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Abstract: Since the introduction of the Algebraic MultiGrid algorithm (AMG)
over twenty years ago, significant progress has been made in improving the coars-
ening and the convergence behavior of the method. In this paper, an AMG method
is introduced that utilizes a new generic approximate inverse algorithm as a s-
moother in conjunction with common coarsening techniques, such as classical
Ruge-Stüben coarsening, CLJP and PMIS coarsening. The proposed approximate
inverse scheme, namely Generic Approximate Banded Inverse (GenAbI), is a band-
ed approximate inverse based on Incomplete LU factorization with zero fill–in
(ILU(0)). The new class of Generic Approximate Banded Inverse can be com-
puted for any sparsity pattern of the coefficient matrix, in an analogous way as the
explicit approximate inverse, yielding a suitable smoother to be used in conjunction
with an Algebraic Multigrid method. The proposed smoother is parameterized and
thus by increasing the “retention” parameter the smoothing scheme becomes more
effective in terms of required number of cycles for convergence. Finally, the appli-
cability and effectiveness of the proposed AMG method along with implementation
issues, based on the Generic Approximate Banded Inverse matrix, is demonstrat-
ed by solving two and three dimensional problems and numerical results on the
convergence behavior and convergence factor are given.

Keywords: Sparse linear systems, algebraic multigrid methods, coarsening tech-
niques, incomplete LU factorization, generic approximate banded inverse smooth-
ing, DOUR algorithm.

1 Introduction

Multilevel methods have seen a popularity surge for efficiently solving partial dif-
ferential equations (PDE) in recent years. The more popular multilevel methods in-
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clude the various multigrid methods. Multigrid methods are based on the idea that
from a series of coarser and coarser grids, sufficient corrections can be acquired
and then applied to a sequence of finer grids in order to speed up convergence.
This is possible due to the behavior of the components of the error, which consists
of low and high frequencies. Moreover, multigrid methods exhibit h-independent
convergence behavior for various classes of problems and near-optimal complexity.
More on the h-ellipticity property of multigrid methods, as well as the Local Fouri-
er Analysis (LFA) associated with it, can be found in [Trottenberg, Osterlee and
Schuller (2000)]. The convergence behavior of different variations of the multigrid
method has been studied extensively by researchers and theoretical estimates and
bounds have been presented, [Bank and Douglas (1985); Brandt (1977); Hackbusch
(1985b); Tang and Wan (2000)].

In [Brandt, McCormick and Ruge (1984); Ruge and Stüben (1987)] the Algebraic
MultiGrid (AMG) method was first presented. A plethora of developments have
happened since then, leading to new coarsening algorithms, [Cleary, Falgout, Hen-
son and Jones (1998); De Sterck, Yang and Heys (2006);Henson and Yang (2002);
Livne 2004], and interpolation schemes, [Brezina, Falgout, MacLachlan, Manteuf-
fel, McCormick and Ruge (2005); De Sterck, Falgout, Nolting and Yang (2008)].
Considering a linear system Au=s, AMG only requires the coefficient matrix A
in order to create the multilevel hierarchy through coarsening algorithms. Thus,
AMG methods are suitable for solving problems arising from unstructured grid-
s and complicated domains. It should be noted that Algebraic Multigrid methods
have been used extensively for solving various complex engineering problems such
as problems arising in Computational Fluid Dynamics or Computational Electro-
magnetism, [Trottenberg, Osterlee and Schuller (2000)].

The use of approximate inverses in the context of multilevel methods has been
described in [Bröker and Grote (2002); Meurant (2002); Tang and Wan (2000)].
Classes of approximate inverse matrices based on the minimization of the Frobe-
nius norm (SPAI, FSAI, etc) or the explicit approximate inverses have been recently
proposed, [Grote and Huckle (1995); Kolotolina and Yeremin (1993); Lipitakis and
Evans (1987)]. Extensive discussions on the methodology of explicit approximate
inverse preconditioning as well as on the rate of convergence of explicit approxi-
mate inverse preconditioning have been presented in [Gravvanis(2009,1996); Grav-
vanis and Lipitakis (1996b); Lipitakis and Evans (1987); Lipitakis and Gravvanis
(1995)]. The new proposed scheme GENeric Approximate Banded Inverse (Gen-
AbI), used as a smoother for the AMG method, is based on a generalized storage
format, namely the Compressed Sparse Row (CSR) and is generic in contradiction
to its “dedicated” predecessors, [Gravvanis and Lipitakis (1996b); Lipitakis and
Evans (1987); Lipitakis and Gravvanis (1995)].
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In this article, an algebraic multigrid method is presented, based on a new class of
generic approximate banded inverse matrices, derived from the incomplete factor-
ization, as smoothers. In Section 2, the proposed AMG method is presented divid-
ed into the setup and solution phase. In Section 3, a new algorithmic technique for
computing the elements of the generic approximate banded inverse matrix, based
on incomplete factorization procedure, for any sparsity is presented and used as a
smoother for the solution phase. Finally in Section 4, the applicability and effec-
tiveness of the proposed algebraic multigrid method on two and three dimensional
boundary value problems is presented along with numerical results on the conver-
gence behavior and convergence factors.

2 The AMG Method

In this section, the proposed AMG method is discussed in detail. AMG methods
can be split into two distinct phases: the setup phase, where the basic components
are constructed, and the solution phase, where through the recursive use of the
coarse-grid correction process, [Brandt (1977); Briggs, Henson and McCormick
(2000); Hackbusch (1985a); Trottenberg, Osterlee, and Schuller (2000)], the solu-
tion is obtained.

