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Nonlinear Bending and Thermal Post-Buckling Analysis of
FGM Beams Resting on Nonlinear Elastic Foundations
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Abstract: A model of FGM beams resting on nonlinear elastic foundations is
put forward by physical neutral surface and high-order shear deformation theory.
Material properties are assumed to be temperature dependent and von Kármán
strain-displacement relationships are adopted. Nonlinear bending and thermal post-
buckling are given by multi-term Ritz method, and influences played by different
supported boundaries, thermal environmental conditions, different elastic founda-
tions, and volume fraction index are discussed in detail. It is worth noting that the
effect of nonlinear elastic foundation increases with increasing deflection.

Keywords: Functionally graded materials, Physical neutral surface, Nonlinear
elastic foundations, Nonlinear bending, Thermal post-buckling.

1 Introduction

Functionally graded materials (FGMs) are a class of novel materials in which prop-
erties vary continuously in a specific direction. To withstand the high-temperature
effects, generally FGM structures made of ceramic and metal constituents are ad-
dressed. Consequently, investigations on behaviors of FGM structures are identi-
fied as an interesting field of study in recent years.

Many investigations on the linear bending and buckling of FGM or laminated or
homogeneous beams can be seen in [Sankar (2001); Venkataraman and Sankar
(2003); Zhong and Yu (2007); Ying et al. (2008); Giunta et al. (2010); Aminbaghai
et al. (2012); Giunta et al. (2013); Dong et al. (2013); Dong et al. (2014); Elgohary
et al. (2014)]. And lots of studies have been also made on the nonlinear bending and
post-buckling of FGM beams based on Euler-Bernoulli beam theory, Timoshenko
beam theory and higher order shear deformation beam theory. However, relatively
few have been made on the nonlinear analysis of FGM beams resting on elastic
foundations. Among those, Zhang (2013, 2014) put forward a model of the FGM
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beams based on physical neutral surface and high order shear deformation theory,
and analyzed nonlinear bending, thermal post-buckling and nonlinear vibration be-
haviors by Ritz method. Ma and Lee (2011) derived governing equations for both
the static behavior and the dynamic response of FGM beams subjected to uniform
in-plane thermal loading, based on the physical neutral surface and the first order
shear deformation beam theory, then Ma and Lee (2012) gave exact solutions for
nonlinear static responses of a shear deformable FGM beam under an in-plane ther-
mal loading. Li et al. (2006) studied thermal post-buckling of functionally graded
material Timoshenko beams. Almeida et al. (2011) presented geometric nonlinear
analysis formulation for beams of functionally graded cross-sections by means of
a total Lagrangian formulation. Rahimi and Davoodinik (2010) discussed the large
deflection of a functionally graded cantilever beam under inclined end loading by
fully accounting for geometric nonlinearities using analytical and Adomian decom-
position methods, then Davoodinik and Rahimi (2011) extended their works to a
flexible tapered functionally graded cantilever beam. Rahimi et al. (2013) investi-
gated the post-buckling behavior of functionally graded beams by means of an exact
solution method. Zhao et al. (2007) derived the non-linear differential equations
of post-buckling for FGM rod subjected to thermal load. They considered rods
with both ends pinned and used the shooting method to solve the equations. Fu
et al. (2012) discussed nonlinear analysis of buckling, free vibration and dynamic
stability for the piezoelectric functionally graded beams in thermal environment.
Ke et al. (2009) studied post-buckling behavior of functionally graded material
beams including an edge crack effect based on Timoshenko beam theory and von-
Kármán’s strain–displacement relations. They applied the Ritz method to obtain
the non-linear governing equations and used the Newton-Raphson method to ob-
tain the postbuckling load-end shortening curves and post-buckling deflection-end
shortening curves. Anandrao et al. (2010) investigated the buckling and thermal
post-buckling behavior of uniform slender FGM beams. The von-Kármán strain–
displacement relationship is used to obtain the equations. Single-term Ritz method
and finite elements method are applied to obtain the response of the beam. Then
Anandrao et al. (2012) studied large amplitude free vibration and thermal post-
buckling of shear flexible FGM beams using finite element formulation based on
first order Timoshenko beam theory. Ansari et al. (2013) investigated thermal
post-buckling characteristics of FGM microbeams undergoing thermal loads based
on the modified strain gradient theory. Shegokar and Lal (2013) provided the
stochastic nonlinear bending response of FGM beam with surface bonded piezo-
electric layers subjected to thermo-electro-mechanical loadings with uncertain ma-
terial properties. Shen and Wang (2014) dealt with the large amplitude vibration,
nonlinear bending and thermal postbuckling of FGM beams resting on an elastic
foundation in thermal environments. Fallah and Aghdam (2011, 2012) investigated
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nonlinear free vibration and post-buckling analysis of functionally graded beams on
nonlinear elastic foundation. Esfahani et al. (2013) examined thermal buckling and
post-buckling analysis of FGM Timoshenko beams resting on a non-linear elastic
foundation. Ghiasian et al. (2013) studied static and dynamic buckling of an FGM
beam resting on a non-linear elastic foundation subjected to uniform temperature
rise loading and uniform compression.

