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A Universal Model-Independent Algorithm for Structural
Damage Localization
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Abstract: Although the model-independent damage localization algorithms have
been extensively developed in recent years, the theoretical relationship between
these damage indicators and the definition of damage is not clear. Moreover the
existing damage localization methods are usually dependent on the boundary con-
ditions and the type of structure. In view of this, the paper presents a universal
model-independent algorithm for structural damage localization. To this end, the
explicit relationship between the damage and damage-induced displacement varia-
tion is firstly clarified by using the well-known Sherman-Morrison and Woodbury
formulas. A theorem is then presented for structural damage localization. Accord-
ing to the theorem, the universal model-independent damage localization algorithm
has been concluded and verified in some common structures. Presented in this ar-
ticle also can be seen as a theoretical proof of the existing non model methods for
structural damage localization. It has been shown that the presented algorithm may
be useful in the long term health monitoring and the damage localization.

Keywords: damage localization, structural displacement variation, Sherman-Mo
rrison-Woodbury formulas, stiffness matrix, spectral decomposition.

1 Introduction

The detection of structural damage is a vital part of the monitoring and servicing
of structural systems during their lifetime. Structural damage in normal service
may include corrosion, fatigue, and aging, or it may be caused by impact loads,
earthquakes, and wind. The presence of damages may reduce the performance of
a structure, such as decreasing the service life, or even progressing to catastrophic
failure. They may also increase the cost of maintenance or repairs. It is very bene-
ficial if the damage can be detected before some critical conditions occur. During
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the last decades, a significant amount of research has been conducted on structural
damage detection based on the changes in measured static/dynamic response. The
basic idea of this technique is that structural response parameters are functions of
structural physical properties (mass, damping, and stiffness). Therefore, changes
in the physical properties will cause changes in the response parameters. Recent
surveys on the technical literature show that extensive efforts have been developed
to find reliable and efficient numerical and experimental models to identify dam-
age in structure [Mottershead and Friswell (1993, 1995); Zou, Tong and Steven
(2000); Chang (1997); Salawu (1997); Modak, Kundra and Nakra (2002); Alvandi
and Cremona (2006); Prinaris, Alampalli and Ettouney (2008); Kanev, Weber and
Verhaegen (2007); Yang and Liu (2007); Rainieri, Fabbrocino and Cosenza (2011);
Lam and Yin (2011)].

Based on the extent of prior knowledge required, two main types of damage detec-
tion techniques can be discriminated: model-dependent and model-independent,
also called parametric and nonparametric, respectively [Araujo dos Santos, Mota
Soares and Mota Soares (2005)]. The model-dependent methods [Yu, Cheng and
Yam (2007); Jiang, Tang and Wang (2007); Ashokkumar and Lyengar (2011); Yang
and Wang (2010); Zhu, Li and He (2011); Perera and Ruiz (2008); Yang and Liu
(2009); Weber and Paultre (2010); Adewuyi and Wu (2011); Limongelli (2010);
Lima, Faria and Rade (2010); Lu and Law (2010); Lu, Huang and Liu (2011);
Wong, Huang and Xiong (2011); Yang (2011); Yang and Sun (2011); Yang, Liu
and Li (2013a,2013b)] identify damage by correlating an analytical model, which
is usually based on the finite element theory, with test modal data of the damaged
structure. Comparisons of the updated model to the original one provide an indica-
tion of damage and further information on the damage location and its severity. It is
well known that model-based methods are computationally intensive and require a
high quality finite element model (FEM) that could accurately predict the behavior
of the intact structure. However, the precise FEM is often difficult to achieve in
engineering practice for the simplified assumptions in the construction of the FEM,
which makes that the correct results might be missed.