AMG is comprised of four essential components, [Yang (2006)], (superscripts in-
dicate grid level): grids Ω1 ⊃Ω2 ⊃ ...⊃ΩN containing two disjoint subsets Ck,k =
1, ...,N−1 (Coarse points set) and Fk,k = 1, ...,N−1 (Fine points set), grid oper-
ators A1,A2, ...,AN , interpolation and restriction operators Ik

k+1,k = 1, ...,N−1 and
Ik+1
k ,k = 1, ...,N−1 and finally a smoother (relaxation scheme), used at each level.

Considering the linear system Au=s, where A = (ai, j) , i, j ∈ [1,n] is an (n×n) s-
parse coefficient matrix, a “grid” is defined as a set of indices of the variables, the
first grid being Ω = {1,2, ...,n}. In AMG, the coarsening process is responsible
for constructing the coarser grid levels, along with the transfer operators, where the
corrections to the solution will later be obtained through the cycle scheme. The set-
up phase of the AMG method presented uses the RS, CLJP and PMIS coarsening
algorithms in conjunction with direct interpolation.

A key component of the setup phase is the coarsening algorithm. Its goal is to
determine the sets of coarse and fine grid points respectively, as well as a small set
Ci ⊂ C of interpolating points for each fine grid point, [Ruge and Stüben (1987);
Stüben (2001)]. Interpolation is then defined as:(

Ik
k+1uk+1

)
i
=

{
uk+1

i , i ∈C
∑

j∈Ci

wi juk+1
j , i ∈ F (1)

It is essential that strong influence and dependence are defined within the scope of
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coarse-grid correction methods. A point i depends on point j if matrix element ai jis
“sufficiently large”. The set of dependencies for variable i is then denoted as:

Si =

{
j 6= i,−ai j ≥ θ max

k 6=i
(−aik)

}
(2)

where θ is the strength threshold which determines the stencil size and affects
convergence, [Yang (2006)]. A typical value for θ is 0.25.

The set of influences is the transpose of the dependencies set:

ST
i =

{
j, i ∈ S j

}
(3)

The above concepts, coupled with the following two heuristics, are essential within
classical AMG coarsening algorithms, [Cleary, Falgout, Henson and Jones (1998);
Ruge and Stüben (1987); Wesseling (1980)]:

• H1: For each point j that strongly influences a fine grid point i, j is either a
coarse grid point or strongly depends on a coarse grid point that also strongly
influences i.

• H2: The set C of coarse grid points is a maximal subset of all the points, i.e.
no coarse grid point influences another coarse grid point.

The first coarsening technique to be introduced for AMG was the Ruge-Stüben
(RS) algorithm. It is based on enforcing condition H1, while using condition H2 as
a guideline, since it is impossible to satisfy both heuristics simultaneously. Further
details on the RS coarsening scheme can be found in [Ruge and Stüben (1987)].

The Cleary-Luby-Jones-Plassmann (CLJP) coarsening algorithm, [Cleary, Falgout,
Henson and Jones (1998)], was the first inherently parallel coarsening algorithm to
be presented. Based on Luby’s parallel maximal independent set algorithm, [Luby
(1986)], CLJP selects more than one C-points in each loop, unlike RS coarsening
which selects a single C-point in each loop. More details about the heuristics used
in the CLJP algorithm can be found in [Cleary, Falgout, Henson and Jones (1998)].

Another parallel coarsening scheme that has been introduced is the Parallel Modi-
fied Independent Set (PMIS) coarsening algorithm. It is known that in three dimen-
sions (3D), imposing heuristic H1 may result in unwanted complexity growth, [De
Sterck, Yang and Heys (2006)]. In order to create sparser coarse grids while main-
taining good convergence factors, the PMIS algorithm enforces heuristic H2, while
H1 is replaced by a significantly less restrictive heuristic, [Krechel and Stüben
(2001)]:
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• H1’: Each fine-grid point must strongly depend on at least one coarse-grid
point.

The PMIS algorithm is also based on Luby’s parallel maximal independent set
algorithm, [Luby (1986)], resulting in a simplified version of the CLJP algorithm.
Detailed information about the algorithm can be found in [De Sterck, Yang, and
Heys (2006)].

The major advantage of the CLJP and PMIS coarsening algorithms is their inherent
parallelism, compared to RS coarsening’s sequential nature. The PMIS coarsening
is significantly faster and creates grids with lower operator complexities than CLJP,
while sacrificing convergence behavior. Detailed comparisons of popular coarsen-
ing schemes can be found in [De Sterck, Yang, and Heys (2006); Yang (2006)].

The interpolation formula used for the purposes of this article is the direct interpo-
lation, in which the weights wi j are defined as follows, [Yang (2006)]:

wi j =−
(

∑k∈Ni aik

∑l∈Ci ail

)
ai j

aii .
(4)

The drawback of direct interpolation is that it can potentially have a negative ef-
fect on the convergence rate compared to interpolation formulas that use extended
neighborhoods, [Yang (2006)]. The interpolation operator can then be computed
according to (1). Based on the Galerkin condition, [McCormick (1985)], the re-
striction operator is annotated as the transpose of the interpolation operator. The
next level grid operator is defined as the triple matrix product of the restriction op-
erator, the finer grid operator and the interpolation operator. When the current grid
is considered “coarse enough”, the setup phase terminates leading to the solution
phase. The solution phase of the Algebraic Multigrid method proposed is based on
the use of Generic Approximate Banded Inverses, based on ILU(0) factorization,
as smoothers.

