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Solution of Two-Dimensional Viscous Flow in a
Rectangular Domain by the Modified Decomposition

Method

Lei Lu1,2,3, Jun-Sheng Duan2 and Long-Zhen Fan1

Abstract: In this paper, the modified decomposition method (MDM) for solving
the nonlinear two-dimensional viscous flow equations is presented. This study in-
vestigates the problem of laminar, isothermal, incompressible and viscous flow in
a rectangular domain bounded by two moving porous walls, which enable the fluid
to enter or exit during successive expansions or contractions. We first transform
the original two-dimensional viscous flow problem into an equivalent fourth-order
boundary value problem (BVP), then solve the problem by the MDM. The figures
and tables clearly show high accuracy of the method to solve two-dimensional vis-
cous flow.

Keywords: nonlinear differential equation, two-dimensional viscous flow, modi-
fied decomposition method, Adomian polynomials.

1 Introduction

Most scientific problems and phenomena are modeled by nonlinear ordinary or
partial differential equations. Therefore, the study on the various methods used
for solving the nonlinear differential equations is a very important topic for the
analysis of engineering practical problems. There are a number of approaches for
solving nonlinear equations, which range from completely analytical to completely
numerical ones. Besides all the advantages of using numerical methods, closed
form solutions appear more appealing because they reveal physical insights through
the physics of the problem. Also, parametric studies become more convenient with
applying analytical methods. Moreover, analytical solutions are generally required
for the validation of numerical methods and computer softwares. Therefore, many
different methods have been introduced to obtain analytical approximate solutions
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for these nonlinear problems, such as the perturbation method [Holmes (2013); He
(2000)], orthogonal polynomial and wavelet methods [Lakestani, Razzaghi, and
Dehghan (2006)], methods of travelling wave solutions [Jafari, Borhanifar, and
Karimi (2009)], the Adomian decomposition method (ADM) and the Variational
iteration method.

One of the most applicable analytical techniques is the ADM [Lu and Duan (2014);
Duan, Rach, and Wazwaz (2013); Fu, Wang, and Duan (2013); Lai, Chen, and
Hsu (2008); Adomian (1983, 1986, 1989, 1994); Wazwaz (2009, 2011); Serrano
(2011); Adomian and Rach (1983); Duan, Rach, Baleanu, and Wazwaz (2012);
Rach (2012)]. It is a practical technique for solving nonlinear functional equation-
s, including ordinary differential equations, partial differential equations, integral
equations, integro-differential equations, etc. The ADM provides efficient algo-
rithms for analytic approximate solutions and numeric simulations for real-world
applications in the applied sciences and engineering without unphysical restrictive
assumptions such as required by linearization and perturbation. The accuracy of
the analytic approximate solutions obtained can be verified by direct substitution.

In the ADM, the solution u(x) is represented by a decomposition series

u(x) =
∞

∑
n=0

un(x), (1)

and the nonlinearity comprises the Adomian polynomials

Nu(x) =
∞

∑
n=0

An(x), (2)

where the Adomian polynomials An(x) is defined for the nonlinearity Nu = f (u)
as [Adomian and Rach (1983)]

An(x) = An(u0,u1, . . . ,un) =
1
n!

∂ n

∂λ n f (
∞

∑
k=0

λ
kuk(x))

∣∣∣∣∣
λ=0

. (3)

Different algorithms for the Adomian polynomials have been developed by Rach
[Rach (2008, 1984)], Wazwaz [Wazwaz (2000)], Abdelwahid [Abdelwahid (2003)]
and several others [Abbaoui, Cherruault, and Seng (1995); Zhu, Chang, and Wu
(2005); Biazar, Ilie, and Khoshkenar (2006)]. Recently new algorithms and sub-
routines in MATHEMATICA for fast generation of the Adomian polynomials to
high orders have been developed by Duan [Duan (2010b,a, 2011)].