Model-independent damage detection methods are relatively simple and straight-
forward since these methods do not need a detailed model of the structure. The
changes of response parameters between the intact and damaged states of the struc-
ture are directly used, or correlated with other relevant information, to develop
the damage indicators for localizing damage in the structure. Pandey A.K. and
Biswas M. (1994, 1995) propose to use the column-wise maximum absolute dif-
ference of flexibility matrices as an indicator for damage localization. Simulated
and measured flexibilities for steel beams with different support conditions illus-
trate that an ad hoc interpretation of this indicator is necessary for different types
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of structures and different types of boundary conditions. Toksoy T. and Aktan A.E.
(1994) used dynamically measured flexibilities for damage localization of a rein-
forced concrete bridge which is subject to progressive damage tests. They observe
that flexibility is a very sensitive damage indicator as opposed to eigenfrequencies
and damping ratios. Aktan A.E., Lee K.L., and Chuntavan C. (1994) find a very
good match between the measured deflection of a steel stringer bridge under truck
loading and the corresponding deflection calculated using dynamically measured
flexibility. Furthermore, damage localization on a steel truss highway that was
subjected to a progressive damage test by comparing the combination of the dy-
namically measured flexibility with a uniform load and a point load, was reported
to be successful. Zhang Z. and Aktan A.E. (1998) studied the modal flexibility and
its derivative ULS (uniform load surface) in structural identification. Wu D. and
Law S.S. (2004, 2005) applied the ULS curvature to plate structures for damage
localization. It is found that the ULS curvature is sensitive to the presence of local
damages, even with truncated, incomplete, and noisy measurements. Wang J. and
Qiao P.Z. (2007) used the ULS method to localize damage in a composite beam. A
simplified gapped-smoothing method using a fourth order polynomial is considered
to fit the ULS curve of a damaged beam, and the difference between the polynomial
and ULS curves is squared to obtain the damage index. Choi I.Y., Lee J.S., Choi E.
(2004) proposed an elastic damage load theorem for damage localization in stati-
cally determinate beams. They observe that the shapes of displacements variation
before and after damage are consistent with the influence line of the moment of
conjugate beam at a point where damage occurs. A comparative study of the dam-
age localization methods can be found in references [Fan and Qiao (2011); Hamze,
Gueguen and Roux (2012)].

It is well known that the coefficients of the ith column of the flexibility matrix rep-
resent the displacement shape of the structure with a unit load applied at the ith
degree of freedom (DOF), and that the ULS obtained by the sum of all columns of
the flexibility matrix represents the displacement shape of the structure if a unit load
is applied at each DOF. Thus, all the above-mentioned methods can be attributed
to the type of displacement-based damage localization techniques. Although the
displacement-based localization algorithms have been extensively developed, the
theoretical relationship between these damage indicators and the definition of dam-
age is not clear. In other words, these methods lack a solid theoretical and physical
base. The first objective of this paper is to clarify the explicit relationship between
the damage and damage-induced displacement variation by using the well-known
Sherman-Morrison and Woodbury formulas. The second objective of this paper is
to propose a universal model-independent algorithm for structural damage localiza-
tion. Presented in this article also can be seen as a theoretical proof of the existing
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damage localization methods. The paper begins by introducing the SMW formulas
and relating them to the damage localization problem. A theorem is then presented
for structural damage localization. According to the theorem, the universal damage
localization algorithm has been concluded and verified in some common structures.
It has been founded that the proposed method has a solid theoretical and physical
base and can be used in damage localization for any structural type.

2 Theoretical development

2.1 Sherman-Morrison-Woodbury formulas

The SMW formulas have existed for over 60 years. An excellent historical survey
of the origin of the SMW formulas is available in the literature (Hager W.W., 1989).
The Sherman-Morrison formula gives the change in the inverse of a matrix K due
to a change ∆K, which is of rank one and therefore may be written as ∆K = xyT .
The formula may be stated as

(K + xyT )−1 = K−1−K−1x(1+ yT K−1x)−1yT K−1 (1)

The Woodbury formula, which gives the change in the inverse of a matrix K due to
a rank-m change, ∆K, is

(K +XY T )−1 = K−1−K−1X(I +Y T K−1X)−1Y T K−1 (2)

In recent years, the SMW formulas have been successfully applied in many areas,
such as electrical networks, least squares, asymptotic analysis, sensitivity in linear
programming, quasi-Newton methods, structural reanalysis, etc. In the following
discussion, we will use the SMW formulas to solve the problem of structural dam-
age localization.