The cycle strategy is vital to any multigrid algorithm and refers to the sequence in
which the various grids are visited and the respective coarse grid corrections are
obtained. The most common cycle strategy is the V–cycle algorithm. Successive
applications of the cycle lead to the solution according to arbitrary termination
criterion. The solution phase of the presented AMG scheme can be defined by the
below compact recursive algorithmic scheme, [Matskanidis and Gravvanis (2012)]:

Algorithm : MGV (Ak,
(
Mδ l

)k
, Ik+1

k , Ik
k+1,u

k, f k)

If k = N, Relax
(

AN ,
(
Mδ l

)N
,uN , f N

)
ν3 times

Else
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Relax
(

Ak,
(
Mδ l

)k
,uk, f k

)
ν1 times

Perform coarse grid correction:

Set uk+1 = 0.

Set f k+1 = Ik+1
k ( f k−Akuk)

Solve level k+1: MGV (Ak+1,
(
Mδ l

)k+1
, Ik+2

k+1 , I
k+1
k+2 ,u

k+1, f k+1)

Correct the solution by uk = uk + Ik
k+1uk+1

Relax
(

Ak,
(
Mδ l

)k
,uk, f k

)
ν2 times

One of the essential multigrid components is the smoother to be used at each level
which can be described as:

xk
(i+1) = xk

(i)+Mkrk,rk = f k−Akxk
(i) (5)

where f k,Ak are the right-hand side and coefficient matrix (at the k-th coarse level)
and xk

(i) is the solution vector at the i-th iterative step. Equation (5) describes a
family of stationary iterative methods, based on the Mk matrix. A commonly used
smoother for AMG schemes is the Gauss – Seidel method with Mk matrix of the
form Mk = (D+L)−1, where D is the diagonal part of the coefficient matrix and L
is the strictly lower part of the coefficient matrix. Further discussions and proofs
about classical smoothers can be found in [Hackbusch (1985a,1985b)]. Approxi-
mate inverses based on the minimization of the Frobenius norm of the error have
also been used as smoothers in the multigrid method, [Bröker and Grote (2002);
Bröker, Grote, Mayer and Reusken (2001); Frederickson (1996)].

3 Generic Approximate Banded Inverse Smoothing

When choosing Mk = (Mk)δ l , where (Mk)δ l is a class of approximate inverses,
generic approximate banded inverses can be utilized as smoothers. The new class
of smoothing methods can be described as follows, [Matskanidis and Gravvanis
(2012)]:

xk
(i+1) = xk

(i)+ω

(
Mk
)δ l

r

(
f k−Akxk

(i)

)
(6)

with ω being the damping parameter, 0 < ω ≤ 1.

The computation of the new class of generic approximate banded inverse requires
the Incomplete LU factorization of the coefficient matrix A. The Incomplete LU
Factorization is based on a modified Gaussian Elimination procedure, [Axelsson
(1996); Saad (1996)], which retains certain fill – in terms based on a set of elements
in specific places in the LU decomposition procedure. The most commonly used
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variant of LU factorization is the zero fill – in variant, namely ILU(0) factorization.
The ILU(0) factorization retains the profile and sparsity pattern of the coefficient
matrix, without allowing fill – in terms. The algorithm for ILU(0) factorization can
be found in [Axelsson (1996)].

Let us assume the incomplete LU factorization, such that

A≈ LU +R (7)

where L and U are upper and lower matrices of the same nonzero structure as the
lower and upper parts of coefficient matrix A respectively and R is an error matrix.

Let Mδ l = (µi, j) , i ∈ [1,n], j ∈ [i−δ l +1, i+δ l−1] be the GENeric Approximate
Banded Inverse (GenAbI) matrix of the coefficient matrix A, where δ l is the so
called “retention” parameter which denotes the number of outer diagonals in the
upper and lower parts of the approximate inverse to be computed. Its elements can
then be computed by the recursive solution of the following systems, [Gravvanis
(2002); Lipitakis and Evans (1987)]:

UMδ l = I and Mδ lL = 0 (8)

The form of the Generic Approximate Banded Inverse matrix for n=8 and δ l=4 is
as follows:

← δ l →

µ1,1 µ1,2 µ1,3 µ1,4
µ2,1 µ2,2 µ2,3 µ2,4 µ2,5 0
µ3,1 µ3,2 µ3,3 µ3,4 µ3,5 µ3,6
µ4,1 µ4,2 µ4,3 µ4,4 µ4,5 µ4,6 µ4,7

µ5,2 µ5,3 µ5,4 µ5,5 µ5,6 µ5,7 µ5,8
µ6,3 µ6,4 µ6,5 µ6,6 µ6,7 µ6,8

0 µ7,4 µ7,5 µ7,6 µ7,7 µ7,8
µ8,5 µ8,6 µ8,7 µ8,8


(9)

The approximate inverse is stored in CSR (Compressed Sparse Row) storage for-
mat and the number of nonzero elements can be computed by the formula nnz =
n+(2δ l−2)n− δ l (δ l−1). It has been studied and proven, that the value of the
“retention” parameter δ l can be chosen as multiples of the semi – bandwidth pa-
rameters of the coefficient matrix, [Gravvanis (2002,1996); Gravvanis and Lipitakis
(1996b); Lipitakis and Evans (1987); Lipitakis and Gravvanis (1995)].