The solution components are determined by recursion scheme. The nth-stage ap-
proximation is given as φn(x) = ∑

n−1
k=0 uk(x).
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We remark that the convergence of the Adomian series has already been proven by
several investigators [Rach (2008); Abbaoui and Cherruault (1994, 1995); Abdel-
razec and Pelinovsky (2011)]. For example, Abdelrazec and Pelinovsky [Abdel-
razec and Pelinovsky (2011)] have published a rigorous proof of convergence for
the ADM under the aegis of the Cauchy-Kovalevskaya theorem. In point of fact
the Adomian decomposition series is found to be a computationally advantageous
rearrangement of the Banach-space analog of the Taylor expansion series about the
initial solution component function.

In this paper, we use the modified decomposition method(MDM) [Duan and Rach
(2011)] to investigate the problem of laminar, isothermal, incompressible and vis-
cous flow in a rectangular domain bounded by two moving porous walls. The paper
is organized as follows. In Section 2, the mathematical formulation is presented.
In Section 3, we extend the application of the MDM to construct the approximate
solutions for the governing equation. Section 4 contains the results and discussion.
The conclusions are summarized in Section 5.

2 Flow analysis and mathematical formulation

Studies of fluid transport in biological organisms often concern the flow of a par-
ticular fluid inside an expanding or contracting vessel with permeable walls. For a
valved vessel exhibiting deformable boundaries, alternating wall contractions pro-
duce the effect of a physiological pump. The flow behavior inside the lymphatics
exhibits a similar character. In such models, circulation is induced by successive
contractions of two thin sheets that cause the downstream convection of the sand-
wiched fluid. Seepage across permeable walls is clearly important to the mass
transfer between blood, air and tissue [Chang, Ha, Park, Kim, and Shin (1989)].
Therefore, a substantial amount of research work has been invested in the study
of the flow in a rectangular domain bounded by two moving porous walls, which
enable the fluid to enter or exit during successive expansions or contractions. Ma-
jdalani et al. [Majdalani, Zhou, and Dawson (2002)] studied the two-dimensional
viscous flow between slowly expanding or contracting walls with weak permeabil-
ity. Their study focused on the viscous flow driven by small wall contractions and
expansions of two weakly permeable walls. Based on double perturbations in the
permeation Reynolds number Re and wall dilation rate α , they carried out their an-
alytical procedure. Dauenhauer and Majdalani [Dauenhauer and Majdalani (1999)]
studied the unsteady flow in semi-infinite expanding channels with wall injection.
They are characterized by two nondimensional parameters, the expansion ratio of
the wall α and the cross-flow Reynolds number Re. Shooting method, coupled with
a Runge-Kutta integration scheme, was utilized to numerically solve the result-
ing fourth-order differential equation. Majdalani and Zhou [Majdalani and Zhou
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(2003)] studied moderate-to-large injection and suction driven channel flows with
expanding or contracting walls. Using perturbations in cross-flow Reynolds num-
ber Re, the resulting equation is solved both numerically and analytically. Boutros
et al. [Boutros, AbdelMalek, Badran, and Hassan (2006)] studied the solution of
the Navier-Stokes equations which described the unsteady incompressible laminar
flow in a semi-infinite porous circular pipe with injection or suction through the
pipe wall whose radius varies with time.

Consider the laminar, isothermal and incompressible flow in a rectangular domain
bounded by two permeable surfaces that enable the fluid to enter or exit during
successive expansions or contractions. The walls expand or contract uniformly at a
time-dependent rate ȧ. At the wall, it is assumed that the fluid inflow velocity Vw is
independent of position. The equations of continuity and motion for the unsteady
flow are given as follows

∂ ū
∂ x̄

+
∂ v̄
∂ ȳ

= 0, (4)

∂ ū
∂ t̄

+ ū
∂ ū
∂ x̄

+ v̄
∂ ū
∂ ȳ

=− 1
ρ

∂ p̄
∂ x̄

+ν [
∂ 2ū
∂ x̄2 +

∂ 2ū
∂ ȳ2 ], (5)

