
Copyright © 2014 Tech Science Press CMES, vol.100, no.6, pp.507-529, 2014

Solving the Lane–Emden–Fowler Type Equations of
Higher Orders by the Adomian Decomposition Method
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Abstract: In this paper, we construct the Lane–Emden–Fowler type equations of
higher orders. We study the linear and the nonlinear Lane–Emden–Fowler type
equations of the third and fourth orders, where other forms can be treated in a simi-
lar manner. We use the systematic Adomian decomposition method to handle these
types of equations with specified initial conditions. We confirm that the Adomian
decomposition method provides an efficient algorithm for exact and approximate
analytic solutions of these equations. We corroborate this study by investigating
several numerical examples that emphasize initial value problems.

Keywords: Initial value problems, Singularities, Lane–Emden–Fowler equation,
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1 Introduction

Many problems in the literature of mathematical physics can be distinctively for-
mulated as equations of the Lane–Emden–Fowler type defined in the form

y′′+
k
x

y′+ f (x)g(y) = 0, y(0) = y0,y′(0) = 0, k > 0, (1)

where x > 0, f (x) and g(y) are some given functions of x and y, respectively. The
Emden–Fowler equation (1) arises in the study of fluid mechanics, relativistic me-
chanics, pattern formation, population evolution and in the study of chemical reac-
tor systems.
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For f (x) = 1 and g(y) = ym, Eq. (1) becomes the standard Lane–Emden equation
of the first kind and index m, that was used to model the thermal behavior of a
spherical cloud of gas acting under the mutual attraction of its molecules and sub-
ject to the classical laws of thermodynamics. Moreover, the Lane–Emden equation
of the first kind is a useful equation in astrophysics for computing the interior struc-
ture of polytropic stars. However, for f (x) = 1, g(y) = ey and y(0) = 0, Eq. (1)
becomes the standard Lane–Emden equation of the second kind that models the
non-dimensional density distribution y(x) in an isothermal gas sphere [Richardson
(1921); Chandrasekhar (1967); Davis (1962); Wazwaz (2009)].

We note that (1) was derived by using the equation

x−k d
dx

(
xk d

dx

)
y+ f (x)g(y) = 0,y(0) = y0,y′(0) = 0, (2)

where x > 0, and k > 0 is called the shape factor.

The singular behavior that occurs at x = 0 constitutes the main difficulty in solv-
ing the Lane–Emden and Emden–Fowler equations. A substantial amount of work
has been devoted to understanding these type of problems for various structures
represented by g(y). Several analytic and numeric methods, which have been
used in similar investigations, include the Hermite functions collocation method
[Parand, Dehghan, Rezaeia, and Ghaderi (2010)], the Legendre pseudospectral
method [Parand, Shahini, and Dehghan (2009)], the Adomian decomposition meth-
od [Wazwaz (2009); Adomian, Rach, and Shawagfeh (1995); Wazwaz (2005a,b,
2001, 2002)], the variational iteration method [Kanth and Aruna (2010); Wazwaz
(2011b); Yildirim and Özis (2009); Dehghan and Shakeri (2008a)], the homotopy
analysis method [Liao (2003, 2012)], the homotopy perturbation method [Yildirim
and Özis (2007)], the hybrid functions method [Tabrizidooz, Marzban, and Razza-
ghi (2009)], the symmetry method [Khanlique, Mahomed, and Muatjetjeja (2008);
Muatjetjeja and Khanlique (2011)], etc. Implicit solutions were also considered
in [Momoniat and Harley (2011)].