The present paper extends the previous works [Zhang (2013); Zhang (2014)] to
nonlinear bending and thermal post-buckling analysis of FGM beams resting on
nonlinear elastic foundations based on physical neutral surface and high order shear
deformation theory. Temperature dependent material properties and von Kármán
strain-displacement relationship are taken into consideration. The material proper-
ties of FGMs are assumed to be graded in thickness direction according to a volume
fraction power law distribution and are expressed as a nonlinear function of tem-
perature. Approximate solutions of FGM beams are obtained by Ritz method.

2 Temperature dependent material properties of FGM beams

Figure 1: Geometry and coordinates of a FGM beam resting on nonlinear elastic
foundations.

Consider a FGM beam (thickness h and length Lx) with rectangular cross-section,
which is made from a mixture of metals and ceramics. The coordinate system is
illustrated in Fig. 1. It can be assumed that the effective material properties P of
FGMs, such as Young’s modulus E, Poisson’s ratio ν , thermal conductivity κ and
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thermal expansion coefficient α , can be expressed as

P = PcVc +PmVm (1)

in which Vm and Vc are the metal and ceramic volume fractions and are related
by Vm +Vc = 1, Pm and Pc denote the temperature-dependent properties of metal
and ceramic beam, respectively, and may be expressed as a nonlinear function of
temperature [Touloukian (1967)]

P = P0(P−1T−1 +1+P1T +P2T 2 +P3T 3) (2)

in which T = T0+∆T and T0=300 K (room temperature), P−1, P0, P1, P2 and P3 are
the coefficients of temperature T (K) and are unique to the constituent materials.

3 Modeling of FGM beams resting on nonlinear elastic foundations based on
physical neutral surface and high order shear deformation theory

As is customary, the foundation is assumed to be a compliant foundation, meaning
no part of the beam lifts off the foundation in the deformed region. The load-
displacement relationship of the foundation is assumed to be p=K1w−K2d2w/dx2

+K3w3, where p is the force per unit area, K1 is the Winkler foundation stiffness,
K2 is a constant showing the effect of the shear interactions of the vertical elements
and K3 is nonlinear elastic foundation coefficients.

According to model of FGM beams [Zhang (2013); Zhang (2014)] based on physi-
cal neutral surface and high order shear deformation theory, the displacements, the
strains and the stresses have the same form as the previous works [Zhang (2013);
Zhang (2014)], see Appendix A.1-8. For the sake of brevity, the deducing process
of the formulae is omitted, and the governing equations can be derived according
to energy variational principle.
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And if the boundaries have no in-plane displacements on the geometric middle
plane, i.e. prevented from moving in the x-direction, Nx can then be written in
integral form as
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All symbols used in Eq. (3) are defined by Zhang (2013, 2014), see Appendix A.9.
In the following analysis, two cases of boundaries will be considered.

