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Abstract: Spherical leak detectors can detect very tiny leakage in pipelines and
have low risk of blockage. In this paper the passing ability of the detector in the
vertical segment of a pipe was studied using CFD simulations and experiments.
The Reynolds number for the sphere exceeds 104 at the economical velocity range
for oil pipelines, and there were few researches related to the hydrodynamic force
on the sphere by the pipe flow at high Reynolds number. For sphere with different
sizes and density, and at different flow rates, more than 100 3-D steady numerical
simulations were carried out. The simulation data was verified by comparing the
experimental critical velocity with that of the simulation, the results shows that
they agree well with each other. The drag on the sphere is related to the flow
velocity V and the diameter ratio λ . The effect of flow velocity was more significant
at λ >0.65. An empirical formula for the drag with λ and V is established for
0.2≤λ ≤0.9, 4000≤Res ≤54000. The passing ability of the sample detector in
8-28 inch pipelines is predicted; it shows that the detector could go through the
vertical pipe under normal economical flow velocity (0.7m/s-1.5m/s) in 8 or 10-
inch pipelines. A passing ability test of the sample detector was carried out in an
8-inch pipe loop The optimal range for λ (0.7∼0.8) is given based on the analysis
results.

Keywords: spherical leak detector, passing ability, vertical pipeline, CFD com-
putation, diameter ratio.

1 Introduction

As the main method for offshore oil and gas transportation, submarine pipelines
have become the development and transportation lifeline for marine oil and gas re-
sources. Due to the instability of the seabed foundation, medium corrosion, ocean
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current scouring and offshore operations, leakage accidents of submarine oil and
gas pipeline occur frequently. This results in a huge economic loss and marine
environmental pollution. In order to eliminate potential security risks in pipeline
operation and avoid leak accidents, timely measures must be taken to detect and
locate subtle leakage in these pipelines. The present leak detecting methods for
pipelines can be divided into two broad categories: internal detection and exter-
nal detection. The latter, includes methods such as negative pressure wave [Tian,
Yan, Huang, Wang, Kim and Yi (2012)], acoustic correlation [Fuchs and Riehle
(1991)]and optical fiber leakage method [Zhou and Yin (2012)]. All of these are
widely used in land pipelines which are suitable for paroxysmal leakage and can
only detect leak rates at 1% of total flow for oil pipelines or 5% in case of gas
pipelines. This may not be useful when dealing with leak detection in submarine
pipelines because such a large leak already exceeds the criteria of a major accident
and would seriously affect the marine environment. A critical need for offshore
pipelines is detection technology for small leaks. Internal methods depend on the
detector getting close to the leak point inside the pipe to monitor leakage signals.
Theoretically, it can detect very small oil and gas leaks.

Traditional internal detectors (PIG, Pipeline Inspection Gauge) move forward driven
by the pressure differences between the front and the back of the detectors, and
gets information about corrosion, defect and weld conditions on the inner walls of
pipeline [Quarini and Shire (2007); Gloria, Areiza, Miranda and Rebello (2009)].
PIG detectors are based on acoustic technology [Lopez and Sadovnychiy (2007);
Lei, Huang, Liang, Mao and Que (2009)], such as the GLD leak detection system,
where the detector moves with the flow inside the pipe and collects leak noise in
the ultrasonic range using a hydrophone mounted on the detector [Bockler (2012)].
It has a great sensitivity for leaks of less than 1 L/min. However, the PIG is bulky
and fits closely to the wall of the pipe, which generates lots of noises by the friction
between the wheels on the PIG and the wall of the pipe when passing along the
pipe, making it difficult to extract the weak leak noise. And the PIG is sensitive
to any deformation or bends, causing high-risk of blockage, which limit its further
application in offshore pipelines.

Recently, a free-swimming, un-tethered acoustic leak detector called Smartball
is being addressed [Li, Chen, Zhao, Guo and Liu (2012); Fletcher and Chan-
drasekaran (2009)]. The Smartball device diverges from the traditional cylindrical
shape of in-line equipment or “pigs”. The spherical shape greatly reduces the noise
produced by the device as it passes along the pipe and it is able to negotiate a much
wider range of bore changes, small radius bends and other obstacles that may exist
within the pipe. It also has a sensitivity of less than 0.1L/min. Due to its high sen-
sitivity and low risk for blockage; this technology is highly suitable for detection of
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small leaks in offshore pipelines. Nevertheless, the vertical segment for submarine
pipes often is as high as hundreds of meters. Once the detector cannot go through
the pipe’s vertical segment smoothly, the detection and location sensitivity would
be hindered. In addition, normal operation of pipeline would also be affected and
could result in a major safety accident. Therefore, it is of critical to investigate
the passing ability of spherical inner detector through the vertical segment of the
submarine pipeline.