The elements of the new class of Generic Approximate Banded Inverse matrix (the
GenAbI algorithm) can be expressed by the following compact algorithmic scheme:

For i = n, . . .,1
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If i = n then

µn,n = 1
/

un,n (10)

Else

µi,i =

1−
min(n−i,δ l−1)

∑
j=1

µi+ j,iui,i+ j

ui,i
(11)

EndIf
For j = 1, . . .,min(i−1,δ l−1)

µi,i− j =−
min(i+δ l−1,n)

∑
k=i− j+1

µi,klk,i− j (12)

µi− j,i =−

min(i+δ l−1,n)
∑

k=i− j+1
µk,iui− j,k

ui− j,i− j
(13)

EndFor
EndFor
The computation of the approximate inverse is commencing through “inverse L”
shaped entities for each respectable diagonal element as shown in Figure 1, [Grav-
vanis, Filelis-Papadopoulos and Matskanidis (2013)]. Each i – loop denotes the
respective “inverse L” shaped entity. However, the j – loop denotes the element
within the “inverse L” shaped entity. The complexity of the Generic Approximate
Banded Inverse Matrix is O

(
nδ l2

)
multiplications. It should be noted that for δ l=1

the computation of the approximate inverse is limited to the inversion of the diag-
onal elements of the upper factor of the incomplete factorization resulting in a fast
approximate inverse.

The Generic Approximate Banded Inverse Matrix is fast to compute in CSR format,
since the positions of its elements are a priori known. Moreover, the Generic Ap-
proximate Banded Inverse Matrix and the Explicit Optimized Banded Approximate
Inverse matrices have been designed using the same “fishbone” computational ap-
proach, which allows a high level of inherent parallelism, [Gravvanis (2009)]. The
parallel performance, as well as the parallelization techniques, of the Explicit Op-
timized Banded Approximate Inverse Matrices has been presented in [Gravvanis
(2009)].
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Figure 1: Schematic representation of the computation scope of the elements of the
Generic Approximate Banded Inverse Matrix.

In multigrid convergence theory two properties must be satisfied in order for the
coarse-grid correction process to converge: the smoothing and the approxima-
tion property, [Briggs, Henson and McCormick (2000); Bröker, Grote, Mayer and
Reusken (2001); Hackbusch (1985a, 1985b)].

For symmetric positive definite (SPD) coefficient matrices, convergence for the
V–Cycle independent of the levels k is also implied, [Hackbusch (1985b)]. The
approximation property is independent of the smoother and depends only on the
discretization and the transfer operators. It has been shown to be satisfied for vari-
ous elliptic boundary value problems, [Hackbusch (1985b)].

The smoothing property for the finite difference (FD) Optimized Banded General-
ized Approximate Inverse Matrix (OBGAIM) was proven in [Filelis-Papadopoulos
and Gravvanis (2013b)]. In an analogous way, it can be proven for the Generic
Approximate Banded Inverse (GenAbI). Additionally, sharp generalized estimates
have been presented for the convergence of various smoothing schemes in [Bank
and Douglas (1985)]. These estimates also apply for using Generic Approximate
Banded Inverse (GenAbI) as a smoother.

The choice of the relaxation parameter governs the smoothing properties of the
generic approximate inverse. In addition, the value of the relaxation parameter
should satisfy the smoothing condition, and hence the Dynamic Over / Under Re-
laxation (DOUR) algorithm is used, [Haelterman, Viederndeels and Van Heule
(2009)].
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As seen in equation (6), the proposed generic approximate inverse smoothing sche-
me requires a relaxation parameter ω in order to be more effective. The choice of
the relaxation parameter is non-trivial for a wide variety of problems and various
choices of the “retention” parameter δ l, [Matskanidis and Gravvanis (2012)]. A
“predictor–corrector”-like scheme, based on the DOUR (Dynamic Over/Under Re-
laxation) scheme, [Haelterman, Viederndeels and Van Heule (2009)], was used in
conjunction with the GenAbI smoother in order to compute the relaxation parame-
ter dynamically, [Matskanidis and Gravvanis (2012)]:

xk
(i+1) = xk

(i)+ωe

(
S
(

xk
(i)

)
− xk

(i)

)
,ωe = ω (1+κ) (14)

where ωe is the effective relaxation parameter. This equation denotes a two-stage
non-stationary generic approximate inverse smoother. The complexity of the DOUR
PGenAbI smoother is (5n+(2δ l-2)n-δ l(δ l-1)+3nnz(A)+2)ν multiplications and (7n
+(2δ l-2)n-δ l(δ l-1)+3nnz(A)+2)ν additions. Thus the complexity is ≈ O(nδ l).

4 Numerical Results

In this section numerical results are presented for the proposed AMG scheme. The
results were obtained using the Visual Studio 2010 C++ environment. The conver-
gence factor depends on the required number of iterations for convergence, [Brig-
gs, Henson and McCormick (2000); Bröker, O., Grote, Mayer and Reusken (2001);
Trottenberg, Osterlee and Schuller (2000)], and is defined as follows with respect
to the 2-norm:

q = m
√
‖rm‖2

/
‖r0‖2 (15)

where rm is the residual vector at the m-th iteration. The termination criterion
for all model problems is ‖rm‖2 < 10−10 ‖r0‖2 and the numbering of the grid is
lexicographical. The maximum number of iterations was set to 300 iterations.