w = 0, Mx =−z0Nx, Px =−c0Nx, (for immovable simply supported ends) (4a)

w =
dw
dx

= ψx = 0, (for immovable clamped ends) (4b)

4 Ritz method for approximate solutions of nonlinear problems of FGM
beams

Ritz method is adopted in this section to obtain approximate solutions of FGM
beams, and in symmetrical problems about the beams with immovable simply sup-
ported ends, it can be assumed that

w =
M

∑
i=1,2···

ai sin
(2i−1)πx

Lx
(5a)

where M is total number of series, and where ai are undetermined coefficients.
We assume that the temperature variation is uniform and occurs in the thickness
direction only, i.e. NT , MT and PT are constants for FGM beams, so substituting
Eq. (5a) into Eq. (3a), ψx can be determined as

ψx =
M

∑
i=1,2···

ci cos
(2i−1)πx

Lx
(5b)

where

ci =

4F̄11
3h2

[
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]3
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For symmetrical problems about the beam with immovable clamped ends, it can be
assumed that

w =
M

∑
i=1,2···

ai

(
1− cos

2iπx
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)
(7a)

Similarly, ψx can be determined as

ψx =
M

∑
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(7b)
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where

ci =

4F̄11
3h2
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− Ã44

2iπ
Lx
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(
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)2 ai (8)

Cubic algebraic equations about ai can be obtained by substituting w and ψx into
the following expression.

∂Π

∂ai
= 0 (9)

in which Π =U +V , in which the strain energy U is
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where Ω denotes domain of FGM beams. Work done by applied forces V is

V =−
∫ Lx

0
qwdx (10b)

As for FGM beams with given loads (like transverse uniformly distributed loads
q0 and thermal loads NT , MT , PT ) and other known coefficients, ai can be solved
by Newton-Raphson iterative method or other equivalent methods. For the sake of
brevity, nonlinear algebraic equations and the solving process are omitted. Substi-
tuting these coefficients back into Eqs. (5) and (7), w and ψx may then be com-
pletely determined. In addition, if critical thermal buckling loads exist, critical
value can be easily obtained by making solutions of deflection coefficients ai ap-
proach to zero.

In addition, the present paper extends convergence studies of the previous works
[Zhang (2013)] to nonlinear bending and thermal post-buckling analysis of FGM
beams resting on nonlinear elastic foundations, so M = 3 is also used in all the
following calculations.

5 Results and discussions

Numerical results are presented in this section for nonlinear bending and thermal
post-buckling of FGM beams. A Si3N4/SUS304 is selected as an example. Typ-
ical values for Young’s modulus E (in Pa), Poisson’s ratio ν , thermal expansion
coefficient α (in K−1) and thermal conductivity κ(in W/mK) are listed in Table 1



Nonlinear Bending and Thermal Post-Buckling Analysis 207

from Reddy and Chin (1998). One dimensional temperature field is assumed to be
constant in the x− y plane of the layer. In such a case, the temperature distribution
along the thickness can be obtained by solving a steady-state heat transfer equation

− d
dz

[
κ(z,T )

dT
dz

]
= 0 (11)

This equation can be solved by imposing boundary condition of T = Tt at the top
surface (z = −h/2) and T = Tb at bottom surface (z = h/2). The solution of this
equation is

T = Tt − (Tt −Tb)

∫ z
− h

2

1
κ(z,T )dz∫ h

2
− h

2

1
κ(z,T )dz

(12)

Note that the temperature field is uniform when Tt = Tb.

Table 1: Temperature-dependent coefficients for ceramic and metals [Reddy and
Chin (1998)].

Material Properties P−1 P0 P1 P2 P3

Si3N4

E (Pa) 0 348.43e+9 -3.070e-4 2.160e-7 -8.946e-11
ν 0 0.24 0 0 0

α(1/K) 0 5.8723e-6 9.095e-4 0 0
κ(W/mK) 0 13.723 -1.032e-3 5.466e-7 -7.876e-11

SUS304

E (Pa) 0 201.04e+9 3.079e-4 -6.534e-7 0
ν 0 0.3263 -2.002e-4 3.797e-7 0

α(1/K) 0 12.330e-6 8.086e-4 0 0
κ(W/mK) 0 15.379 -1.264e-3 2.092e-6 -7.223e-10

5.1 Comparison studies

To ensure the accuracy and effectiveness of the present method, two examples are
solved for nonlinear bending and thermal post-buckling analysis of isotropic and
FGM beams.