In order to improve the efficiency of oil transportation, the economical velocity
usually ranges from 0.49m/s to 2.25m/s in China [Tang (2007)]. So, the Res in
the pipeline exceeds 104, however, there were little research about the hydrody-
namic force on the sphere by the pipe flow and the passing ability of the sphere in
vertical segment of the pipe at high Reynolds number for the sphere (Res). Hydro-
dynamic and heat transfer analyses were carried out for laminar fluid flow past a
heated sphere placed centrally in a pipe using CFD simulations (Res <500, λ<0.5)
[Krishnan and Kannan (2010)]. The flow and drag phenomena of confined spher-
ical particles in shear-thickening fluids has been investigated using a numerical
approach for a range of Res <100, λ<0.5 [Song, Gupta and Chhabra (2009); Ra-
jasekhar Reddy and Kishore (2012)]. Six different Res ranging from 0.1 to 1 and
seven different diameter ratios λ ranging from 0.025 to 0.2 were selected to study
the pipe-wall effect [Lee and Wu (2007)].

A nonporous sphere of diameter d driven by an infinite Newtonian fluid of dynamic
viscosity µ and density ρ at an average velocity of V experiences hydrodynamic
force of Ft , which can be expressed as:

Ft =

(
πd2

4

)(
1
2

ρV 2
)

CD (1)

where CD denotes the drag coefficient. For conditions when Stokes law is applica-
ble (Reynolds number for the sphere Res is less than unity), then CD = 24/Res

Reynolds number for the sphere:

Res =
dV ρ

µ
(2)

Reynolds number for the pipe:

Rep =
DV ρ

µ
(3)

Diameter ratio:

λ =
d
D

(4)
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Oil and gas pipelines are finite boundaries and the Stokes law may not be justifiable.
The role of wall effects on the rolling velocity of sphere in Newtonian fluids have
been studied and were found to have a very limited correlation for λ>0.707 and
Res <2100 and the drag coefficient can then be expressed as [Hasan (1986)]:

CD =
15.717

Res

(
1−

(
d
D

))−2.5

(5)

A valuable experimental work for drag on spheres in rolling motion in inclined
smooth tubes has been investigated. Based on this study they defined an empirical
correlation using 900 data points. And the drag coefficient can then be expressed
as: [Jalaal and Ganji (2011); Chhabra, Kumar and Prasad (2000)]:

CD = 1.2+
190
Res

+
1.003×10−7

Re2
s

(6)

The Reynolds number range was 10−6 <Res < 3000 and the λ<0.5. It was con-
cluded that the diameter ratio λ is not a significant parameter at 95% confidence
level.

It is not necessary and economical to build loops in series using real pipes to study
this problem. A miniature model was built to study the passing ability of the spheri-
cal leak detector inside the vertical segment of the pipe. Both simulation and exper-
iment methods are used in this paper. In this paper, the methods used for numerical
simulation and the experiments are first introduced. After which, the pressure and
flow behavior around the sphere and inside the pipe with different λ and V are an-
alyzed The drag on the sphere is calculated and an empirical formula for the total
drag with λ and V is established. Finally, the simulation and experimental data are
compared and the passing ability of the prototype spherical leak detector in the real
pipeline is analyzed and verified at a 150m long and diameter of 200mm pipe loop.

2 Numerical simulation and experimental methods

2.1 Problem statement and governing equations

Take the sphere along the central axis of the vertical pipe as research object, as
shown schematically in Fig.1. Under ideal conditions, it is only subject to three
forces, i.e. Ff , Ft and G, where, Ft is the vertical upward drag, caused by the
fluid pressure and fluid velocity energy; Ft and G are the buoyancy and gravity
respectively. It is assume here that the sphere is stationary and is solved here for
the critical state. The total vertical force is as follows:

Fh = Ft +Ff −G (7)
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Figure 1: Force analysis of the sphere in vertical pipe. 

 

Figure 1: Force analysis of the sphere in vertical pipe.

When Fh >0, the sphere can go through the vertical pipe, when Fh=0, Ft is called the
critical drag, the corresponding fluid velocity is called critical velocity Vt . Hence,
when obtaining Ft , Eq.7 can be used to decide whether the sphere can pass vertical
pipe or not. The paper uses finite volume simulation method to solve the fluid drag
Ft to the sphere in the pipe.