The Adomian decomposition method [Adomian and Rach (1983); Adomian (1983,
1986, 1994); Wazwaz (2009, 2011a); Duan, Rach, Baleanu, and Wazwaz (2012);
Rach (2012)] is a systematic method for practical solution of linear or nonlinear
and deterministic or stochastic operator equations, including ordinary differential
equations [Dehghan and Tatari (2010); Dehghan and Shakeri (2009)], partial dif-
ferential equations [Dehghan and Salehi (2011); Dehghan (2004a,b)], integral e-
quations [Wazwaz (2011a); Fu, Wang, and Duan (2013)], integro-differential equa-
tions [Wazwaz (2011a)], delay differential equation [Dehghan and Shakeri (2008b);
Shakeri and Dehghan (2010); Dehghan and Salehi (2010)], etc. The Adomian de-
composition method provides efficient algorithms for analytic approximate solu-
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tions and numeric simulations for real-world applications in the applied sciences
and engineering.

The main goal of this work is to extend the second-order Emden–Fowler equa-
tion to Emden–Fowler type equations of higher order. To achieve this goal, we
follow the sense of (2), where the first differential operator will be replaced by
other differential operators of higher orders. Then we use the systematic Adomi-
an decomposition method to handle these types of equations with specified initial
conditions.

2 Formulation of the Emden–Fowler type equations

In this section, we follow the sense of (2) to formulate the singular Emden–Fowler
type equations of higher orders and for a variety of shape factors. We will first set
the generalized formula that can be used for any order, but we will focus our work
on the Emden–Fowler type equations of the third and fourth orders only. Other
higher-order equations can be derived in a similar manner and can be investigated
by an identical approach. For the construction of these equations, we therefore
introduce the following generalized formula, which subsumes Eq. (1), as

x−k dn

dxn

(
xk d

dx

)
y+ f (x)g(y) = 0,

y(0) = y0,y′(0) = y′′(0) = · · ·= y(n)(0) = 0, n≥ 1.
(3)

2.1 Formulation of the Emden–Fowler type equations of the third order

To derive the Lane-Emden-Fowler type equations of the third order, we set n = 2
in (3) to find

x−k d2

dx2

(
xk d

dx

)
y+ f (x)g(y) = 0, y(0) = y0,y′(0) = y′′(0) = 0. (4)

This in turn gives the Emden–Fowler type equations of the third order in the form

y′′′+
2k
x

y′′+
k(k−1)

x2 y′+ f (x)g(y) = 0,y(0) = y0,y′(0) = y′′(0) = 0. (5)

Notice that the singular point x = 0 appears twice as x and x2 with shape factors
2k and k(k− 1), respectively. Moreover, the third term vanishes for k = 1 and the
shape factor in this case reduces to 2.



510 Copyright © 2014 Tech Science Press CMES, vol.100, no.6, pp.507-529, 2014

2.2 Formulation of the Emden–Fowler type equations of the fourth order

To derive the Lane-Emden-Fowler type equations of the fourth order, we set n = 3
in (3) to find

x−k d3

dx3

(
xk d

dx

)
y+ f (x)g(y) = 0. (6)

This in turn gives the Emden-Fowler type equations of the fourth order in the form

y(iv)+
3k
x

y′′′+
3k(k−1)

x2 y′′+
k(k−1)(k−2)

x3 y′+ f (x)g(y) = 0,

y(0) = y0, y′(0) = y′′(0) = y′′′(0) = 0.
(7)

Notice that the singular point x = 0 appears three times as x,x2 and x3 with shape
factors 3k,3k(k−1) and k(k−1)(k−2), respectively. Moreover, the third and the
fourth terms vanish for k = 1 and the shape factor in this case is 3, whereas the
fourth term vanishes for k = 2, and the shape factors reduce to 6 and 6.

For f (x) = 1, Eqs. (5) and (7) are the Lane–Emden type equations of the third and
the fourth order, respectively.