∂ v̄
∂ t̄

+ ū
∂ v̄
∂ x̄

+ v̄
∂ v̄
∂ ȳ

=− 1
ρ

∂ p̄
∂ ȳ

+ν [
∂ 2v̄
∂ x̄2 +

∂ 2v̄
∂ ȳ2 ]. (6)

In the above equations ū and v̄ indicate the velocity components in the x and y
directions, p̄ denotes the dimensional pressure, ρ,ν and t are the density, kinematic
viscosity and time, respectively. The boundary conditions will be

ū = 0, v̄ =−Vw =− ȧ
c

at ȳ = a(t),

∂ ū
∂ ȳ

= 0, v̄ = 0 at ȳ = 0,

ū = 0 at x̄ = 0,

(7)

where c (c ≡ ȧ
Vw
) is the wall permeance or injection/suction coefficient, that is a

measure of wall permeability. The stream function and mean flow vorticity can be
introduced by putting

ū =
∂ψ̄

∂ ȳ
, v̄ =−∂ψ̄

∂ x̄
, ξ̄ =

∂ v̄
∂ x̄
− ∂ ū

∂ ȳ
, (8)

∂ ξ̄

∂ t
+ ū

∂ ξ̄

∂ x̄
+ v̄

∂ ξ̄

∂ ȳ
= ν [

∂ 2ξ̄

∂ x̄2 +
∂ 2ξ̄

∂ ȳ2 ]. (9)
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Due to mass conservation, a similar solution can be developed with respect to x̄
[Majdalani, Zhou, and Dawson (2002)]. We define the transformation as

ψ̄ =
ν x̄F̄(y, t)

a
, ū =

ν x̄F̄y

a2 , v̄ =
−νF̄(y, t)

a
, (10)

y =
ȳ
a
, F̄y ≡

∂ F̄
∂y

. (11)

Substituting Eqs.(10) and (11) into Eqs.(8) and (9) yields

ūȳt + ūūȳx̄ + v̄ūȳȳ = ν ūȳȳȳ. (12)

In order to solve Eq.(12), one uses the chain rule to obtain

F̄yyyy +α(yF̄yyy +3F̄yy)+ F̄F̄yyy− F̄yF̄yy−a2
ν
−1F̄yyt = 0, (13)

with the following boundary conditions

F̄ = 0, F̄yy = 0 at y = 0, (14)

F̄ = Re, F̄y = 0 at y = 1. (15)

where α(t) ≡ ȧa/ν is the nondimensional wall dilation rate defined positive for
expansion and negative for contraction. Furthermore, Re = aVw/ν is the permeation
Reynolds number defined positive for injection and negative for suction through the
walls. Eqs.(10), (11),(13),(14) and (15) can be normalized by putting

ψ =
ψ̄

aȧ
, u =

ū
ȧ
, v =

v̄
ȧ
, x =

x̄
a
, F =

F̄
Re

, (16)

and so

ψ =
xF
c
, u =

xF ′

c
, v =

−F
c

, c =
α

Re
, (17)

F(4)+α(yF
′′′
+3F

′′
)+ReFF

′′′−ReF
′
F
′′
= 0. (18)

The boundary conditions (14) and (15) will be

F = 0, F
′′
= 0 at y = 0, (19)

F = 1, F
′
= 0 at y = 1. (20)

The resulting Eq.(18) is the classic Berman’s formula, with α = 0 (channel with
stationary walls).
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3 The MDM solution

In Adomian’s operator-theoretic notation, according to Eq.(18), we have

LF(y) = NF(y), (21)

where

L(·) = d4

dy4 (·), NF(y) =−α(yF ′′′+3F ′′)−ReFF ′′′+ReF ′F ′′. (22)

According to the Duan-Rach modified decomposition method for BVPs [Duan and
Rach (2011)], we take the inverse linear operator as