Hypothetically, fluid in the pipe is steady, incompressible and can be treated as
Newtonian fluid while going around the sphere. The Rep exceeds 104 with the
pipe diameter of above DN200 at economical velocity range pipe flow. There-
fore, the fluid flow in the pipe follows the turbulence transportation equation. In
order to have a more accurate prediction on the drag force, the standard k-ω tur-
bulence model is selected [Zaïdi, Fohanno, Taïar and Polidori (2010)] and Fluent
14.0CFD package was used for the calculations. The 3D time-averaged Navier-
Stokes (RANS) governing equations are described in the following [Boe, Rodriguez,
Plazaola, Banfield, Fong, Casphereero and Vega (2013)]:

Mass conservation:

∂ρ

∂ t
+

∂

∂xi
(ρui) = 0 (8)

where ρ is the fluid density, t is the time, ui is the velocity component along the
x y z direction of u.

Momentum conservation equation:
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where p is the pressure on the micro unit of fluid in the pipe, −ρuiu j is known
as the Reynolds stress tensor, which has to be estimated by a turbulence model to
solve the equations above. The Reynolds stress tensor is given by:

−ρuiu j = µt

(
∂ui

∂x j
+

∂u j

∂xi

)
− 2

3
ρkδi j (10)

where δ i j is the Kronecker delta, which is equal to 1 for i = j and equals to 0 for
i 6= j, the eddy viscosity µ t is calculated from:

µt = α
∗
ρ

k
ω

(11)

where α∗=1 with high Reynolds number, k and ω are the kinetic energy and its dis-
sipation rate, which are obtained by solving their conservation equations as given
below.

The modeled transport equation for k:

∂ (ρk)
∂ t

+
∂ (ρkui)

∂xi
=

∂

∂x j

(
Γk

∂k
∂x j

)
+Gk−Yk (12)

The modeled transport equation for ω:

∂ (ρω)

∂ t
+

∂ (ρωui)

∂xi
=

∂

∂x j

[
Γω

∂ω

∂x j

]
+Gω −Yω (13)

where Gk represents the generation of turbulent kinetic energy due to the mean
velocity gradients Gω represents the generation of Γ ω and Γk are the effective
diffusivity of k and ω , respectively. Yk and Yω are dissipation of k and ω due to
turbulence.

2.2 Solution procedure and boundary conditions

It is not necessary and economical to build a series of real pipe loops to study this
problem A miniature model was built to carry out this research by simulation and
experiments. Geometric model and boundary conditions are shown in Fig.2. The
diameter of the pipe D is fixed to 40mm. The upper limit of computational domain
is Lu and the lower limit Ld .

We used the Grid generation software ANSYS ICEM 14.0 to mesh the geometric
models, as shown in Fig.3. The whole computational domain was meshed with a
hexahedral-structured grid. Compared with other types of grid, it provides results
with higher precision using lower number of grid nodes. Specifically, we subdi-
vided the geometric models using three o-grids, including the mesh refinement for
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Figure 2: Geometric model and boundary conditions.

the external spherical boundary with one o-grid. The meshes have a good quality
of above 0.7.

In this paper, the inlet boundary condition was defined as velocity inlet with verti-
cal direction to the boundary. The average velocity V was chosen between 0.5m/s
and 1.5m/s (Rep=20000∼60000). The outlet boundary condition was defined as the
pressure outlet, the pressure p inside the pipe was set between 0.5Mpa to 1.5Mpa.
The outer diameter of the sphere d was equal to 8mm, 12mm, 16mm 20mm, 24mm,
26mm, 28mm, 30mm, 32mm and 36mm with Res ranging from 4000 to 54000 (ac-
cording to Eq.2). As for other boundary conditions, they can be all defined as the
wall boundary conditions, which are default non-slip wall conditions, with a rough-
ness constant of 0.5. Fluid in the pipe is water with density 999.4kg/m3 and dy-
namic viscosity 0.001Pas. The flow field changes a lot in pipe wall and the surface
of the sphere, so, a finer grid is chosen for these areas, as shown in Fig.3 (b-c). The
conservation of mass and momentum equations were solved using the semi-implicit
method for pressure-linked equations (SIMPLE) algorithm along with quadratic in-
terpolation for the convective kinematics (QUICK) scheme for convective terms.
The computations to obtain the steady velocity and pressure fields were carried out
until the residual values of the continuity, x-, y- and z-components of momentum
equations decrease to 10−6. The fully converged velocity and pressure fields were
further used to evaluate the near-sphere kinematics such as the drag coefficients and
streamlines.

