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SPH and ALE Formulations for Fluid Structure Coupling

R. Messahel1 and M. Souli1

Abstract: Simulation of Fluid Structure Interaction FSI, problems becomes more
and more the focus of computational engineering, where FEM (Finite element
Methods) for structural mechanics and Finite Volume for CFD are dominant. New
formulations have been developed for FSI applications using mesh free methods
as SPH method, (Smooth Particle Hydrodynamic). Up to these days very little
has been done to compare different methods and assess which one would be more
suitable. For small deformation, FEM Lagrangian formulation can solve structure
interface and material boundary accurately; the main limitation of the formulation
is high mesh distortion for large deformation and moving structure. One of the
commonly used approach to solve these problems is the ALE formulation which
has been used with success in the simulation of fluid structure interaction with
large structure motion such as sloshing fuel tank in automotive industry and bird
impact in aeronautic industry. For some applications, including bird impact and
high velocity impact problems, engineers have switched from ALE to SPH method
to reduce CPU time and save memory allocation.
In this paper the mathematical and numerical implementation of the ALE and SPH
formulations are described. From different simulation, it has been observed that for
the SPH method to provide similar results as ALE or Lagrangian formulations, the
SPH meshing, or SPH spacing particles needs to be finer than the ALE mesh. To
validate the statement, we perform a simulation of a shock wave propagation gener-
ated by explosive detonation. For this simple problem, the particle spacing of SPH
method needs to be at least two times finer than ALE mesh. A contact algorithm is
performed at the fluid structure interface for both SPH and ALE formulations.

Keywords: ALE, SPH, Fluid Structure Interaction, Shock Wave.

1 Introduction

Theoretical and experimental analysis of underwater explosion have been consid-
ered by several researchers over the past decades, using empirical methods as CON-
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WEAP( Conventional Weapon) code when the explosive charge is far away from
the structure, and Lagrangian description of motion for near field. In its formu-
lation, CONWEAP code does not represent the physical behavior of detonation.
When a high explosive is detonated an inward wave is generated in the explosive
material, at the same time, a shock wave moves through the air medium, which is
at lower pressure and a contact discontinuity appears between the rarefaction wave
and the shock wave. Experiments have shown, see Kingery and Bulmarsh (1984),
that the resulting flow is quite complex, involving several physical phenomena as
burning effects and heat transfer. The detonation of high explosive material con-
verts the explosive charge into gas at high pressure and temperature what leads to
damage structures. Numerical simulation of high explosive detonation and expan-
sion are very difficult for classical numerical methods, see Boyer (1960). During
the process in the explosion, a very thin reaction zone divides the domain into in-
homogeneous parts and produces large deformations. Numerical simulation using
appropriate equation of state for high explosive detonation, helps to describe these
phenomena, and also minimize the number of tests required that are very costly.
Once simulations are validated by test results, it can be used as design tool for the
improvement of the system structure involved. Initially FEM Lagrangian were used
to simulate these problems, unfortunately classical Lagrangian methods cannot re-
solve large mesh distortion, runs are stopped befor reaching termination time, due
to negative Jacobian in highly distorted element. ALE multi-material description of
motion developed in Aquelet, Souli and Olovson (2005) can be used as an alterna-
tive for the simulation of high explosive phenomena. The ALE formulations have
been developed to overcome the difficulties due to large mesh distortion. For some
applications, including underwater explosions and their impact on the surronding
structure, engineers have switched from ALE to SPH method to reduce CPU time
and save memory allocation.

It is well known from previous papers, see Ozdemir, Souli and Fahjan (2010) that
the classical FEM Lagrangian method is not suitable for most of the FSI problems
due to high mesh distortion in the fluid domain. In many applications the ALE
formulation has been the only alternative to solve fluid structure interaction for
engineering problems. For the last decade, SPH method has been used usefully for
engineering problems to simulate high velocity impact problems, high explosive
detonation in soil, underwater explosion phenomena, and bird strike in aerospace
industry. SPH is a mesh free Lagrangian description of motion that can provide
many advantages in fluid mechanics and also for modeling large deformation in
solid mechanics. Unlike ALE method, and because of the absence of the mesh,
SPH method suffers from a lack of consistency than can lead to poor accuracy.

In this paper, devoted to ALE and SPH formulations for fluid structure interaction
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problems, the mathematical and numerical implementation of the ALE and SPH
formulations are described. From different simulation, it has been observed that for
the SPH method to provide similar results as ALE formulation, the SPH meshing,
or SPH spacing particles needs to be finer than the ALE mesh. To validate the
statement„ we perform a simulation of a shock wave propagation generated by
explosive detonation. For this problem, the particle spacing of SPH method needs
to be at least two times finer than ALE mesh. A contact algorithm is performed at
the fluid structure interface for both SPH and ALE formulations.