L−1(·) =
∫ y

0

∫ y

0

∫ y

0

∫ y

0
(·)dydydydy. (23)

Then, we have

L−1LF(y) =
∫ y

0

∫ y

0

∫ y

0

∫ y

0
F(4)(y)dydydydy = F(y)−Φ(y), (24)

where

Φ(y) = F(0)+ yF
′
(0)+

y2

2
F
′′
(0)+

y3

6
F
′′′
(0). (25)

Applying the operator L−1(·) to both sides of Eq.(21) yields

F(y) = Φ(y)+L−1NF(y). (26)

Using the boundary conditions (19),(20), we have from Eq.(25) as

Φ(y) = yF
′
(0)+

y3

6
F
′′′
(0). (27)

Upon substitution of the formula Eq.(27) into Eq.(26), we obtain

F(y) = yF
′
(0)+

y3

6
F
′′′
(0)+L−1NF(y). (28)

Before we design a modified recursion scheme, we determine the two undetermined
coefficients F

′
(0) and F

′′′
(0) in advance. Evaluating F(y) at y = 1 and using the

boundary condition F(1) = 1, we have

F
′
(0)+

1
6

F
′′′
(0)+ [L−1NF(y)]y=1 = 1, (29)
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where this nonlinear Fredholm integral is

[L−1NF(y)]y=1 =
∫ 1

0

∫ y

0

∫ y

0

∫ y

0
NF(y)dydydydy. (30)

Differentiating Eq.(28) then evaluating F
′
(y) at y = 1 and using the boundary con-

dition F
′
(1) = 0, we have

F
′
(0)+

1
2

F
′′′
(0)+ [

dL−1NF(y)
dy

]y=1 = 0, (31)

where this nonlinear Freddholm integrate is

[
dL−1NF(y)

dy
]y=1 =

∫ 1

0

∫ y

0

∫ y

0
NF(y)dydydy. (32)

From the system of Eqs.(29) and (31), which constitutes two linearly independent
equations in two unknowns, we readily obtain

F
′
(0) =−3

2
[L−1NF(y)]y=1 +

1
2
[
dL−1NF(y)

dy
]y=1 +

3
2
, (33)

F
′′′
(0) = 3[L−1NF(y)]y=1−3[

dL−1NF(y)
dy

]y=1−3. (34)

Substituting Eqs.(33) and (34) into Eq.(28), we obtain the integral equation for the
solution

F(y) =
3y
2
− y3

2
− (

3y
2
− y3

2
)[L−1NF(y)]y=1

+(
y
2
− y3

2
)[

dL−1NF(y)
dy

]y=1 +L−1NF(y). (35)

Thus, we have converted the nonlinear BVP into an equivalent nonlinear integral
equation without any undetermined coefficients.

Next, we decompose the solution F(y), and the nonlinearity NF(y) as

F(y) =
∞

∑
m=0

Fm(y) and NF(y) =
∞

∑
m=0

Am(y). (36)

By substitution (36) into Eq.(35) we have

∞

∑
m=0

Fm(y) =
3y
2
− y3

2
− (

3y
2
− y3

2
)[L−1(

∞

∑
m=0

Am(y))]y=1

+(
y
2
− y3

2
)[

dL−1(∑∞
m=0 Am(y))
dy

]y=1 +L−1(
∞

∑
m=0

Am(y)). (37)
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Using the modified recursion scheme, we have

F0(y) =
3y
2
− y3

2
, (38)

Fm+1(y) = −(3y
2
− y3

2
)[L−1Am(y)]y=1

+(
y
2
− y3

2
)[

dL−1Am(y)
dy

]y=1 +L−1Am(y), m≥ 0. (39)

We can compute the solution components Fm(y), m≥ 1, where we can use any one
of several efficient MATHEMATICA subroutine for generation of the Adomian
polynomials.