2.3 Grid Independence Study

It is mandatory to check numerical artifacts such as upstream/downstream effects
and grid independence of the numerical solver. For this purpose, different values
of Lu and Ld with diameter ratio λ=0.4 and 0.8 are examined at V =0.9m/s and the
results are presented in Table 1.

Although all values of upstream and downstream length produce identical results,
larger values of Lu=1.5m and Ld=4m, were chosen.
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(a) 

 

               (b)                      (c)                      (d) 

  Figure 3: The hexahedral mesh of the sphere inside the pipe. (a) side view at λ=0.4;
(b) front view at λ=0.2; (c)front view at λ=0.4; (d) front view at λ=0.7.

In such bluff body flow systems, the effect of the grid is usually very significant
along the surface where fluid is in contact with the solid object. This is because
of the possibility of sharp velocity gradients with increasing Reynolds numbers.
Therefore, it is mandatory to have a finer grid both on the surface of the sphere and
the pipe wall. The drag coefficient results from different mesh schemes simulated
at λ=0.4 and 0.8 are shown in Table 2.

Table 1: Upstream and downstream effects on the Total Drag Coefficients of sphere
at V =0.9m/s.

Gird
Total Drag Coefficients(CD)
Lu and Ld λ=0.4 λ=0.8

1 Lu=1mand Ld =2m 0.6049 2.7864
2 Lu=2mand Ld =3m 0.6043 2.7861
3 Lu=1.5mand Ld =4m 0.6047 2.7862

The difference between the drag coefficients at λ=0.4 achieved using a finer mesh
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Table 2: Grid effects on the total Drag Coefficients of sphere at V=0.9m/s Lu =1.5m
and Ld=4m.

λ Gird
number of nodes

CDsphere surface Lu Ld

0.4
1 110 30 50 0.6043
2 144 40 80 0.6047
3 180 60 100 0.6049

0.8
4 110 30 50 2.7861
5 144 40 80 2.7862
6 180 60 100 2.7862

scheme and the relatively coarser version was less than 1%. Using the finer mesh
scheme at the higher λ=0.8 also showed mesh size independence, and the drag
coefficient results were within 0.3%. For all average velocity in the pipe, Grid-2
was chosen for λ=0.2∼0.5, and the finer mesh Grid-6 was used for λ=0.6∼0.9.

2.4 Experimental verification methods

In order to verify the simulation method, experimental pipeline platform was built
and model spheres of different density and size were designed. Fig.4 is the experi-
mental platform flowchart. In order to observe the movement of the model spheres
within the pipe, transparent organic glass was chosen for making the pipes. It has
a 5m high vertical segment. The pump’s maximum lift was 130m and the flow was
5m3/h (1.1m/s). We also put in a needle valve as a flow meter to adjust and display
the in-pipe fluid flow velocity at the entrance.

  

Figure 4: Flowchart of the experimental platform.
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The diameter of the pipe used in the simulation model is 40mm. We chose poly-
oxymethylene (POM) and aluminum (AL) with corresponding density of 1420
kg/m3 and 2700 kg/m3 respectively to make model spheres for this research. Mean-
while, for the purpose of conveniently comparing groups of simulation results with
experimental results, different sizes of model spheres were designed which had
diameters of 8mm, 16mm, 20mm, 24mm, 30mm and 32mm. Fig. 5 shows the
transparent pipeline loop and the model spheres used in the experiments.

Water was flowed into the pipeline using a pump, and then the POM and AL model
spheres with different diameters were put into the pipeline using a launcher and
were collected at the receiver. We read the critical velocity Vt using the flow meter
by adjusting the needle valve to change the water velocity until the sphere floats in
the vertical pipe.

  

Figure 5: Transparent pipeline loop and the model spheres.

3 Results and discussions

3.1 Pressure and flow behavior around the sphere inside the pipe

Based on the solution procedure and boundary conditions shown in section 2.3, a
series of simulations were conducted using the CFD package FLUENT 14.0. More
than 60 3-D steady state simulations were carried out and took about 30 minutes
for the computation to converge for each case. The computer used in this study had
a 16 GB of RAM and an 8 core CPU operating at 3.3GHz.
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Figure 6: Pressure (pa) contours on the sphere, V =1m/s, p=1MPa, d=32mm.

The pressure contours around the sphere are shown in Fig. 6. It shows that the
pressure changes around the sphere are a result of the obstruction to the fluid. The
upstream and downstream of the sphere have a pressure difference about 2000 Pa
and the pressure distribution on the sphere is spherically symmetric along the flow
direction z.