2.3 Formulation of the Emden–Fowler type equations of higher orders

To derive the generalized Emden–Fowler type equations for higher orders, we first
set

x−k dn

dxn

(
xk d

dx

)
y+ f (x)g(y) = 0. (8)

This in turn gives the generalized Emden–Fowler type equations of higher orders
in the form

y(n+1)+
n

∑
r=1

(
n
r

)( r

∏
j=1

(k− j+1)

)
1
xr y(n−r+1)+ f (x)g(y) = 0,

y(0) = y0,y′(0) = y′′(0) = · · ·= y(n)(0) = 0,

(9)

Notice that the singular point at x= 0 appears n time as x,x2, · · · ,xn with the distinct
shape factors kn,r =

(n
r

)
∏

r
j=1(k− j + 1). For f (x) = 1, Eq. (9) reduces to the

generalized Lane-Emden type equations of higher orders.
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3 Analysis of the proposed method

As stated before, the Adomian decomposition method will be used for analyt-
ic treatment of the Emden–Fowler type equations. The Adomian decomposition
method usually starts by defining the equation in an operator form. Although our
treatment will be identical for all cases, we will present the analysis for the third
order case in detail. However, we will also summarize the main steps for the fourth
order case.

3.1 Framework for the Emden–Fowler type equations of third order

We begin our analysis by first studying the Emden–Fowler type equation of the
third order

x−k d2

dx2

(
xk d

dx

)
y+ f (x)g(y) = 0,y(0) = α,y′(0) = y′′(0) = 0. (10)

The proposed framework rests mainly on defining the differential operator L in
terms of the first three derivatives in the form

L(y) =− f (x)g(y), (11)

where the differential operator L contains the first three derivatives as

L = x−k d2

dx2

(
xk d

dx

)
, (12)

in order to overcome the singular behavior at x = 0. Based on (12), the optimal
definition of L−1 is a threefold definite integration operator defined as

L−1(.) =
∫ x

0
x−k

∫ x

0

∫ x

0
xk(.)dxdxdx. (13)

Applying L−1 of (13) to the first term of (10), which is equivalent to the first three
terms of (5), we find that

L−1
(

y′′′+
2k
x

y′′+
k(k−1)

x2 y′
)

=
∫ x

0
x−k

∫ x

0

∫ x

0
xk
(

y′′′+
2k
x

y′′+
k(k−1)

x2 y′
)

dxdxdx

=
∫ x

0
x−k

∫ x

0

[
xky′′+ kxk−1y′

]
dxdx

=
∫ x

0
y′ dx = y(x)− y(0),

(14)
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where integration by parts was used more than once in the evaluation of this triple
integral. We note that for the case of 0 < k < 1, the limit calculated by L’Hospital’s
rule,

lim
x→0

xk−1y′ = lim
x→0

y′

x1−k = lim
x→0

xk y′′

1− k
= 0,

is used in the derivation of (14). Combining (11) and (14) yields

y(x) = α−L−1 ( f (x)g(y)) . (15)

3.2 Framework for the Emden–Fowler type equations of the fourth order

We continue our analysis by studying the Emden–Fowler type equation of the
fourth order
d4y
dx4 +

3k
x

d3y
dx3 +

3k(k−1)
x2

d2y
dx2 +

k(k−1)(k−2)
x3

dy
dx

+ f (x)g(y) = 0,

y(0) = α,y′(0) = y′′(0) = y′′′(0) = 0,

(16)

The proposed framework rests mainly on defining the differential operator L in
terms of the first four derivatives in the form

L(y) =− f (x)g(y), (17)

where the differential operator L contains the first four derivatives of (16) as

L = x−k d3

dx3

(
xk d

dx

)
, (18)

in order to overcome the singular behavior at x = 0. Based on (18), the optimal
definition of L−1 is a fourfold definite integration operator defined as

L−1(.) =
∫ x

0
x−k

∫ x

0

∫ x

0

∫ x

0
xk(.)dxdxdxdx. (19)

Applying L−1 of (19) to the first four terms of (16) gives

L−1
(

y(iv)+
3k
x

y′′′+
3k(k−1)

x2 y′′+
k(k−1)(k−2)

x3 y′
)

=
∫ x

0
x−k

∫ x

0

∫ x

0

∫ x

0
xk
(

y(iv)+
3k
x

y′′′+
3k(k−1)

x2 y′′+
k(k−1)(k−2)

x3 y′
)

dxdxdxdx

= y(x)− y(0),
(20)

where integration by parts was used more than once in the evaluation of this four-
fold integral. Combining (17) and (20) gives

y(x) = α−L−1 ( f (x)g(y)) . (21)
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3.3 The Adomian decomposition method