2.2 Implementation for structural damage localization

In applications to structural problems, the SMW formulas are typically applied to
update the solution of a system of equations for the displacement field u obtained
from a finite element model rather than to update an inverse. For an intact structure,
the analytical static model can be expressed as

Ku = l (3)

where K is the (n×n) global stiffness matrix of the undamaged structure, and u is
the displacement vector under the applied static load vector l. Rewriting equation
(3), one has

u = K−1l, (4a)
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or u = Fl (4b)

in which F is the flexibility matrix of the undamaged structure, i.e., F = K−1. As is
well known, structural damage reduces the stiffness and increases the flexibility of
structures. Let ∆F and ∆K be the exact perturbation matrices that reflect the nature
of the structural damage. Then the undamaged model matrices and the damaged
model matrices are related as follows:

Fd = F +∆F (5)

Kd = K−∆K (6)

Then the displacement vector ud for the damaged structure can be obtained by

ud = K−1
d l, (7a)

or ud = Fd l (7b)

Therefore the displacement variation (DV) ∆u can be obtained as

∆u = ud−u = [(K−∆K)−1−K−1]l, (8a)

or ∆u = ∆F · l (8b)

In structural finite element model, the global stiffness matrix K of the intact struc-
ture is a sum of the elemental stiffness matrices, i.e.

K =
N

∑
i=1

Ki =
N

∑
i=1

TiKe
i T T

i (9)

where Ki is the ith (n× n) elemental stiffness matrix in global co-ordinates, Ke
i is

the ith (ne×ne) elemental stiffness matrix in local co-ordinates (ne is the number of
elemental DOFs), Ti is the transformation matrix from elemental degree of freedom
(DOF) to global DOF, N is the total number of elements. Note that the elemental
stiffness matrix Ke

i is commonly rank deficient and can be decomposed [Doebling,
Peterson and Alvin (1998); Bathe (1996)], using its non-zero eigenvalues and the
corresponding eigenvectors, as

Ke
i = [η ]i [p]i [η ]Ti (10a)

[p]i = diag(p1
i , · · · , pr

i ) (10b)
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where [p]i is the diagonal matrix consist of the non-zero eigenvalues (p1
i , · · · pr

i ) of
Ke

i (r is the rank of Ke
i ), and [η ]i is the corresponding eigenvector matrix in local

co-ordinates. Substituting equation (10) into (9), one has

K =
N

∑
i=1

(Ti [η ]i) [p]i([η ]Ti T T
i ) (11)

Equation (11) can be rewritten as

K = APAT (12a)

A = [T1 [η ]1 ,T2 [η ]2 , · · · ,TN [η ]N ] (12b)

P = diag([p]1 , [p]2 , · · · , [p]N) (12c)

where the sparse matrix A is called the stiffness topology matrix, and Ti [η ]i is
essentially the eigenvector matrix of the elemental stiffness matrix Ki in global co-
ordinates, that is

Ki = (Ti [η ]i) [p]i (Ti [η ]i)
T , (i = 1∼ N) (13)

Physically, the columns of Ti [η ]i reflect the connectivity between DOFs, while the
diagonal matrix [p]i is a function purely of the material properties such as the elastic
modulus, the cross-sectional area, the moment of inertia, etc. Therefore the matrix
A is independent of P and unchanged as damage occurs. As a result, the stiffness
matrix perturbation ∆K can also be obtained in the form of equation (12) as

∆K = A∆PAT (14a)

P = diag([p]1 , [p]2 , · · · , [p]N) (14b)

[∆p]i = diag((α1
i p1

i ), · · · ,(αr
i pr

i )) (14c)

where the coefficient α
j

i (0≤α
j

i ≤ 1,i= 1∼N, j = 1∼ r) is defined as the elemental
damage parameter. The value of α

j
i is 0 if the ith element is undamaged and α

j
i is

1 or less than 1 if the corresponding element is completely or partially damaged.