In order to study the factors that influence the pressure distribution on the sphere,
the pressure along the semicircle of the sphere at plane Y=0 with different line
pressure p and velocity V are shown in Fig. 7 and Fig. 8. In order to observe the
difference more clearly, the results of the real pressure were subtracted from the
line pressure p. It can be seen that there are small changes with the line pressure
variation but it changes a lot with the velocity alteration. The area between the
curve of pressure and the axes can been seen as the dragon the sphere, so it can be
used to deduce that the drag has nothing to do with the line pressure but increases
with the velocity in the pipe.

The pressure contours around the sphere at the plane X=0 with different sphere
diameter are shown in Fig. 9. The line pressure p was set to 1Mpa and the velocity
in the pipe V =1m/s. It can be seen the higher-pressure region of the 32mm sphere
is larger than the 16mm one and the pressure difference between upstream and
downstream of the sphere is 500Pa for the 16mm sphere and 2000Pa for the 32mm.
So it appears that the drag is influenced by the diameter of the sphere or the diameter
ratio between the sphere and the pipe.

The velocity contours and streamline with different λ and V at the plane X=0
around the sphere are shown in Fig. 10. It is known [Munson, Young, Okiishi
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  Figure 7: Pressure along the semicircle of the sphere at plane Y=0 with different
line pressure p, V =1m/s, d=16mm.

  Figure 8: Pressure along the semicircle of the sphere at plane Y=0 with different
velocity V , p=1Mpa, d=16mm.
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and Huebsch (2009); Govardhan and Williamson (2000); Sen, Mittal and Biswas
(2012)] that the process of fluid flow around a bluff body (sphere, cylinder) is ac-
companied by a wake region and boundary layer separation on the downwind side
of the body because of the viscous effects.

 

  Figure 9: Pressure (pa) contours at the plane X=0, close to the sphere, λ=0.4 for
(a) and λ=0.8 for (b), V =1m/s, p=1Mpa.

For all values of λ and V (except for λ=0.9 and V =1.5m/s, this is because the
Res is rather high, the flow behind the sphere becomes unstable, with the wake
being very wide and it generates a large amount of drag), two symmetrical steady
recirculation wake regions are observed in the rear of the sphere. For λ=0.4 and 0.6,
the wake region changes a little as the velocity increases from 0.5m/s to 1.5m/s, but
if the diameter ratio is larger than 0.6, it rises a lot as the increasing of V . For fixed
V this effect is reinforced as the diameter ratio increased, especially for λ varied
from 0.8 to 0.9.The average pressure on the rear half of the sphere is considerably
less than that on the front half because of the boundary layer separation. Thus, a
large pressure drag is developed.

3.2 Analyses of the fluid drag on the sphere

The total fluid drag Ft on the sphere along the specified force vector ~a includes the
pressure and viscous forces, which is computed by summing the dot product of the
pressure and viscosity on each face with the specified force vector:

Ft =
∣∣∣~a ·~Fp +~a ·~Fv

∣∣∣ (14)
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Where ~a is the force vector, which is z-axis in this paper, ~Fp is the pressure force
vector, ~Fv is the viscous force vector. The pressure force ~Fp is calculated by:

−→
Fp =

n

∑
i=1

pAn̂ (15)

where, n is the number of faces, A is the area of the face, and n̂ is the unit normal
to the face.

The viscous force ~Fv is computed by:

−→
Fv =

n

∑
i=1

fvAτ̄ (16)

where, fv s the viscous force on the face, and τ̄ is the unit tangential to the face.

The drag on the sphere with different line pressure p was calculated, which indi-
cates that the drag remains a constant as the line pressure changes, which coincides
with the results depicted in section 3.1.

The total drag coefficient CD is defined according to Eq.1 as follows:

CD =
Ft(

πd2

4

)(1
2 ρV 2

) =CDp +CD f (17)

where Ft is the drag along the flow direction and CDp and CD f are pressure and vis-
cous components of the total drag coefficient, respectively. The contributing terms
to the drag due to pressure (CDp) and viscous (CD f ) and the total drag coefficient
(CD) are plotted with respect to Res for different diameter ratios in Fig. 11. For
all values of λ , the total drag coefficient (CD) decreases with increasing Reynolds
number Res. For fixed values of Res, the overall drag coefficient increases with in-
creasing diameter ratio and the growth is larger as λ ≥0.6, and it increases rapidly
when λ changes from 0.8 to 0.9, which are in agreement with the discussion in
section 3.1. The pressure coefficient plays a major role in the components of the
total drag coefficient. This is because at large Reynolds numbers, the contribution
of the convection force is larger than the viscous force.