In what follows, we give a brief presentation of the Adomian decomposition method
(ADM). The details of this method are now well known and widely applied in the
literature; see, for example, [Adomian (1983, 1986, 1994); Adomian and Rach
(1983); Rach (2008); Wazwaz (2009, 2011a); Duan, Rach, Baleanu, and Wazwaz
(2012); Rach (2012)].

The ADM admits the use of the infinite decomposition series

y(x) =
∞

∑
n=0

yn(x), (22)

for the solution y(x), and the infinite series of polynomials

g(y) =
∞

∑
n=0

An(y0,y1, · · · ,yn), (23)

for the nonlinear term g(y), where the components yn(x) of the solution y(x) will
be determined recurrently, and the An are the Adomian polynomials.

The definitional formula of the Adomian polynomials for the nonlinearity F(y)
is [Adomian and Rach (1983)]

An =
1
n!

dn

dλ n

[
F

(
n

∑
i=0

λ
i yi

)]
λ=0

,n = 0,1,2, · · · . (24)

We list the formulas of the first several Adomian polynomials for the one-variable,
simple analytic nonlinearity Nu = F(y(x)) from A0 through A5, inclusively, for
convenient reference as

A0 = F(y0),

A1 = y1F ′(y0),

A2 = y2F ′(y0)+
1
2!

y2
1F ′′(y0),

A3 = y3F ′(y0)+ y1y2F ′′(y0)+
1
3!

y3
1F(3)(y0),

A4 = u4F ′(y0)+(y1y3 +
1
2!

y2
2)F

′′(y0)+
1
2!

y2
1y2F(3)(y0)+

1
4!

y4
1F(4)(y0).

A5 = y5F ′(y0)+(y2y3 + y1y4)F ′′(y0)+(
1
2!

y1y2
2 +

1
2!

y2
1y3)F(3)(y0)

+
1
3!

y3
1y2F(4)(y0)+

1
5!

y5
1F(5)(y0).
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The Adomian polynomials can be generated by using different algorithms such
as in [Abbaoui, Cherruault, and Seng (1995); Abdelwahid (2003); Adomian and
Rach (1983); Azreg-Aïnou (2009); Rach (1984, 2008); Wazwaz (2000, 2009); D-
uan and Guo (2010); Duan (2010a,b, 2011)]. Duan (2010a,b, 2011) has recently
developed several new, more efficient algorithms for fast generation of the one-
variable and multivariable Adomian polynomials. For the case of the one-variable
Adomian polynomials, we favor Duan’s Corollary 3 algorithm [Duan (2011)], s-
ince it does not involve the differentiation operator in the recurrence procedure but
only requires the operations of addition and multiplication, which is eminently con-
venient for computer algebra systems such as MATHEMATICAr, MAPLEr or
MATLABr,

C1
n = yn, n≥ 1,

Ci
n =

1
n

n−i

∑
j=0

( j+1)y j+1Ci−1
n−1− j, 2≤ i≤ n,

(25)

from which we can quickly and easily calculate Adomian polynomials as

An =
n

∑
i=1

Ci
n F(i)(y0), n≥ 1. (26)

We list the corresponding MATHEMATICAr code AP[f, M] for Duan’s Corollary
3 algorithm in the Appendix, which generates the first 30 Adomian polynomials
within 0.90 seconds; the benchmark computer has an Intel CoreTM i5-650 proces-
sor with a clock frequency of 3.20 GHz and a RAM capacity of 4.00 GB using
Microsoft’s Windowsr 7 OS. We remark that it has been timed in speed tests to
be one of the fastest on record [Duan (2011)], including the earliest computer al-
gorithm for fast generation of the Adomian polynomials as published by Adomian
and Rach (1983).