The following discussion will be divided into two cases. For the first case of rank-1
perturbation ∆K, equation (14a) reduces to

∆K = ai(αi pi)aT
i (15)

where αi(αi 6= 0),pi, and ai are the damage parameter, the eigenvalue, and the
eigenvector of the single damaged element, respectively. Substituting equation (15)
into equation (8a), one has

∆u = [(K−ai(αi pi)aT
i )
−1−K−1]l (16)
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Let x = ai and y = ai(αi pi). Then equation (16) can be expanded by the Sherman-
Morrison formula (equation (1)) to get the following equation for the displacement
change:

∆u = (K−1ai)(1+(αi pi)aT
i K−1ai)

−1(αi pi)aT
i K−1l (17)

Equation (17) can be rewritten as

∆u = δdi (18a)

di = K−1ai (18b)

δ = (1+(αi pi)aT
i K−1ai)

−1(αi pi)aT
i K−1l (18c)

The implication of equation (18) is very important. In equation (18b), we define
the vector di as the characteristic displacement (CD) by considering ai as a static
load vector (ai can be renamed as the characteristic force (CF) associated with the
damaged element). That is to say, the characteristic displacement (di) is obtained
by applying the corresponding characteristic force (ai) to the undamaged structure.
It has been shown from equation (18a) that structural displacement variation (∆u)
is proportional to the characteristic displacement (di). In other words, the shape of
displacement variation in a structure due to damage equals to the shape of charac-
teristic displacement associated with the unique damaged element.

For the second case of rank>1 perturbation ∆K, equation (14a) reduces to

∆K = A∗∆P∗(A∗)T (19)

where A∗ and ∆P∗ are associated with the damaged elements. Substituting equation
(19) into equation (8a) yields

∆u = [(K−A∗∆P∗(A∗)T )−1−K−1]l (20)

Let X = A∗ and Y = A∗∆P∗. Then equation (20) can be expanded by the Woodbury
formula (equation (2)) to get the following equation for the displacement change:

∆u = (K−1A∗)(I +∆P∗(A∗)T K−1A∗)−1
∆P∗(A∗)T K−1l (21)

Equation (21) can be rewritten as

∆u = Dζ (22a)

D = K−1A∗ (22b)

ζ = (I +∆P∗(A∗)T K−1A∗)−1
∆P∗(A∗)T K−1l (22c)
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As before, considering A∗ as a set of load vectors, the shape of each column vec-
tor in D represents the characteristic displacement corresponding to the damaged
element. According to the theory of linear algebra [Herstein and Winter (1988);
Datta (1995)], equation (22a) is valid only if the vector ∆u is a linear combination
of the columns of D. That is to say, the displacement variation in a structure due to
damage is a linear combination of the characteristic displacements associated with
the damaged elements.

According to the above discussion, we have proved the following two propositions
using the SMW formulas: (1) For the rank-1 damage, the displacement variation in
a structure under an arbitrary load is proportional to the characteristic displacement
corresponding to the unique damaged element; (2) For the rank>1 damage, the dis-
placement variation in a structure under an arbitrary load is a linear combination of
the characteristic displacements associated with the damaged elements. It is noted
that the rank-1 damage case can be seen as a special case of the rank>1 damage
case. In engineering practice, the displacement variation ∆u can be obtained by a
static load-deflection test or the dynamically flexibility test (i.e., the measured flex-
ibility change is multiplied with a virtual force vector using equation (10b)). As a
result, by comparing the geometric features of the displacement variation with that
of the characteristic displacement, structural damage localization is possible. In
addition, the measured data are usually incomplete in practice because of the lim-
ited number of sensors, and the rotational DOFs are difficult to measure. Therefore
only the characteristic displacement associated with the partial transnational DOFs
will be studied in the following discussion.

