1

(m+1)!
∃ε ∈ (0,1) (31)

where ε ∈ (0,1). Since cT Φ(x) is the best approximation ofu, then we get∥∥u− cT
Φ(x)

∥∥2
2 ≤ ‖u−u1‖2

2 =
∫ 1

0
(u(x)−u1 (x))

2dx

=
∫ 1

0

(∣∣∣u(m+1) (ε)
∣∣∣ (x− x0)

m+1

(m+1)!

)2

dx

≤ M2

[(m+1)!]2

∫ 1

0
(x− x0)

2m+2dx

≤ 2M2S2m+3

[(m+1)!]2 (2m+3)

Therefore
∥∥u− cT Φ(x)

∥∥
2 ≤

√
2MS

2m+3
2

(m+1)!
√

2m+3
.
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7 Numerical examples

To show the efficiency and the accuracy of the proposed method, we consider the
following three examples.

Example 7.1. Consider the following variable order fractional differential equa-
tion:

D
t
4

(
u(t) t

7
8

)
+Dcos tu(t)+u′ (t) = f (t)

u(0) = 0 t ∈ [0,1]
(32)

where f (t) = 2t +
23t

23
8 −

t
4 Γ( 23

8 )
8Γ( 31

8 −
t
4)

+ 2t2−cos t

(2−3cos t+cos2 t)Γ(1−cos t) . The exact solution of this

problem is u(t) = t2. Take n = 3, and ti = ki
3 −

1
6 , (ki = 1,2,3), then we acquire

the vector c1 =
[

0 0.000528709 0.999136 1.00022
]T by adopting the above

method. Fig.1 shows the absolute errors of exact solution and numerical solution
for n = 3.

 
Figure 1: Absolute errors for exact and numerical solution of n = 3.

Take n = 4, and ti = ki
4 −

1
8 , (ki = 1,2,3,4), then we acquire the vector c1 =[

0 0.000528709 0.999136 1.00022
]T . Fig.2 shows the absolute errors of

exact solution and numerical solution for n = 4.

Example 7.2. Consider this equation:

D
t
4 (u(t)(t +1))+D

t
3 u(t)+u′ (t) = f (t)

u(0) = 1 t ∈ [0,1]
(33)
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Figure 2: Absolute errors for exact and numerical solution ofn = 4.

such that f (t) = 2t + 18t2− t
3

(18−9t+t2)Γ(1− t
3)
− 4t1− t

4 (96+76t+89t2)
(−12+t)(−8+t)(−4+t)Γ(1− t

4)
.

We applied the Legendre polynomials approach to solve Eq.(33) for various values
of n. Take n= 3 and ti = ki

3 −
1
6 , (ki = 1,2,3), then we obtain c1 =

[
1 3 4 2

]T .
The absolute errors for n = 3is shown in Fig.3.

 
Figure 3: Absolute errors for exact and numerical solution of n = 3.

Take n = 4, and ti = ki
4 −

1
8 , (ki = 1,2,3,4), then we acquire the vector c1 =[

1 4.00019 6.99979 6.00026 2
]T . The absolute errors for n = 4is shown
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in Fig.4.

 
Figure 4: Absolute errors for exact and numerical solution of n = 4.

Example 7.3. Consider the below variable order fractional differential equation:

D
t
4
(
u2 (t)

)
+D

t
3 u(t)+u′ (t) = f (t)

u(0) = 0 t ∈ [0,1]
(34)

where f (t) = 2t + 18t2− t
3

(18−9t+t2)Γ(1− t
3)

+ 6144t4− t
4

(−16+t)(−12+t)(−8+t)(−4+t)Γ(1− t
4)

.

The exact solution is u(t) = t2.

Take n= 2 and ti = ki
2 −

1
4 , (ki = 1,2), so we have c1 =

[
0 −1.25×10−16 1

]T .
Fig.5 shows the absolute errors of exact solution and numerical solution.

Take n = 3 and ti = ki
3 −

1
6 , (ki = 1,2,3), we can get c1 =

[
0 0 1 1

]T . The
absolute errors of exact solution and numerical solution is shown in Fig.6.

Take n= 4 and ti = ki
4 −

1
8 , (ki = 1,2,3,4), we can obtain c1 =

[
0 0 1 2 1

]T.
The absolute errors of exact solution and numerical solution is shown in Fig.7.

The calculating results show that combining with the Legendre polynomials oper-
ational matrix, the method in this paper can be effectively used in numerical calcu-
lus for variable order fractional differential equations. This problem was solved by
other methods, we list their absolute errors in Table 1-3.

From the Table1-3, we can find that compared with existed method which the accu-
racy is about 10−4, our method can acquire higher degree of accuracy when solving
the same equation. They also demonstrate the simplicity, and powerfulness of the
proposed method. What’s more, the method in this paper is easy to implementation.
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Figure 5: Absolute errors for exact and numerical solution of n = 2.

 
Figure 6: Absolute errors for exact and numerical solution of n = 3.

Table 1: The absolute errors analysis in Ref.[ Lin, Liu, Anh and Turner (2009)].

x Numerical solution Exact solution Absolute errors
0.80 0.11490000 0.11824342 0.00334342
2.40 0.80430000 0.80339167 0.00090833
4.80 1.83840001 1.83575041 0.00264950
6.40 1.63413334 1.63079520 0.00333810
7.20 1.03410000 1.03101940 0.00308060
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Figure 7: Absolute errors for exact and numerical solution of n = 4.

Table 2: The absolute errors analysis in Ref.[ Zhuang, Liu, Anh and Turner (2009)].

x Numerical solution Exact solution Absolute errors
0.2000 1.28005972 1.28000000 0.00005972
0.4000 3.84011251 3.84000000 0.00011251
0.5000 5.00012981 5.00000000 0.00012981
0.6000 5.76013595 5.76000000 0.00013595
0.7000 5.88012705 5.88000000 0.00012705

Table 3: The absolute errors analysis in Ref.[Shen (2011)].

x Numerical solution Exact solution Absolute errors
0.1670 0.92605370 0.92592593 0.00012777
0.3333 2.96319736 2.92692696 0.00023440
0.5000 5.00028449 5.00000000 0.00028449
0.7500 5.62520916 5.62500000 0.00020916
0.8330 4.62977787 4.62962963 0.00014824
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8 Conclusion

In this paper, a numerical method is presented for numerical solutions of variable
order fractional differential equation. Taking full advantage of the definition of Ca-
puto type fractional derivative and the properties of Legendre polynomials, we pro-
pose three kinds of differential operational matrix and transform the initial problem
into a linear algebraic system equations. By solving the linear system, numerical
solutions are obtained. The numerical results show that the approximation is in
very good coincidence with the exact solution.
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