Substituting (22) and (23) into (15) or (21) yields

∞

∑
n=0

yn(x) = α−L−1

(
f (x)

∞

∑
n=0

An(y0,y1, · · · ,yn)

)
, (27)

where the inverse operator L−1 is defined as a threefold or fourfold integral operator
as defined in (13) or (19), respectively.

The classic ADM admits the use of the recursive relation

y0(x) = α,

y j+1(x) =−L−1 ( f (x)A j), j ≥ 0,
(28)
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that will lead to the complete determination of the components yn(x), for n≥ 0, of
y(x). The series solution of y(x) follows immediately and converges to the closed
form solution if such a solution exists. In practice, we denote the n-term approxi-
mant of the series solution as φn(x;k) = ∑

n−1
j=0 y j(x).

Several investigators [Abbaoui and Cherruault (1994); Abdelrazec and Pelinovsky
(2011); Cherruault and Adomian (1993)] have previously proved convergence of
the Adomian decomposition series and the series of the Adomian polynomials. For
example, Abdelrazec and Pelinovsky (2011) have published a rigorous proof of
convergence for the ADM under the aegis of the Cauchy-Kovalevskaya theorem
for initial value problems.

We remark that the domain of convergence for the decomposition solution may not
always be sufficiently large for engineering purposes. But we can readily solve this
problem by means of solution continuation or convergence acceleration techniques,
such as analytic continuation [Adomian, Rach, and Meyers (1997)], the diago-
nal Padé approximants [Adomian (1994); Wazwaz (2009); Dehghan, Hamidi, and
Shakourifar (2007); Dehghan, Shakourifar, and Hamidi (2009)], the iterated Shanks
transform [Adomian (1994)], Adomian’s asymptotic decomposition method [Ado-
mian (1986, 1994); Rach and Duan (2011)], the parametrized recursion scheme
[Duan (2010b); Duan and Rach (2011a); Duan, Rach, and Wang (2013); Lu and
Duan (2014)], the higher-order discretized one-step subroutines based on the ADM
and its modifications [Adomian, Rach, and Meyers (1997); Duan and Rach (2011b,
2012); Duan, Rach, and Wazwaz (2013)], and so on. For recent developments and a
comprehensive bibliography of the ADM, see [Duan, Rach, Baleanu, and Wazwaz
(2012); Rach (2012)].

In what follows, we examine several numerical examples that represent the Emden–
Fowler type and Lane–Emden type equations of the third and fourth orders.

4 Numerical examples for the Emden–Fowler type equations of the third or-
der

In this section, we study several numerical examples for the Emden–Fowler type
and Lane–Emden type equations of the third order in the form

y′′′+
2k
x

y′′+
k(k−1)

x2 y′+ f (x)g(y) = 0,y(0) = α,y′(0) = y′′(0) = 0. (29)

We will study this equation for a variety of values for the shape factor k and for the
given functions f (x)g(y).
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Example 1. We first consider the Emden–Fowler type equation

y′′′+
2
x

y′′− 9
8
(x6 +8)y−5 = 0,y(0) = 1,y′(0) = y′′(0) = 0, (30)

obtained by substituting k = 1 in (29) and by setting f (x)g(y) =−9
8(x

6 +8)y−5.

The Adomian polynomials for the nonlinear term y−5 are given by

A0 = y−5
0 ,

A1 =−5y−6
0 y1,

A2 =−5y−6
0 y2 +

30
2!

y−7
0 y2

1,

A3 =−5y−6
0 y3 +30y−7

0 y1y2−
210
3!

y−8
0 y3

1,

. . . .

Using (28), the recursive relation becomes

y0(x) = 1,

y j+1(x) =−L−1 ( f (x)A j), j ≥ 0,
(31)

where L−1 is defined in (13). We list the first several calculated solution compo-
nents

y0(x) = 1,

y1(x) =
1
2

x3 +
1

576
x9,

y2(x) =−
1
8

x6− 185
101376

x12− 5
2820096

x18,

y3(x) =
35

576
x9 +

11801
7096320

x15 + · · · ,

. . . .