The strength threshold θ was set to 0.25. The values for the pre-smoothing and
post-smoothing steps were set to v1, v2=2. The coarsest level solver used v3=6
steps.

Model Problem I: Let us consider the following convection–diffusion equation in
two space variables, [Briggs, Henson and McCormick (2000)], modeling transport
phenomena, such as fluid flow in Computational Fluid Dynamics, [Trottenberg,
Osterlee and Schuller (2000)]:

−ε (∆u)+α
∂u
∂x

= Asin(`πy)
(
c2x2 + c1x+ c0

)
, (x,y) ∈Ω (16)

u(x,y) = 0, (x,y) ∈ ∂Ω (16a)
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where c2 = −ε`2π2,c1 = ε`2π2− 2α,c2 = α + 2ε , ∆ is the Laplace operator, Ω

is the unit square and ∂Ω denotes the boundary of Ω. The region Ω is covered
by a triangular or quadrilateral grid, respectively, with mesh size h = 1/(

√
n+1)

where n denotes the order of the linear system. The values of the parameters for
the convection–diffusion P.D.E are set arbitrarily to ε = 0.1,α = 2.5,A = 1, `= 3.

In Table 1, the convergence factors and convergence behavior for various coars-
ening techniques, values of the order of the linear system n and “retention” pa-
rameter δ l of the generic approximate banded inverse matrix are presented for the
convection-diffusion problem discretized with quadrilateral elements. Additional-
ly, the convergence factors and convergence behavior for the Gauss-Seidel method
as a smoother are also given. In Figures 2 and 3, the behavior of the error measures
‖ri‖2 are presented for the CLJP and PMIS coarsening schemes respectively, for
various smoothers with the order of the linear system n=65025, for the convection-
diffusion problem discretized with quadrilateral elements.

In Table 2, the convergence factors and convergence behavior for various coars-
ening techniques, values of the order of the linear system n and “retention” pa-
rameter δ l of the generic approximate banded inverse matrix are presented for the
convection-diffusion problem discretized with triangular elements. Additionally,
the convergence factors and convergence behavior for the Gauss-Seidel method as
a smoother are also given.
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Figure 2: Behavior of the error measures ‖ri‖2 for various smoothers with CLJP
coarsening and n=65025, for model problem I (quadrilaterals).
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Figure 3: Behavior of the error measures ‖ri‖2 for various smoothers with PMIS
coarsening and n=65025, for model problem I (quadrilaterals).

Model Problem II: Let us consider the Poisson equation,:

∆u(x,y) = f (x,y), (x,y) ∈Ω (17)

u(x,y) = 0, (x,y) ∈ ∂Ω (17a)

usually used to model gravitational phenomena in various methods used for N-
Body simulation such as the Particle Mesh methods, [Kyziropoulos, Filelis-Papado-

poulos and Gravvanis (2013)]. The following 9-point stencil 1
3

 −1 −1 −1
−1 8 −1
−1 −1 −1


has been used.

The right hand side vector was chosen as the product of the coefficient matrix by
the solution vector with all its components set to unity. The initial guess of the
solution vector was the zero vector.

In Table 3, the convergence factors and convergence behavior are presented for
various coarsening techniques, smoothers, values of the order of the linear system
n and “retention” parameter δ l for the model problem II.

It should be noted that the use of generic approximate banded inverses as smoother-
s significantly improves the convergence behavior, compared to the Gauss-Seidel
method, which is considered as a classical smoother. It should also be mentioned
that increasing the value of the “retention” parameter δ l leads to better convergence
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Table 1: Convergence factors and convergence behavior of the V-Cycle for vari-
ous coarsening techniques, smoothers and values of n and δ l for model problem I
(quadrilateral grid).

n=3969 5
LEV-

S

n=16129 5
LEVS

n=65025 7
LEVS

Coarsening Smoother δ l q its q its q its
RS0 GenAbI 1 0.1591 13 0.1062 11 0.1305 12

CJLP 0.1007 11 0.1455 13 0.2025 15
PMIS 0.3706 24 0.5757 43 0.7932 100
RS0 GenAbI 2 0.1150 11 0.1243 12 0.1323 12

CLJP 0.1057 11 0.1531 13 0.2097 15
PMIS 0.3722 24 0.5852 43 0.7873 97
RS0 GenAbI 8 0.1119 11 0.1209 12 0.1306 12

CLJP 0.108 11 0.1543 13 0.209 12
PMIS 0.3742 24 0.5883 44 0.7859 97
RS0 GenAbI 20 0.1089 11 0.1208 12 0.1322 12

CLJP 0.1013 11 0.1456 13 0.202 15
PMIS 0.3345 22 0.5797 43 0.7836 95
RS0 GenAbI 40 0.0868 10 0.1260 12 0.1360 12

CLJP 0.0992 10 0.1419 12 0.1917 15
PMIS 0.2998 20 0.5339 37 0.7752 91
RS0 GenAbI 60 0.0866 10 0.1248 12 0.1361 12

CLJP 0.0953 10 0.1405 12 0.1912 14
PMIS 0.2949 19 0.5068 34 0.7262 73
RS0 G-S - 0.1176 11 0.0916 10 0.0948 10

CLJP 0.0867 10 0.1436 12 0.2034 15
PMIS 0.3523 23 0.6054 47 0.8187 116

behavior, especially when approximate inverse smoothing is used in conjunction
with CLJP and PMIS coarsening, as shown in Figures 2 and 3.