It is more direct and significant to obtain the relationship between the drag (Ft) and
diameter ratio (λ ), average velocity (V ). Fig. 12 plots the total drag on the sphere
with different diameter ratio (λ ) and different velocity (V ). It shows that the drag
increases with increasing velocity and diameter ratio. The drag increases little as
the λ is less than 0.6, but increases faster as the flow velocity increases when it is
larger than 0.65 which is in line with Fig.10 and Fig.12.
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λ=0.4 

V=0.5m/s V=1.5m/s 

λ=0.6 

λ=0.8 

λ=0.9 

Figure 10: Velocity (m/s) contours and streamline at the plane X=0, close to the
sphere V =0.5m/s(left); V =1.5m/s(right).

On the basis of the 48 numerical results, the following empirical formula for the
total drag is proposed:

Ft =
1.884−3.52λ −1.95V 2

1+13.968ln(λ )+0.016ln(V )+0.007V 2 (λV ) (18)

The above correlation reproduces the simulation data with a root of mean square
error of 8% and the coefficient of determination R-square is 0.99947. Fig.13 plots
the discrepancies between simulation drag values and those predicted from Eq.18.
The above correlation was fit to the CFD data in the range of 0.2≤λ ≤0.9, 4000≤
Res ≤54000.
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(a) 

(c) 

(b) 

Figure 11: Effects of diameter ratio(λ ) on pressure(a)viscous(b) and total drag
coefficient (c) variation with Res.

 

Figure 12: Drag on the sphere with different diameter ratio (λ ) and different veloc-
ity (V ).
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Figure 13: Deviations between the simulation drag and values predicted by Eq.18.

3.3 Experimental results and comparison with simulation

Using the experimental pipeline loop shown in Fig. 5, we leave the spheres sus-
pended in vertical pipe and regulate the needle valve to change water velocity. Then
the critical velocity Vt was read through flow meter when the sphere floats in the
vertical pipe. The results show that the sphere can pass smoothly when the flow
velocity is greater than critical velocity even for a solid steel sphere. Since the den-
sity and diameter of the model sphere is known, we can use the results computed in
section 3.2 and solve for the critical velocity Vt according to Eq. 7. The results and
the error between simulation and experiment are shown in Table. 3. Because of
the indication error of the flow meter and the instability caused by the pump when
adjusting the pressure, there must be error in the critical velocity. We can see that
for larger λ , the error becomes increases, which may be related to the vibration
of the sphere due to the vortex mentioned in section 3.1.The experimental results
show that for larger λ is the sphere floats violently in the pipe. The maximum error
is 3.1%, which is acceptable in this particular application

3.4 Analyses of the passing ability of the spherical leak detector in the real
pipeline

The prototype of the spherical inner detector has a pressure proof aluminum shell,
which is coated by a layer of polyurethane foam. The detector is equipped with bat-
teries, a data acquisition device, magnetic sensor acoustic sensor and data storage
device. The outer diameter is 184mm and the average density of this whole sphere
is 1300kg/m3. We want to make sure that at which flow velocity and pipe diameter
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Table 3: Critical speed and the error between simulation and experiment.

λ

POM AL
Vt (m/s)

Error (%)
Vt (m/s)

Error (%)Expt. Sim. Expt. Sim.
0.2 0.224 0.228 1.7 0.500 0.508 1.6
0.4 0.328 0.333 1.5 0.738 0.747 1.2
0.5 0.359 0.351 2.2 0.787 0.797 1.2
0.6 0.324 0.329 1.5 0.749 0.757 1.1

0.75 0.226 0.231 2.2 0.518 0.529 2.1
0.8 0.189 0.195 3.1 0.414 0.424 2.4

the detector can pass through the vertical segment of the pipeline.

Because the 184mm sphere is moving in the pipe flow at velocity of 0.5m/s∼1.5m/s,
it exceeds the Res range in Eq.18. Due to this the drag on the sphere could not to
be calculated according to Eq.18, but the simulation method was verified by com-
paring with the experimental critical velocity in section 3.3 and we believe it is
receivable. Using the simulation method discussed above, more than 66 numerical
simulations were conducted with pipe diameter D ranging from 8∼28 inches and
flow velocity ranging from 0.7m/s∼1.2m/s. The resultant force on the spherical
inner detector in vertical segment of the pipeline is solved using Eq.7. The results
are shown in Fig. 14.