This in turn gives the series solution

y(x) = 1+
1
2

x3− 1
8

x6 +
1
16

x9− 5
128

x12 + · · · , (32)

that converges to the exact solution

y(x) =
√

1+ x3. (33)
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Example 2. We next consider the linear Emden–Fowler type equation

y′′′+
4
x

y′′+
2
x2 y′−9(4+10x3 +3x6)y = 0,y(0) = 1,y′(0) = y′′(0) = 0, (34)

obtained by substituting k = 2 in (29) and by setting f (x)g(y) = −9(4+ 10x3 +
3x6)y.

Using the recursive relation (28), we obtain the first several solution components

y0(x) = 1,

y1(x) = x3 +
5
14

x6 +
1
30

x9,

y2(x) =
1
7

x6 +
8
63

x9 +
44

1365
x12 + · · · ,

y3(x) =
2

315
x9 +

61
6552

x12 + · · · ,

. . . .

This in turn gives the series solution

y(x) = 1+ x3 +
1
2!

x6 +
1
3!

x9 +
1
4!

x12 + · · · , (35)

that converges to the exact solution

y(x) = ex3
. (36)

Example 3. We now consider the Emden–Fowler type equation

y′′′+
6
x

y′′+
6
x2 y′−6(10+2x3 + x6)e−3y = 0,y(0) = 0,y′(0) = y′′(0) = 0, (37)

obtained by substituting k = 3 in (29) and by setting f (x)g(y) = −6(10+ 2x3 +
x6)e−3y.

The Adomian polynomials for the nonlinear term e−3y are given by

A0 = e−3y0 ,

A1 =−3y1e−3y0 ,

A2 = (−3y2 +
9
2

y2
1)e
−3y0 ,

A3 = (−3y3 +9y1y2−
27
3!

y3
1)e
−3y0 ,

. . . .
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Using the recursive relation (28), we calculate the first several solution components

y0(x) = 0,

y1(x) = x3 +
1
28

x6 +
1

165
x9,

y2(x) =−
15
28

x6− 3
70

x9− 523
56056

x12 + · · · ,

y3(x) =
57

154
x9 +

9
196

x12 + · · · ,

. . . .

This in turn gives the series solution

y(x) = x3− 1
2

x6 +
1
3

x9− 1
4

x12 + · · · , (38)

that converges to the exact solution

y(x) = ln(1+ x3). (39)

Example 4. We conclude this section by considering the Lane–Emden type equa-
tion

y′′′+
8
x

y′′+
12
x2 y′+ ym = 0, y(0) = 1,y′(0) = y′′(0) = 0, (40)

obtained by substituting k = 4 in (29) and by setting g(y) = ym, f (x) = 1.

The Adomian polynomials for the nonlinear term ym are given by

A0 = ym
0 ,

A1 = mym−1
0 y1,

A2 = mym−1
0 y2 +

1
2!

m(m−1)ym−2
0 y2

1,

A3 = mym−1
0 y3 +m(m−1)ym−2

0 y1y2 +
1
3!

m(m−1)(m−2)ym−3
0 y3

1,

. . . .

(41)
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Using the recursive relation (28), we calculate the first several solution components

y0(x) = 1,

y1(x) =−
1
90

x3,

y2(x) =
m

38880
x6,

y3(x) =−
m(17m−12)
230947200

x9,

y4(x) =
m(679m2−1182m+528)

2909934720000
x12,

. . . .

This in turn gives the series solution

y(x)= 1− 1
90

x3+
m

38880
x6−m(17m−12)

230947200
x9+

m(679m2−1182m+528)
2909934720000

x12+· · · ,

(42)

where the n-term approximant is φn(x) = ∑
n−1
j=0 y j(x).
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Figure 1: The curves of the approximate solutions φn(x) versus x for m = 1.5 and
for n = 2 (dot-dot-dash line), n = 3 (dot-dash line), n = 4 (dash line), n = 5 (dot
line) and n = 6 (solid line).