Example 1. The central deflection-load curves for a beam with immovable simply
supported ends subjected to a transverse uniform distributed load q0L3

x/D11 are cal-
culated and compared in Table 2 with results of Horibe and Asano (2001) using the
boundary integral equation method. In this example, r =

√
D11/A11 is the radius

of gyration, and Lx/r = 100, Pasternak type (k1, k2)=(100, 50) for the Pasternak
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Table 2: Comparisons of nonlinear bending for isotropic beams resting on different
elastic foundations.

q0L3
x/D11

wcenter/Lx

Horibe and Asano (2001) Present
(100, 0) (100, 50) (100, 0) (100, 50)

40 0.053751 0.048414 0.05370 0.04295
80 0.069528 0.060816 0.06948 0.06076
120 0.080385 0.072745 0.08034 0.07269
160 0.088954 0.082007 0.08891 0.08196
200 0.096154 0.089705 0.09611 0.08966

elastic foundation and (k1, k2)=(100, 0) for the Winkler elastic foundation, where
k1 = K1L4

x/D11 and k2 = K2L2
x/D11. The present results agree well with results of

Horibe and Asano (2001) except at one point, and the result of Horibe and Asano
(2001) may be incorrect in the case of (k1, k2)=(100, 50) with a dimensionless
uniform distributed load of 40.

Figure 2: Comparisons of thermal post-buckling for Si3N4/SUS304 beams with im-
movable clamped ends resting on different elastic foundations subjected to uniform
temperature rise.
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Figure 3: Comparisons of thermal post-buckling for Si3N4/SUS304 beams with
immovable simply supported ends resting on different elastic foundations subjected
to heat conduction.

Example 2. Thermal post-buckling for Si3N4/SUS304 beams with different sup-
ported ends resting on different elastic foundations are calculated and compared
in Figs. 2 and 3 with results of Esfahani et al. (2013) using generalized differ-
ential quadrature method. In this example, length to thickness ratio Lx/h = 25,
volume fraction index N = 1, and the dimensionless foundation stiffnesses are
(k1,k2,k3)= (100,0,0) for the Winkler elastic foundation, (k1,k2,k3)= (100,10,0)
for the Pasternak elastic foundation, (k1,k2,k3) = (100,0,50) and (k1,k2,k3) =
(100,10,50) for the nonlinear elastic foundation, where k1 = 12K1Lx

4/E0h3, k2 =
12K2Lx

2/E0h3 and k3 = 12K3Lx
4/E0h, E0 is Young’s modulus of Si3N4 at reference

temperature. Excellent agreements can be seen from Figs. 2 and 3.

5.2 Parametric studies

A parametric study was undertaken for nonlinear bending and thermal post-buckling
of Si3N4/SUS304 beams with Lx/h= 50. The volume fraction Vc is defined by Vc =
(1/2− z/h)N , and the dimensionless foundation stiffnesses are (k1, k2, k3)=(50, 0,
0) for the Winkler elastic foundation, (k1, k2, k3)=(50, 5, 0) for the Pasternak elastic
foundation, (k1, k2, k3)=(50, 0, 10) and (k1, k2, k3)=(50, 5, 10) for the nonlinear
elastic foundation, where k1 = K1L4

x/E0h3, k2 = K2L2
x/E0h3 and k3 = K3L4

x/E0h,
E0 is Young’s modulus of SUS304 at reference temperature. The top surface is
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ceramic-rich, whereas the bottom surface is metal-rich, hence Tt = Tc and Tb = Tm

for heat conduction.

Figure 4: Effect of volume fractions on nonlinear bending of Si3N4/SUS304 beams
with immovable simply supported ends resting on nonlinear elastic foundations.