It can be seen that when the pipe diameter is constant, the resultant force grows
larger with increase inflow velocity. However, the drag barely increases with flow
velocity when the diameter is larger than 10-inch, and the resultant force is less
than zero illustrating that it could not go through the vertical pipe. When the pipe
diameters are 10 or 8inch, that is, the diameter ratio reaches 73%; the resultant
force significantly increases and grows with the flow velocity.

Using the prototype of the spherical inner detector, a passing ability test was carried
out at a 150m long and diameter of 200mmpipe loop shown in Fig.15. The results
show that the detector could get to the receiving trap smoothly if the pipe flow
reaches 80m3/h (0.7m/s), the resultant force at this condition is 67N (simulation
data) and is sufficient for pass through the vertical pipe smoothly. But if the pipe
flow decreases to 56m3/h (0.5m/s resultant force=40N), the detector was not able
to reach the receiving trap it is observed that the detector could go through the
vertical segment but it is obstructed at the bend on the top, because of the bend’s
reactive force to the detector. This is another complex problem that needs to be
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 Figure 14: 3D surface of resultant force with different velocity and pipe diameter.

 

 
Figure 15: Test pipeline loop, sphere receiving (left), 1.5m high vertical pipe
(right).

studied for the hydrodynamic force acting on the sphere at the bend. However,
we know that the prototype of the spherical detector can go through within normal
economical flow velocity (0.7m/s-1.5m/s) in 8 or 10-inch pipelines based on the
results of the simulation method discussed above. We believe it is a good choice
when λ ranges from 0.7∼0.8, because the drag on sphere rises signally and is not
too large to be obstructed at the bend if λ is in this range One can select the λ
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in this range and balance this parameter according to the Ff , Ft and G during the
design stage for different pipe sizes.

4 Conclusions

In this paper, finite volume simulation and experiments were carried out to explore
the passing ability of the spherical leak detector inside the vertical segment of the
pipe. For sphere with different sizes and density, different flow rate, more than 100
3-D steady numerical simulation analysis and experiments with the same parame-
ter were carried out. The simulation shows that the drag on the sphere by the flow
inside the pipe is related to the flow velocity V and the diameter ratio λ . The drag
increase little as λ is less than 0.6, but grows faster as the flow velocity increases
when λ is larger than 0.65. An empirical formula for the total drag with λ and V
is established here for 0.2≤λ ≤0.9, 4000≤Res ≤54000, and the correlation repro-
duces the simulation data with a root of mean square error of 8% and the coefficient
of determination R-square is 0.99947. The simulation data was verified by com-
paring the experimental critical velocity when the sphere floats in the pipe with the
data for the simulation. The results indicate that the simulation and the experimen-
tal results agree with each other. Finally, the passing ability of the sample detector
with diameter of 184mm and average density of 1300kg/m3 in 8-28 inch pipeline
is predicted using this method, it shows that the sample spherical detector could go
through within normal economical flow velocity (0.7m/s-1.5m/s) in 8 or 10-inch
pipelines. A passing ability test of the sample detector was carried out in a pipe
loop and the results were line with the simulation results. We believe it is a good
choice for λ ranging from 0.7∼0.8 based on the above analysis.

Acknowledgement: This study is funded by National Natural Science Founda-
tion of China (51004076 and 61473205) and Tianjin Research Program of Appli-
cation Foundation and Advanced Technology (14JCQNJC04900).

References

Bockler, W. (2012): Reliable and Cost Effective Leak Detection with an New Gen-
eration of Ultrasonic Pigs. In 7th Pipeline Technology Conference, Hannover, Ger-
many.

Boe, C.; Rodriguez, J.; Plazaola, C.; Banfield, I.; Fong, A.; Casphereero, R.;
Vega, A. (2013): A Hydrodynamic Assessment of a Remotely Operated Underwa-
ter Vehicle Based On Computational Fluid Dynamic - Part 1-Numerical Simulation.
CMES-Computer Modeling in Engineering & Sciences, vol. 90, no. 2, pp. 165-77.

Chhabra, R. P.; Kumar, M.; Prasad, R. (2000): Drag On Spheres in Rolling



CFD and Experimental Investigations 79

Motion in Inclined Smooth Tubes Filled with Incompressible Liquids. Powder
Technology, vol. 113, no. 1, pp. 114-18.

Fletcher, R.; Chandrasekaran, M. (2009): Smartsphere-A New Approach in
Pipeline Leak Detection. In Proceedings of the Biennial International Pipeline
Conference, Calgary, Canada.

Fuchs, H. V.; Riehle, R. (1991): Ten Years of Experience with Leak Detection by
Acoustic Signal Analysis. Applied Acoustics, vol. 33, no. 1, pp. 1-19.