Model Problem III: Let us consider the Poisson equation in three space variables:

∆u(x,y,z) = f (x,y,z), (x,y,z) ∈Ω (18)

u(x,y,z) = 0, (x,y,z) ∈ ∂Ω (18a)

discretized with the seven point finite difference stencil, where ∆ is the Laplace
operator, Ω is the unit cube and ∂Ω denotes the boundary of Ω. Such equations are
often used in modeling gravitational phenomena or electrostatics, etc.

The right hand side vector was chosen as the product of the coefficient matrix by
the solution vector with all its components set to unity. The initial guess of the
solution vector was the zero vector.
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Table 2: Convergence factors and convergence behavior of the V-Cycle for vari-
ous coarsening techniques, smoothers and values of n and δ l for model problem I
(triangular grid).

n=3969 5
LEV-

S

n=16129 6
LEVS

n=65025 7
LEVS

Coarsening Smoother δ l q its q its q its
RS0 GenAbI 1 0.0788 10 0.0766 9 0.0870 10

CJLP 0.0868 10 0.1571 13 0.2507 17
PMIS 0.5681 41 0.8409 134 * > 300
RS0 GenAbI 2 0.0965 10 0.0971 10 0.1036 11

CLJP 0.0998 10 0.1449 12 0.2421 17
PMIS 0.5068 34 0.8011 104 * > 300
RS0 GenAbI 8 0.0914 10 0.0937 10 0.0983 11

CLJP 0.0934 10 0.1376 12 0.2086 15
PMIS 0.5111 35 0.8139 113 * > 300
RS0 GenAbI 20 0.0837 10 0.09 10 0.0973 10

CLJP 0.0896 10 0.1284 12 0.1909 14
PMIS 0.4964 34 0.8114 111 * > 300
RS0 GenAbI 40 0.1214 11 0.0879 10 0.0948 10

CLJP 0.1033 11 0.1164 11 0.1787 14
PMIS 0.4315 28 0.8077 108 * > 300
RS0 GenAbI 60 0.1185 11 0.0879 10 0.0947 10

CLJP 0.1050 11 0.1148 11 0.1712 14
PMIS 0.3481 22 0.7292 74 * > 300
RS0 G-S - 0.0753 10 0.0839 10 0.1089 11

CLJP 0.0662 9 0.1297 12 0.2196 16
PMIS 0.5163 35 0.8191 116 * > 300

* The convergence factor cannot be obtained since maximum number of iterations was exceeded.

In Table 4, the convergence factors and convergence behavior are presented for
various coarsening techniques, smoothers, values of the order of the linear system
n and “retention” parameter δ l for the model problem III.

It can be observed that the use of PMIS coarsening leads to increased number of
iterations compared to the classical RS and CLJP coarsening, as has already been
shown in [De Sterck, Yang and Heys (2006)]. However, as has been discussed
in [De Sterck, Yang and Heys (2006)], PMIS also provides advantages compared
to the above since it is highly parallel, while RS is sequential, and produces sig-
nificantly lower operator complexities, especially in three dimensional problems,
compared to CLJP.
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Table 3: Convergence factors and convergence behavior of the V-Cycle for various
coarsening techniques, smoothers and values of n and δ l for model problem II.

n=3969 5
LEV-

S

n=16129 7
LEVS

n=65025 8
LEVS

Coarsening Smoother δ l q its q its q its
RS0 GenAbI 1 0.1269 12 0.1492 13 0.1553 13

CJLP 0.2572 17 0.3058 20 0.3830 25
PMIS 0.7568 83 0.9208 280 * > 300
RS0 GenAbI 2 0.1338 12 0.1701 14 0.1625 13

CLJP 0.2561 17 0.3106 20 0.3902 25
PMIS 0.7513 81 0.9170 268 * > 300
RS0 GenAbI 8 0.1332 12 0.1685 14 0.1641 13

CLJP 0.2377 17 0.3002 20 0.3811 24
PMIS 0.738 76 0.9159 263 * > 300
RS0 GenAbI 20 0.1268 12 0.1617 13 0.1643 13

CLJP 0.2218 16 0.2866 19 0.3591 23
PMIS 0.6854 61 0.9104 246 * > 300
RS0 GenAbI 40 0.1196 11 0.1603 13 0.1605 13

CLJP 0.2043 15 0.2611 18 0.3462 22
PMIS 0.6320 51 0.8847 189 * > 300
RS0 GenAbI 60 0.1203 11 0.1603 13 0.1596 13

CLJP 0.1882 14 0.2564 17 0.3291 21
PMIS 0.6125 47 0.8818 184 * > 300
RS0 G-S - 0.1044 11 0.1314 12 0.1373 12

CLJP 0.2545 17 0.3041 20 0.3943 25
PMIS 0.7696 88 0.9223 285 * >300

* The convergence factor cannot be obtained since maximum number of iterations was exceeded.

It should also be mentioned that using the proposed AMG method as a precondi-
tioner for a Krylov type method, such as GMRES (m), [Yang (2006)], can partly
remedy the above PMIS disadvantage. An alternative technique that can be used
along with PMIS coarsening in order to reduce the required cycles for convergence
is employing higher order interpolation schemes, [De Sterck, Falgout, Nolting and
Yang (2008)].

In Table 5, the convergence behavior for the AMG-GMRES(m) algorithm is pre-
sented for PMIS coarsening and various values of the order of the linear system n
and “retention” parameter δ l with the restart parameter m=2.