In Section 2, the governing equations of the ALE formulation are described. In this
section, we discuss the advection algorithms used to solve mass, momentum and
energy conservation in the multi-material formulation. Section 3 describes the SPH
formulation, unlike ALE formulation which based of the Galerkin approach, SPH
is a collocation method. The last section is devoted to numerical simulation of an
underwater explosion and its impact on a deformable structure using both ALE and
SPH methods. To get comparable between ALE and SPH, the particle spacing of
SPH method needs to be at least two times finer than ALE mesh.

2 ALE Multi-material formulation

A brief description of the ALE formulation used in this paper is presented, ad-
ditional details can be provided in Aquelet, Souli and Olovson (2005). To solve
fluid structure interaction problems, a Lagrangian formulation is performed for the
structure and an ALE formulation for the fluid and explosive materials, where fluid
and explosive materials can be mixed in the same element, this element is referred
as mixed element, since it contains two different materials fluid and explosive as
described in Fig. 1. A mixture theory is used to partition the material inside the
element and compute the volume weighted stress from the constitutive model of
each material as described in Souli and Erchiqui (2011).

Figure 1: Lagrangian and Advection phases in one step
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In the ALE description, an arbitrary referential coordinate is introduced in addition
to the Lagrangian and Eulerian coordinates. The material derivative with respect
to the reference coordinate can be described in Eq. 1. Thus substituting the re-
lationship between material time derivative and the reference configuration time
derivative leads to the ALE equations,

∂ f (Xi, t)
∂ t

=
∂ f (xi, t)

∂ t
+wi

∂ f (xi, t)
∂xi

(1)

Where Xi is the Lagrangian coordinate, xi the Eulerian coordinate, wi is the relative
velocity. Let denote by v the velocity of the material and by u the velocity of the
mesh. In order to simplify the equations we introduce the relative velocityw= v−u.
Thus the governing equations for the ALE formulation are given by the following
conservation equations:

(i) Mass equation.

∂ρ

∂ t
=−ρ

∂vi

∂xi
−wi

∂ρ

∂xi
(2)

(ii) Momentum equation.

ρ
∂vi

∂ t
= σi j, j +ρbi−ρwi

∂vi

∂x j
(3)

σi j is the stress tensor defined by σ = −P.Id + τ , where τ is the shear stress from
the constitutive model, and P the pressure. For fluid and explosive gas the pressure
is computed through an equation of state defined in chapter.

For the structure, a classical elasto-plastic material model is used, where the shear
strength is much higher than the volumetric strain.

(iii) Energy equation.

ρ
∂E
∂ t

= σi jvi, j +ρbivi−ρw j
∂E
∂x j

(4)

Note that the Eulerian equations commonly used in fluid mechanics by the CFD
community, are derived by assuming that the velocity of the reference configuration
is zero, u = 0 and that the relative velocity between the material and the reference
configuration is therefore the material velocity, w = v. The term in the relative
velocity in Eq. 3 and Eq. 4 is usually referred to as the advective term, and accounts
for the transport of the material past the mesh. It is the additional term in the
equations that makes solving the ALE equations much more difficult numerically
than the Lagrangian equations, where the relative velocity is zero.
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There are two ways to implement the ALE equations, and they correspond to the
two approaches taken in implementing the Eulerian viewpoint in fluid mechanics.
The first way solves the fully coupled equations for computational fluid mechan-
ics; this approach used by different authors can handle only a single material in
an element as described for example in Ozdemir, Souli and Fahjan (2010). The
alternative approach is referred to as an operator split in the literature, where the
calculation, for each time step is divided into two phases. First a Lagrangian phase
is performed, in which the mesh moves with the material, in this phase the changes
in velocity and internal energy due to the internal and external forces are calculated.
The equilibrium equations are:

ρ
∂vi

∂ t
= σi j, j +ρbi , (5)

ρ
∂E
∂ t

= σi jvi, j +ρbivi . (6)

In the Lagrangian phase, mass is automatically conserved, since no material flows
across element boundaries.

In the second phase, the advection phase, transport of mass, energy and momentum
across element boundaries are computed; this may be thought of as remapping the
displaced mesh at the Lagrangian phase back to its original for Eulerian formulation
or arbitrary position for ALE formulation using smoothing algorithms. From a
discretization point of view of Eq. 5 and Eq. 6, one point integration is used for
efficiency and to eliminate locking as it is mentioned by Benson (1992). The zero
energy modes are controlled with an hourglass viscosity, see Belytschko (2000).
A shock viscosity with linear and quadratic terms derived by Von Neumann and
Richtmeyer (1950), is used to resolve the shock wave. The resolution is advanced
in time with the central difference method, which provides a second order accuracy
for time integration.