The nth-stage approximate solution is

φn(y) =
n−1

∑
k=0

Fk(y). (40)

Since the exact solution cannot be obtain in general for the case of most nonlinear
operator equations, we instead consider the error remainder function in our context
of the particular nonlinear differential equation LF(y)−NF(y) = 0,

ERn(y) = Lφn(y)−Nφn(y)

= φ
(4)
n (y)+α(yφ

′′′
n (y)+3φ

′′
n (y))+Reφn(y)φ ′′′n (y)−Reφ

′
n(y)φ

′′
n (y),

(41)

to verify the convergence of our solution and the maximal error remainder param-
eter

MERn = max
0≤y≤1

| ERn(y) |, (42)

which can be conveniently computed by the MATHEMATICA native command
’NMaximize’ for the nth-stage approximation φn(y).

4 Simulation results

The obtained analytical approximations include two parameters: the Reynolds num-
ber Re and the expansion ratio of the wall α . Here we present simulation results of
the proposed scheme for two-dimensional viscous flow in a rectangular domain.
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We consider the error analytic function for two cases: (i) α = 1 and Re = 3, (ii)
α = 2 and Re = 1. In Figs. 1(a) and 1(b), we plot the error remainder functions
ERn(y) for n = 5 through 8 for two cases (i) and (ii). The maximal error remainder
parameters MERn for n = 1 through 10 for α = 0.5,Re = 0.5 are listed in Table 1.
In Fig. 2, we display the logarithmic plots of the maximal error remainder parame-
ters MERn versus n for α = 0.5,Re = 0.5, where the points lie almost in a straight
line, which indicates that the maximal error remainder parameters decrease approx-
imately at an exponential rate.

Table 1: The maximal error remainder parameters MERn for α = 0.5,Re = 0.5

n 1 2 3
MERn 7.5 3.40714 0.565377

n 4 5 6
MERn 0.0394957 0.00143823 0.000153683

n 7 8 9 10
MERn 8.87219∗10−6 9.06599∗10−7 6.25602∗10−8 5.96985∗10−9
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0.4
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ERnHΗL

(a)

0.2 0.4 0.6 0.8 1.0
y

-0.6

-0.4

-0.2

0.2

0.4

0.6

ERnHΗL

(b)

Figure 1: Curves of ERn(y) versus y for n = 5 (solid line), n = 6 (dot line), n = 7
(dash line),n = 8 (dot-dash line), and for (a) α = 1,Re = 3, (b) α = 2,Re = 1.

In Fig. 3, we plot the curves of φ5 versus y for Re = 20 and different values of
α . For the fixed Re, increase in values of α is cause of increasing in velocity. In
Figs. 4(a) and 4(b), we plot the curves of φ5 versus y for different values of Re

and for α = 1 and 9, respectively. For this case, we find that for the fixed α = 1,
increase in values of Re is cause of decreasing in velocity. When α = 9, increase in
values of Re is cause of increasing in velocity. The effects of the model parameters
Re and α on the dimensionless velocity are investigated.
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Figure 2: Logarithmic plots of the maximal errors remainder parameters MERn

versus n for n = 1 through 12.
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Figure 3: The curves of φ5 versus y for Re = 20 and α = 3 (solid line), α = 5 (dot
line), α = 7 (dash line),α = 9 (dot-dash line).
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Figure 4: The curves of φ5 versus y for (a) Re = 40 (solid line), Re = 60 (dot line),
Re = 80 (dash line),Re = 90 (dot-dash line) and for α = 1, (b) Re = 10 (solid line),
Re = 20 (dot line), Re = 30 (dash line),Re = 40 (dot-dash line) and for α = 9.
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5 Conclusions

In this research, the modified decomposition method was applied successfully to
find the analytical solution of two-dimensional viscous flow in a rectangular domain
bounded by two moving porous walls. The figures and tables clearly show high
accuracy of the method to solve two-dimensional viscous flow. Consequently, the
present success of the modified decomposition method for the highly non linear
problem verifies that the method is a useful tool for non linear problems in science
and engineering.
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