2.3 The physical features of the characteristic force and the corresponding
characteristic displacement

As stated previously, the characteristic displacement is obtained by applying the
corresponding characteristic force to the undamaged structure, and the characteris-
tic forces of each element are essentially the eigenvectors of each elemental stiff-
ness matrix. Without loss of generality, the beam element is used in the following
to investigate the physical features of the characteristic force and the corresponding
characteristic displacement.

Consider a two-node Bernoulli-Euler plane beam element with four DOFs (shown
in Fig.1), the node displacement vector and the elemental stiffness matrix in local
co-ordinates are given as

ue = [v1,θ1,v2,θ2]
T (23)
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Figure 1: The two-node Bernoulli-Euler plane beam element with four DOFs.

Ke =
EI
L3


12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2

 (24)

where E is the modulus of elasticity, I is the moment of inertia, and L is the length of
the beam element. Then the spectral decomposition of element stiffness Ke yields
the following non-zero eigenvalues and the corresponding eigenvectors as

[p] =

[
6EI(L2+4)

L3
2EI

L

]
(25a)

[η ] =



√
2√

L2+4
0

L√
2
√

L2+4
−1√

2
−
√

2√
L2+4

0
L√

2
√

L2+4
1√
2

 (25b)

Apparently, the diagonal matrix [p] in (25a) is a function purely of the material
properties (E and I). Thus the matrix [p] is changed, while the matrix [η ] is un-
changed as structural damage occurs. In equation (25b), the two column vectors
in [η ] are the characteristic forces of the beam element in local co-ordinates. For
convenience, the two load configurations associated with the characteristic forces
in local co-ordinates are shown in Fig.2. It is very important to note that both
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load configurations shown in Fig.2 are the self-equilibrating force systems. Us-
ing other types of finite elements, we will get the same conclusion. When this
self-equilibrating characteristic force was applied to the structure (see Fig.3), the
internal force in most parts of the structure will be zero except the element associ-
ated with this characteristic force. In a word, it can be concluded from figures 2 and
3 that: (1) the characteristic force is a self-equilibrating force; (2) the characteristic
force acts only on its own element not on the rest of the structure.
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Figure 2: (a) Load configuration of the characteristic force 1 for the plane beam
element; (b) Load configuration of the characteristic force 2 for the plane beam
element.
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 Figure 3: The internal force distribution in the structure under the action of the
characteristic force.  
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Fig.4  (a) The characteristic displacement (CD) for the simple supported beam under the 
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Figure 4: (a) The characteristic displacement (CD) for the simple supported beam
under the characteristic force 1 (CF1); (b) The characteristic displacement (CD) for
the simple supported beam under the characteristic force 2 (CF2).
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Fig.5  (a) The characteristic displacement (CD) for the cantilever beam under the 
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Figure 5: (a) The characteristic displacement (CD) for the cantilever beam under
the characteristic force 1 (CF1); (b) The characteristic displacement (CD) for the
cantilever beam under the characteristic force 2 (CF2).
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Figure 6: The displacement variation (DV) due to damage for the simple supported
beam under a point load.
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 Figure 7: The displacement variation (DV) due to damage for the cantilever beam
under a point load.
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As a result, for the statically determinate structure, only the element associated with
the characteristic force is deformed, whereas the remaining part of the structure is
not deformed and only has rigid body motion. In other words, the displacement
of the statically determinate structure under the characteristic force will consist of
several parts of the rigid displacement except the segment associated with this char-
acteristic force. For example, figures 4 and 5 presented the characteristic displace-
ment shapes for the simple supported beam and the cantilever beam, respectively.
One can see from figures 4 and 5 that the characteristic displacements for this type
of statically determine beam consist of two line segments. As discussed previ-
ously, structural displacement variation due to damage is a linear combination of
the characteristic displacements associated with the damaged elements. Therefore,
the displacement variation of the statically determinate structure under an arbitrary
load will consist of several parts of the rigid displacement except the damaged seg-
ments. For example, the displacement variations due to damage for the simple
supported beam and the cantilever beam under a point load are shown in figures 6
and 7, respectively. From figure 6, the displacement variation of the simple sup-
ported beam is zero at the supports and increases linearly as one move towards the
mid-span of the beam. For each damage location, the change in the displacement
reaches its maximum at the damaged element. Hence, for the simply supported
beam, the region in which the displacement variation is maximum is the damaged
region. From figure 7, the displacement variation of the cantilever beam is zero
between the clamped end and the damaged element. As one moves away from the
damage location towards the free end of the cantilever, the change in displacement
increases linearly. Thus, for a cantilever beam, the point from which the displace-
ment variation starts increasing linearly is the location of damage. Similar results
have been observed in references [32], [33], and [40]. Additionally, it is obvious
that the curvature of structural displacement variation, that is, the second deriva-
tives of the displacement variation, should be zero except the damaged element for
these statically determinate beams (shown in figure 8). In other words, the varia-
tion of the rotational angle due to damage is changed at the damage location and
is constant along the remaining part of the structure. Hence, for these statically
determinate beams, the region in which the curvature of structural displacement
variation is peak value is the damaged region. Similar results have been observed
in references [37-39], and [41-42].