The central dimensionless deflections of Si3N4/SUS304 FGM beams with immov-
able simply supported ends and clamped ends subjected to transverse uniformly
distributed loads in different temperature fields are calculated, see Figs. 4-9. The
effect of volume fractions on nonlinear bending of Si3N4/SUS304 beams with dif-
ferent supported ends resting on nonlinear elastic foundations can be seen in Figs.
4, 5, it can be observed that the deflections increase with increasing value of volume
fraction index N. The effect of different elastic foundations on nonlinear bending
of Si3N4/SUS304 beams with different supported ends and volume fraction index
N = 2 can be seen in Figs. 6, 7, it can be observed that the effect of nonlinear elastic
foundation increase with increasing deflection. The effect of different temperature
fields on nonlinear bending of Si3N4/SUS304 beams with different supported ends
and volume fraction index N = 2 resting on nonlinear elastic foundations can be
seen in Figs. 8, 9, downward initial deflections under uniform temperature rise
fields and the upward initial deflections under heat conduction fields can be ob-
served for the beams with immovable simply supported ends, while no initial de-
flections under both uniform temperature rise and heat conduction fields can be
observed for the beams with immovable clamped ends.
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Figure 5: Effect of volume fractions on nonlinear bending of Si3N4/SUS304 beams
with immovable clamped ends resting on nonlinear elastic foundations.

Figure 6: Effect of elastic foundations on nonlinear bending of Si3N4/SUS304
beams with immovable simply supported ends.
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Figure 7: Effect of elastic foundations on nonlinear bending of Si3N4/SUS304
beams with immovable clamped ends.

Figure 8: Effect of different temperature fields on nonlinear bending of
Si3N4/SUS304 beams with immovable simply supported ends.
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Figure 9: Effect of different temperature fields on nonlinear bending of
Si3N4/SUS304 beams with immovable clamped ends.

Figure 10: Thermal post-buckling behaviors for Si3N4/SUS304 beams with im-
movable simply supported ends resting on nonlinear elastic foundations subjected
to uniform temperature rise.
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Figure 11: Thermal post-buckling behaviors for Si3N4/SUS304 beams with im-
movable simply supported ends resting on nonlinear elastic foundations subjected
to heat conduction.

Figure 12: Thermal post-buckling behaviors for Si3N4/SUS304 beams with im-
movable clamped ends resting on nonlinear elastic foundations subjected to uni-
form temperature rise.



Nonlinear Bending and Thermal Post-Buckling Analysis 215

Figure 13: Thermal post-buckling behaviors for Si3N4/SUS304 beams with im-
movable clamped ends resting on nonlinear elastic foundations subjected to heat
conduction.

Figure 14: Effect of elastic foundations on thermal post-buckling of Si3N4/SUS304
beams with immovable simply supported ends subjected to uniform temperature
rise.
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Figure 15: Effect of elastic foundations on thermal post-buckling of Si3N4/SUS304
beams with immovable simply supported ends subjected to heat conduction.

Figure 16: Effect of elastic foundations on thermal post-buckling of Si3N4/SUS304
beams with immovable clamped ends subjected to uniform temperature rise.
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Figure 17: Effect of elastic foundations on thermal post-buckling of Si3N4/SUS304
beams with immovable clamped ends subjected to heat conduction.

Thermal post-buckling behaviors for Si3N4/SUS304 FGM beams with different
supported ends resting on nonlinear elastic foundations subjected to uniform tem-
perature rise and heat conduction are calculated, see. Figs. 10-13. Bifurcation of
buckling can occur for FGM beams with simply supported ends due to effect of
uniform temperature rise or heat conduction, while bifurcation of buckling can not
occur for FGM beams with clamped ends due to effect of uniform temperature rise
and heat conduction. The effect of elastic foundations on thermal post-buckling
of Si3N4/SUS304 beams with different supported ends and volume fraction index
N = 2 resting on nonlinear elastic foundations subjected to uniform temperature
rise and heat conduction are calculated, see. Figs. 14-17, and it can be observed
that the effect of nonlinear elastic foundation increase with increasing deflection.