Gloria, N. B. S.; Areiza, M. C. L.; Miranda, I. V. J.; Rebello, J. M. A. (2009):
Development of a Magnetic Sensor for Detection and Sizing of Internal Pipeline
Corrosion Defects. NDT&E International, vol. 42, no. 8, pp. 669-77.

Govardhan, R.; Williamson, C. (2000): Modes of Vortex Formation and Fre-
quency Response of a Freely Vibrating Cylinder. Journal of Fluid Mechanics, vol.
420, pp. 85-130.

Hasan, M. A. (1986): Wall Effects On the Motion of a Rolling Sphere in a Closely
Fitting Tube. The Chemical Engineering Journal, vol. 33, no. 2, pp. 97-101.

Jalaal, M.; Ganji, D. D. (2011): On Unsteady Rolling Motion of Spheres in
Inclined Tubes Filled with Incompressible Newtonian Fluids. Advanced Powder
Technology, vol. 22, no. 1, pp. 58-67.

Krishnan, S.; Kannan, A. (2010): Effect of Blockage Ratio On Drag and Heat
Transfer From a Centrally Located Sphere in Pipe Flow. Engineering Applications
of Computational Fluid Mechanics, vol. 4, no. 3, pp. 396-414.

Lee, S. H.; Wu, T. (2007): Drag Force on a Sphere Moving in Low-Reynolds-
Number Pipe Flows. Journal of Mechanics, vol.23, no.4, pp.423-32.

Lei, H.; Huang, Z.; Liang, W.; Mao, Y.; Que, P. W. (2009): Ultrasonic Pig for
Submarine Oil Pipeline Corrosion Inspection. Russian Journal of Nondestructive
Testing, vol. 45, no. 4, pp. 285-91.

Li, B.; Chen, S.; Zhao, W.; Guo, S.; Liu, Y. (2012): Research On Tiny Leak
System for Oil Transmission Pipelines. In Proceedings of the 2012 International
Conference on Computer Distributed Control and Intelligent Environmental Moni-
toring, Hunan, China.

Lopez, J. M.; Sadovnychiy, S. (2007): Small PIG for Inspection Pipeline. In
Electronics, Robotics and Automotive Mechanics Conference, CERMA 2007 - Pro-
ceedings, Morelos, Mexico.

Munson, B. R.; Young, D. F.; Okiishi, T. H.; Huebsch, W. W.(2009): Funda-
mentals. of. Fluid. Mechanics. Wiley-Blackwell, USA.

Quarini, I.; Shire, S. (2007): A Review of Fluid-Driven Pipeline Pigs and their
Applications. Journal of Process Mechanical Engineering, vol. 221, no. 1, pp.



80 Copyright © 2014 Tech Science Press CMES, vol.101, no.1, pp.59-80, 2014

1-10.

Rajasekhar Reddy, C.; Kishore, N. (2012): Wall Retardation Effects on Flow
and Drag Phenomena of Confined Spherical Particles in Shear-Thickening Fluids.
Industrial & Engineering Chemistry Research, vol. 51, no. 51, pp. 16755-62.

Sen, S.; Mittal, S.; Biswas, G. (2012): Steady Separated Flow Past Elliptic Cylin-
ders Using a Stabilized Finite-Element Method. CMES-Computer Modeling in En-
gineering & Sciences, vol. 86, no. 1, pp. 1-27.

Song, D.; Gupta, R. K.; Chhabra, R. P. (2009): Wall Effects on a Sphere Falling
in Quiescent Power Law Fluids in Cylindrical Tubes. Industrial & Engineering
Chemistry Research, vol. 48, no. 12, pp. 5845-56.

Tang, H. (2007): Determination of Economical Flowing Velocity of Product Oil in
Pipeline. Petroleum Planning & Engineering, vol. 18, no. 2, pp. 33-34.

Tian, C.; Yan, J.; Huang, J.; Wang, Y.; Kim, D.; Yi, T. (2012): Negative Pres-
sure Wave based Pipeline Leak Detection: Challenges and Algorithms. In 2012
IEEE International Conference on Service Operations and Logistics and Informat-
ics, Suzhou, China.

Zaïdi, H.; Fohanno, S.; Taïar, R.; Polidori, G. (2010): Turbulence Model Choice
for the Calculation of Drag Forces When Using the CFD Method. Journal of
Biomechanics, vol. 43, no. 3, pp. 405-11.

Zhou, Y.; Yin, L. (2012): Self-Detection of Leaking Pipes by One-Dimensional
Photonic Crystals. Chinese Physics Letters, vol. 29, no. 6, pp. 64213.