For the statically indeterminate structure, the internal force in some parts of the
structure under the characteristic force will be slightly greater than zero due to the
limitation of redundant constraints. As a result, the characteristic displacement of
the statically indeterminate structure may be consisting of the deformational dis-
placements and the rigid displacements. Accordingly, the displacement variation
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 Figure 8: (a) The displacement variation curvature (DVC) due to damage for the
simple supported beam; (b) The displacement variation curvature (DVC) due to
damage for the cantilever beam.

of the statically indeterminate structure under an arbitrary load also might consist
of the deformational displacements and the rigid displacements. For example, fig-
ure 9 presented the characteristic displacement shapes for the fixed-fixed beam.
Then figure 10 showed the displacement variations due to damage for the fixed-
fixed beam under a point load. It can be found from figure 9 that the characteristic
displacement of the fixed-fixed beam consists of several curve segments. Corre-
spondingly, the displacement variation due to damage for the fixed-fixed beam in
figure 10 also consists of several curve segments. The curve segment in the charac-
teristic displacement is attributed to the limitation of the fixed end in this statically
indeterminate beam. It is noteworthy from figures 9 and 10 that the curvature of the
curve segment gradually decreases as one move away from the fixed end towards
the damage location. It can be explained by the decrease of the constraint effect of
the fixed end as one move away from the fixed end towards the damage location.
That is to say, the curve segments in figures 9 and 10 can be approximated as the
line segments except the region near the restrained end. The curvature distribution
of the displacement variations for the fixed-fixed beam is presented in figure 11.
Therefore, most parts of the displacement variation for the statically indeterminate
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Figure 9: (a) The characteristic displacement (CD) for the fixed-fixed beam under
the characteristic force 1 (CF1); (b) The characteristic displacement (CD) for the
fixed-fixed beam under the characteristic force 2 (CF2).

structure can be approximately seen as the rigid displacements except the damaged
locations and the region near the restrained end.

According to the above discussion, the following important theorem for displacement-
based damage localization has been derived as:

Theorem. (1) For the statically determinate structure under an arbitrary load, the
displacement variation in a structure due to damage will consist of several parts of
the rigid displacement except the damaged locations. (2) For the statically indeter-
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Figure 10: The displacement variation (DV) due to damage for the fixed-fixed beam
under a point load.
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 Figure 11: The displacement variation curvature (DVC) due to damage for the
fixed-fixed beam.

minate structure under an arbitrary load, the displacement variation in a structure
due to damage may be consisting of the deformational displacements and the rigid
displacements. Moreover, most parts of the deformational displacement variation
can be approximately seen as the rigid displacements except the damaged locations
and the region near the restrained end.