We note that when m = 0 Eq. (40) has the exact solution

y∗(x) = 1− 1
90

x3. (43)

In Fig. 1, we plot the curves of the n-term approximate solutions φn(x) versus x for
m = 1.5 and for n = 2 through 6, where a fast rate of convergence is displayed. In
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Figure 2: The curves of the approximate solutions φ7(x) versus x for m = −1.2
(dot-dot-dash line), m =−0.6 (dot-dash line), m = 0 (dash line), m = 0.6 (dot line)
and m = 1.2 (solid).

Fig. 2, we plot the curves of the 7-term approximate solutions φ7(x) versus x for
m =−1.2,−0.6,0,0.6,1.2, where in the case of m = 0, φ7(x) = y∗(x).

5 Numerical examples for the Emden–Fowler type equations of the fourth
order

We follow our previous analysis to study several numerical examples for the Emden–
Fowler type and Lane–Emden type equations of the fourth order in the form

y(iv)+
3k
x

y′′′+
3k(k−1)

x2 y′′+
k(k−1)(k−2)

x3 y′+ f (x)g(y) = 0,

y(0) = y0,y′(0) = y′′(0) = y′′′(0) = 0.
(44)

We will study this equation for a variety of values for the shape factor k and for the
given functions f (x)g(y).

Example 5. We first consider the Emden–Fowler type equation

y(iv)+
3
x

y′′′−96(1−10x4 +5x8)e−4y = 0,y(0) = y′(0) = y′′(0) = y′′′(0) = 0, (45)

obtained by substituting k = 1 in (44) and by setting f (x)g(y) = −96(1− 10x4 +
5x8)e−4y.
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The Adomian polynomials for the nonlinear term e−4y are given by

A0 = e−4y0 ,

A1 =−4y1e−4y0 ,

A2 = (−4y2 +8y2
1)e
−4y0 ,

A3 = (−4y3 +16y1y2−
64
3!

y3
1)e
−4y0 ,

. . . .

Using (28), the recursive relation becomes

y0(x) = 0,

y j+1(x) =−L−1 ( f (x)A j), j ≥ 0,
(46)

where L−1 is a fourfold integral operator defined in (19). We list the first several
calculated solution components

y0(x) = 0,

y1(x) = x4− 5
14

x8 +
1
33

x12,

y2(x) =−
1
7

x8 +
58
231

x12 + · · · ,

y3(x) =
4

77
x12 + · · · ,

. . . .

This in turn gives the series solution

y(x) = x4− 1
2

x8 +
1
3

x12− 1
4

x16 + · · · , (47)

that converges to the exact solution

y(x) = ln(1+ x4). (48)

Example 6. We next consider a linear version of the Emden–Fowler type equation

y(iv)+
6
x

y′′′+
6
x2 y′′−16(−15+111x4−96x8 +16x12)y = 0,

y(0) = 1,y′(0) = y′′(0) = y′′′(0) = 0,
(49)
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obtained by substituting k= 2 in (44) and by setting f (x)g(y)=−16(−15+111x4−
96x8 +16x12)y.

Using the recursive relation (28), we calculate the first several solution components

y0(x) = 1,

y1(x) =−x4 +
37
84

x8− 32
429

x12 + · · · ,

y2(x) =
5

84
x8− 3293

36036
x12 + · · · ,

y3(x) =−
25

36036
x12 + · · · ,

. . . .

This in turn gives the series solution

y(x) = 1− x4 +
1
2!

x8− 1
3!

x12 + · · · , (50)

that converges to the exact solution

y(x) = e−x4
. (51)

Example 7. We consider the Emden–Fowler type equation

y(iv)+
9
x

y′′′+
18
x2 y′′+

6
x3 y′−96(−5+35x4−23x8 + x12)y5 = 0,

y(0) = 1,y′(0) = y′′(0) = y′′′(0) = 0,
(52)

obtained by substituting k = 3 in (44) and by setting f (x)g(y) =−96(−5+35x4−
23x8 + x12)y5.