Model Problem IV: Let us consider the following convection-diffusion equation



338 Copyright © 2014 Tech Science Press CMES, vol.100, no.4, pp.323-345, 2014

Table 4: Convergence factors and convergence behavior of the V-Cycle for various
coarsening techniques, smoothers and values of n and δ l for model problem III.

n=8000 8
LEV-

S

n=64000 10
LEVS

n=125000 11
LEVS

Coarsening Smoother δ l q its q its q its
RS0 GenAbI 1 0.0372 7 0.0450 8 0.0498 8

CJLP 0.0641 9 0.0932 10 0.1082 11
PMIS 0.5241 36 0.6777 60 0.7741 90
RS0 GenAbI 2 0.0514 8 0.0546 8 0.0581 9

CLJP 0.0619 9 0.0914 10 0.1056 11
PMIS 0.4627 30 0.6603 56 0.7711 89
RS0 GenAbI 8 0.0504 8 0.0522 8 0.0560 8

CLJP 0.0606 9 0.0893 10 0.1034 11
PMIS 0.4552 30 0.6562 55 0.7673 87
RS0 GenAbI 20 0.0476 8 0.051 8 0.0548 8

CLJP 0.0554 8 0.0841 10 0.0976 10
PMIS 0.4326 28 0.6404 52 0.7584 84
RS0 GenAbI 40 0.0279 7 0.0492 8 0.0531 8

CLJP 0.0435 8 0.0812 10 0.0924 10
PMIS 0.4176 27 0.6282 50 0.7514 81
RS0 GenAbI 80 0.0274 7 0.0305 7 0.0379 8

CLJP 0.0419 8 0.0744 9 0.0902 10
PMIS 0.4150 27 0.6215 49 0.7306 74
RS0 G-S - 0.0345 8 0.0594 9 0.0666 9

CLJP 0.0502 8 0.0883 10 0.0993 10
PMIS 0.4551 30 0.6623 56 0.7591 84

Table 5: Convergence behavior of AMG-GMRES(2) for PMIS coarsening, and
various values of n and δ l for model problem III.

Iterations δ l=1 δ l=2 δ l=8 δ l=20 δ l=40 δ l=80
n=8000 10 10 10 9 8 8

n=64000 13 13 13 12 12 11
n=125000 20 20 18 17 17 16
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in three space variables:

uxx+uyy+uzz+βuy = f (x,y,z), (x,y,z) ∈Ω (19)

u(x,y,z) = 0, (x,y,z) ∈ ∂Ω (19a)

where Ω is the unit cube and ∂Ω denotes the boundary of Ω. Such equations are
used to model energy transport phenomena.

The problem was discretized by applying central differences for the first and second
order derivatives. It should be mentioned that the parameter β controls the degree
of asymmetry of the resulting linear system. Additionally, for large values of β the
system loses the diagonal dominance property, which is an important factor for the
convergence of many iterative methods, [Gravvanis and Lipitakis (1996a)].

The right hand side vector was chosen as the product of the coefficient matrix by
the solution vector with all its components set to unity. The initial guess of the
solution vector was the zero vector.

In Table 6, the convergence factors and convergence behavior are presented for
order of the linear system n=27000 and various coarsening techniques, smoothers,
values of the parameter β and “retention” parameter δ l for the model problem IV.
In Table 7, the convergence factors and convergence behavior are presented for
order of the linear system n=64000 and various coarsening techniques, smoothers,
values of the parameter β and “retention” parameter δ l for the model problem IV.

The numerical results confirm the fact that for large values of the parameter β the
system loses the diagonal dominance property, as previously mentioned. It should
be noted that for those values, while Gauss-Seidel does not converge within the
iterations limit, the GenAbI smoother converges, although slowly, when high values
of the “retention” parameter δ l are used. Additionally, for this particular problem
PMIS significantly outperforms the other coarsening schemes as its convergence
behavior still improves as β increases up to a certain extent, while also retaining its
lower operator complexity in 3D problems.

It should be also mentioned that in order to handle effectively very ill-conditioned
or unstructured problems a new generic approximate inverse matrix technique,
based on sparsity patterns, has been recently proposed, [Filelis-Papadopoulos and
Gravvanis (2013a)]. Finally, we state that the new proposed scheme based on the
algebraic multigrid method in conjunction with the GenAbI algorithm can be ef-
ficiently used for solving non–linear initial/boundary value problems, [Gravvanis
(2002)].
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Table 6: Convergence factors and convergence behavior of the V-Cycle for
n=27000 and various coarsening techniques, smoothers and values of β and δ l
for model problem IV.

n=27000
β=1 β=25 β=50 β=100 β=200

Coarsening Smoother δ l q (its) q (its) q (its) q (its) q (its)
RS0 GenAbI 1 0.0411 (8) 0.0771 (8) 0.1983 (14) 0.5610 (45) *

CJLP 0.0760 (8) 0.0611 (8) 0.0796 (9) 0.2876 (19) *
PMIS 0.6097 (47) 0.3650 (23) 0.2124 (14) 0.4184 (27) *
RS0 GenAbI 2 0.0523 (8) 0.0689 (8) 0.1081 (10) 0.5525 (42) *

CLJP 0.0753 (8) 0.0519 (8) 0.0589 (8) 0.2867 (19) *
PMIS 0.5955 (45) 0.3056 (20) 0.1560 (12) 0.4084 (26) *
RS0 GenAbI 8 0.0514 (8) 0.0674 (8) 0.1053 (10) 0.5466 (40) *