3 Applications of the Theorem: a universal damage localization algorithm

The above theorem is in principle applicable to any structural type. From the theo-
rem, the following universal algorithm for displacement-based damage localization
can be concluded that:

(1) For the statically determinate structure, the turning points between each segment
of the rigid displacement in the shape of the displacement variation are the locations
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of damage;

(2) For the statically indeterminate structure, the turning points between each seg-
ment of the approximate rigid displacement (or the rigid displacement) in the shape
of the displacement variation are the locations of damage;

(3) From the point of view of the curvature, the region in which the curvature of
structural displacement variation is peak value is the damaged region.

As stated previously, figures 6,7,8,10 and 11 support the above conclusions. In this
section, a single storey frame and a three-span continuous beam are used to further
illustrate the applications of the presented universal method in structural damage
localization.

3.1 A single storey frame

The first example is a single storey frame as shown in figure 12. It is noted that
this example is a statically determinate structure. Figure 13 showed the displace-
ment variations due to damage for the frame under a point load. It can be found
from figure 13(a) that the shape of displacement variations due to damage at beam
BC consists of two segments of the rigid displacement (AB

′
E and EC

′
D
′
) and the

turning point E is the damage location. Similarly, figure 13(b) shows that the shape
of displacement variations due to damage at column AB consists of two segments
of the rigid displacement (AE and EB

′
C
′
D
′
) and the turning point E is the damage

location.
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Figure 12: A single storey frame.
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 Figure 13: (a) The displacement variation (DV: —-) due to damage at beam BC
for the frame under a point load; (b) The displacement variation (DV: —-) due to
damage at column AB for the frame under a point load.
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3.2 A three-span continuous beam

The second example is a three-span continuous beam as shown in figure 14. Note
that this example is a statically indeterminate structure. The basic parameters of
the structure are as follows: Young’s modulus E = 200GPa, density ρ = 7.8×
103Kg/m3, moment of inertia I = 1.0416× 10−6m4, and cross-sectional area A =
0.0025m2. The beam is modeled using 36 elements giving 70 DOFs (33 transla-
tional, 37 rotational) and the length of each element is L = 0.1m. Three load cases
are given in figures 14(a)-(c), respectively. Damage in the beam was simulated as a
reduction in the Young’s modulus of individual elements. Three damage cases are
studied in the example. Case 1: element 5 is damaged with a stiffness loss of 20%.
Case 2: element 17 is damaged with a stiffness loss of 20%. Case 3: element 32 is
damaged with a stiffness loss of 20%. Figures 15(a)-(c) showed the displacement
variation due to damage at element 5 under the three load cases, respectively. Fig-
ures 16 and 17 presented the results of damage at element 17 and 32, respectively.
From figures 15-17, the following observations are made: (1) the variation of the
displacement has the largest value at the damage location independent of the loca-
tion of the load; (2) the left and right sides of the damage location in figures 15-17
are line segments or approximate line segments. These observations supported the
universal technique again.
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 Figure 14: A three-span continuous beam.
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Figure 15: The displacement variation (DV) due to damage at element 5 for the
three-span continuous beam: (a) load case 1; (b) load case 2; (c) load case 3.
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Figure 16: The displacement variation (DV) due to damage at element 17 for the
three-span continuous beam: (a) load case 1; (b) load case 2; (c) load case 3.
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Figure 17: The displacement variation (DV) due to damage at element 32 for the
three-span continuous beam: (a) load case 1; (b) load case 2; (c) load case 3.
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4 Conclusions

Using the well-known SMW formulas, a universal model-independent algorithm is
presented in this paper for structural damage localization. The proposed method
has a solid theoretical and physical base and can be used in damage localization for
any structural type. Some common structures are used to illustrate the applications
of the presented technique in structural damage localization. It has been shown that
the presented algorithm is in principle generally applicable and useful for structural
damage localization.
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