The Adomian polynomials for the nonlinear term y5 are given by

A0 = y5
0,

A1 = 5y1y4
0,

A2 = 5y2y4
0 +10y2

1y3
0,

A3 = 5y3y4
0 +20y1y2y3

0 +10y3
1y2

0,

. . . .
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Using the recursive relation (28), we calculate the first several solution components

y0(x) = 1,

y1(x) =−x4 +
7

12
x8− 23

273
x12 + · · · ,

y2(x) =
5

12
x8− 25

36
x12 + · · · ,

y3(x) =−
725
3276

x12 + · · · ,

. . . .

This gives the series solution

y(x) = 1− x4 + x8− x12 + x16−·· · , (53)

that converges to the exact solution

y(x) =
1

1+ x4 . (54)

Example 8. We conclude this section by considering the Emden–Fowler type e-
quation

y(iv)+
12
x

y′′′+
36
x2 y′′+

24
x3 y′+48(35−25x4 +5x8 + x12)e2y = 0,

y(0) = 0,y′(0) = y′′(0) = y′′′(0) = 0,
(55)

obtained by substituting k = 4 in (44) and by setting f (x)g(y) = 48(35− 25x4 +
5x8 + x12)e2y.

The Adomian polynomials for the nonlinear term e2y are given by

A0 = e2y0 ,

A1 = 2y1e2y0 ,

A2 = (2y2 +2y2
1)e

2y0 ,

A3 = (2y3 +4y1y2 +
8
3!

y3
1)e

2y0 ,

. . . .
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Using the recursive relation (28), we calculate the first several solution components

y0(x) = 0,

y1(x) =−2x4 +
5
33

x8− 2
273

x12− 1
1938

x16,

y2(x) =
28
33

x8− 1460
9009

x12 +
6025

415701
x16 + · · · ,

y3(x) =−
640
1287

x12 +
190600
1247103

x16 + · · · ,

y4(x) =
415520

1247103
x16 + · · · ,

. . . .

This in turn gives the series solution

y(x) =−2(x4− 1
2

x8 +
1
3

x12− 1
4

x16 + · · ·), (56)

that converges to the exact solution

y(x) =−2ln(1+ x4). (57)

6 Conclusion

In this work, we have presented a new framework to establish a canonical form
of the Lane–Emden–Fowler type equations of order greater than or equal to two.
We introduced a generalized formula for the solution scheme. Unlike the standard
Lane–Emden–Fowler equations where the shape factor is unique, we have demon-
strated that more than one shape factor exists for equations of order greater than or
equal to 3. Similarly, the singular point appears once in the standard form, whereas
in higher-order cases it appears more than once. We used the ADM with the Ado-
mian polynomials to easily and rapidly solve these nonlinear problems to illustrate
our analysis. The calculated results from the recursion scheme are effective for all
values of the shape factor k > 0. The obtained results validate the reliability and
rapid convergence of the ADM for solving strongly nonlinear differential equations
including higher-order Emden-Fowler type and Lane-Emden type equations.
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Appendix: MATHEMATICA code for the one-variable Adomian polynomials
based on Duan’s Corollary 3 algorithm [Duan (2011)]

AP[f_,M_]:=Module[{c,n,k,j,der},
Table[c[n,k],{n,1,M},{k,1,n}];
der=Table[D[f[Subscript[u,0]],{Subscript[u,0],k}],{k,1,M}];
A[0]=f[Subscript[u,0]];
For[n=1,n<=M,n++,c[n,1]=Subscript[u,n];
For[k=2,k<=n,k++,
c[n,k]=Expand[1/n*Sum[(j+1)*Subscript[u,j+1]*c[n-1-j,k-1],
{j,0,n-k}]]];
A[n]=Take[der,n].Table[c[n,k],{k,1,n}]];
Table[A[n],{n,0,M}]]