CLJP 0.0727 (8) 0.0524 (8) 0.0630 (8) 0.2816 (19) *
PMIS 0.5878 (44) 0.2968 (19) 0.1624 (12) 0.4036 (26) *
RS0 GenAbI 20 0.0499 (8) 0.0568 (8) 0.1023 (10) 0.3491 (22) *

CLJP 0.0670 (8) 0.0507 (8) 0.0544 (8) 0.2629 (18) *
PMIS 0.5670 (41) 0.2720 (18) 0.1565 (12) 0.3758 (24) *
RS0 GenAbI 40 0.0294 (7) 0.0541 (8) 0.0705 (8) 0.1492 (12) 0.4074 (26)

CLJP 0.0607 (8) 0.0256 (7) 0.0332 (7) 0.0692 (8) 0.2798 (19)
PMIS 0.5537 (39) 0.2451 (17) 0.1035 (10) 0.1063 (10) 0.2943 (19)
RS0 GenAbI 80 0.0277 (7) 0.0492 (8) 0.0589 (8) 0.0635 (8) 0.2504 (18)

CLJP 0.0601 (8) 0.0265 (7) 0.0337 (7) 0.0404 (8) 0.1369 (12)
PMIS 0.5348 (37) 0.2439 (17) 0.0992 (10) 0.0706 (8) 0.1660 (13)
RS0 GS - 0.0442 (8) 0.0545 (8) 0.0871 (9) 0.2516 (17) *

CLJP 0.0678 (8) 0.0383 (8) 0.0559 (8) 0.2093 (14) *
PMIS 0.5795 (43) 0.2974 (19) 0.1459 (12) 0.2994 (20) *

* The convergence factor cannot be obtained since maximum number of iterations was exceeded.
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Table 7: Convergence factors and convergence behavior of the V-Cycle for
n=64000 and various coarsening techniques, smoothers and values of β and δ l
for model problem IV.

n=64000
β=1 β=25 β=50 β=100 β=200

Coarsening Smoother δ l q (its) q (its) q (its) q (its) q (its)
RS0 GenAbI 1 0.0460 (8) 0.0623 (8) 0.1467 (11) 0.7928(102) *

CJLP 0.0913 (9) 0.0604 (8) 0.0750 (8) 0.1178 (10) *
PMIS 0.6701 (58) 0.4248 (27) 0.2887 (19) 0.2169 (16) *
RS0 GenAbI 2 0.0549 (8) 0.0690 (8) 0.1166 (10) 0.4634 (30) *

CLJP 0.0902 (9) 0.0544 (8) 0.0613 (8) 0.1205 (10) *
PMIS 0.6431 (53) 0.3807 (24) 0.2202 (16) 0.2135 (16) *
RS0 GenAbI 8 0.0525 (8) 0.0665 (8) 0.1112 (10) 0.4505 (29) *

CLJP 0.0882 (9) 0.0534 (8) 0.0628 (8) 0.0965 (9) *
PMIS 0.6455 (53) 0.3754 (24) 0.2225 (16) 0.2074 (14) *
RS0 GenAbI 20 0.0512 (8) 0.0607 (8) 0.0992 (9) 0.4160 (28) *

CLJP 0.0833 (9) 0.0534 (8) 0.0597 (8) 0.0862 (9) *
PMIS 0.6282 (50) 0.3592 (23) 0.2136 (14) 0.1902 (14) *
RS0 GenAbI 40 0.0494 (8) 0.0551 (8) 0.0947 (9) 0.2351 (17) *

CLJP 0.0806 (9) 0.0530 (8) 0.0552 (8) 0.0850 (9) *
PMIS 0.6164 (48) 0.3367 (22) 0.2048 (14) 0.1530 (12) *
RS0 GenAbI 80 0.0304 (7) 0.0498 (8) 0.0757 (8) 0.1244 (11) 0.1788 (14)

CLJP 0.0737 (8) 0.0300 (7) 0.0329 (7) 0.0370 (7) 0.1167 (11)
PMIS 0.6161 (48) 0.3269 (21) 0.1588 (12) 0.1030 (10) 0.1456 (12)
RS0 GS - 0.0601 (8) 0.0634 (8) 0.1186 (10) 0.1749 (13) *

CLJP 0.0848 (9) 0.0417 (8) 0.0511 (8) 0.1011 (10) *
PMIS 0.6517 (54) 0.4011 (26) 0.1988 (14) 0.1899 (13) *

* The convergence factor cannot be obtained since maximum number of iterations was exceeded.

5 Conclusion

The new proposed class of generic approximate banded inverse matrices as a s-
moother for the AMG method results in an efficient solver for large sparse linear
systems. The smoother was proven to be more effective than classical smoother-
s, such as Gauss-Seidel. It should be mentioned that the AMG method, based on
the V-cycle in conjunction with the class of GenAbI matrices can be efficiently
parallelized, [Gravvanis, Filelis-Papadopoulos and Matskanidis (2013)], and com-
bined with parallel coarsening schemes, such as CLJP and PMIS. Further research
is carried out on the parallelization issues of the algebraic multigrid method in
conjunction with approximate inverses. Finally, the algebraic multigrid method in
conjunction with of approximate inverse matrices can be efficiently used for solv-
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ing complex engineering problems modelled by highly nonlinear partial differential
equations such as Bratu problem and fluid mechanics problems, etc.
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