6 Conclusions

A model of the FGM beams resting on nonlinear elastic foundations is successfully
established by physical neutral surface and high-order shear deformation theory. In
nonlinear bending and post-buckling analysis, influences played by different sup-
ported boundaries, thermal environmental conditions, different elastic foundation
and volume fraction index are discussed in detail. In nonlinear bending analysis,
downward initial deflections under uniform temperature rise fields and the upward
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initial deflections under heat conduction fields can be observed for the FGM beams
with immovable simply supported ends, while no initial deflections under both uni-
form temperature rise and heat conduction fields can be observed for the FGM
beams with immovable clamped ends. In thermal post-buckling analysis, bifurca-
tion of buckling can occur for FGM beams with simply supported ends due to effect
of uniform temperature rise or heat conduction, while bifurcation of buckling can
not occur for FGM beams with clamped ends due to effect of uniform tempera-
ture rise and heat conduction. It is worth noting that the effect of nonlinear elastic
foundation is significant with increasing deflection.
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Appendix A

The displacement fields

u = u0 +(z− z0)ψx −
4

3h2

(
z3 − c0

)(dw
dx

+ψx

)
(A.1a)

w = w(x) (A.1b)

in which z0 and c0 are defined by

z0 =

∫ h
2
− h

2
zE(z,T )dz∫ h

2
− h

2
E(z,T )dz

, c0 =

∫ h
2
− h

2
z3E(z,T )dz∫ h

2
− h

2
E(z,T )dz

(A.2)

Considering nonlinear von Kármán strain-displacement relationships, the strains
can be expressed by

εx = ε
(0)
x +(z− z0)ε

(1)
x +

(
z3 − c0

)
ε
(3)
x , γxz = γ

(0)
xz + z2

γ
(2)
xz (A.3)

in which

ε
(0)
x =

du0

dx
+

1
2

(
dw
dx

)2

, ε
(1)
x =

dψx

dx
, ε

(3)
x =− 4

3h2

(
dψx

dx
+

d2w
dx2

)
(A.4a)

γ
(0)
xz = ψx +

dw
dx

, γ
(2)
xz =− 4

h2

(
ψx +

dw
dx

)
(A.4b)

According to Hooke’s law, the stresses can be determined as

σx = E(z,T ) [εx −α(z,T )∆T ] , τxz =
E(z,T )

2 [1+ν(z)]
γxz (A.5)

The constitutive equations can be deduced by proper integration.

 Nx

Mx

Px

=

 A11 0 0
0 D11 F11
0 F11 H11


 ε

(0)
x

ε
(1)
x

ε
(3)
x

−
 NT

MT

PT

 ,
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[
Qx

Rx

]
=

[
A44 D44
D44 F44

][
γ
(0)
xz

γ
(2)
xz

]
(A.6)

In which the beam stiffnesses are defined by

(A11,D11,F11,H11) =
∫ h

2

− h
2

E(z,T )
(

1,(z− z0)
2,(z− z0)

(
z3 − c0

)
,
(
z3 − c0

)2
)

dz

(A.7a)

(A44,D44,F44) =
∫ h

2

− h
2

E(z,T )
2 [1+ν(z)]

(
1,z2,z4)dz (A.7b)

The axial forces, bending moments and higher order bending moment caused by
elevated temperature are defined by

(NT ,MT ,PT ) =
∫ h

2

− h
2

E(z,T )α(z,T )∆T
(
1,z− z0,z3 − c0

)
dz (A.8)

where ∆T = T −T0 is temperature rise from some reference temperature T0 at which
there are no thermal strains.

The symbols used in the governing equations are defined by

D̄11 = D11 −
4F11

3h2 , F̄11 = F11 −
4H11

3h2 , D̃11 = D̄11 −
4F̄11

3h2 ,

Ā44 =A44−
4D44

h2 , D̄44 =D44−
4F44

h2 , Ã44 = Ā44−
4D̄44

h2 , M̄T =MT −
4

3h2 PT ,

(A.9)