For each node, the velocity and displacement are updated as follows:

un+1/2 = un−1/2 +∆t.M−1.(Fexl +Fint)

xn+1 = xn−1 +∆tun+1/2
(7)

Where Fint is the internal vector force and Fext the external vector force associated
with body forces, coupling forces, and pressure boundary conditions, M is a di-
agonal lumped mass matrix. For each element of the mesh, the internal force is
computed as follows:

Fint =
Nelem

∑
k=1
−
∫
k

Bt .σ .dv (8)
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Where B is the gradient matrix and Nelem is the number of elements.

The time step size ∆t, is limited by the Courant stability condition (see Benson
(1992)), which may be expressed as:

∆t ≤ l
c

(9)

Where l is the characteristic length of the element, and c the speed of sound through
the material in the element. For a solid material, the speed of sound is defined as:

c =

√
K
ρ

(10)

Where ρ is the material density, K is the module of compressibility.

3 SPH Formulation

3.1 Standard SPH Formulation

The SPH method developed originally for solving astrophysics problem has been
extended to solid mechanics by Libersky, Petschek, Carney, Hipp and Allahdadi
(1993) to model problems involving large deformation including high velocity im-
pact. SPH method provides many advantages in modeling severe deformation
as compared to classical FEM formulation which suffers from high mesh distor-
tion. The method was first introduced by Lucy (1977) and Gingold and Monaghan
(1977) for gas dynamic problems and for problems where the main concern is a
set of discrete physical particles than the continuum media. The method was ex-
tended to solve high velocity impact in solid mechanics, CFD applications gov-
erned by Navier-Stokes equations and fluid structure interaction problems. It is
well known from previous papers, see Vignjevic, Reveles and Campbell (2006),
that SPH method suffers from lack of consistency, that can lead to poor accuracy of
motion approximation. Unlike Finite Element, interpolation in SPH method cannot
reproduce constant and linear functions.

A detailed overview of the SPH method is developed by Liu M.B. and Liu G.R.(2010),
where the two steps for representing of function f, an integral interpolation and a
kernel approximation are given by:

u(xi) =
∫

u(y).δ (xi− y)dy (11)

Where the Dirac function satisfies:

δ (xi− y) = 1, if xi = y

δ (xi− y) = 0, if xi 6= y
(12)
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Figure 2: FEM model, mesh and nodes (left) and SPH model, particles (right)

The approximation of the integral function Eq. 11 is based on the kernel approx-
imation W, that approximates the Dirac function based on the smoothing length
h.

W (d,h) =
1

hα
.θ

(
d
h

)
, (13)

that represents support domain of the kernel function, see Fig. 3.

Figure 3: Kernel Function and its support domain for a 2D function

So that Eq 11 becomes,

< u(xi)>=
∫

u(y).W (‖x− y‖ ,h)dy (14)

Taking in consideration de support domain of the kernel function, the SPH approx-
imation of a particle xi is obtained discretizing the integral into a sum over the
particles that are within the kernel support domain as it is shown in Fig. 3.

usph(xi) = ∑ j∈Di
ω j.u j.W

(∥∥xi− x j
∥∥ ,h) , (15)
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Where the weight ω j =
m j
ρ j

is the volume of the particle.

Integrating by part Eq. 14 and considering the properties of the SPH interpolation
and that∇(u) = u.∇(1)−1.∇(u), the SPH approximation for the gradient operator
of a function is given by,

∇usph(xi) = ∑ j∈Di
ω j.(ui−u j).∇W

(∥∥xi− x j
∥∥ ,h) , (16)

Considering that ∇(P)
ρ

= P
ρ2 ∇(ρ)+∇

(
P
ρ

)
, applying the SPH interpolation on Navier-

Stokes equations, one can derive a symmetric SPH formulation for Navier-Stokes
equations such that the principle of action and reaction is respected and that the
accuracy is improved. Finally, we have the following discretized set of equations :

(i) Mass equation.

Dρi

Dt
= ρi ∑ j∈Di

ω j.
(

vβ

i − vβ

j

)
.
∂W

(∥∥xi− x j
∥∥ ,h)

∂xβ

i

(17)

(ii) Momentum equation.

Dvα
i

Dt
= ∑ j∈Di

m j.

(
σ

αβ

i

ρ2
i

+
σ

αβ

j

ρ2
j

)
.
∂W

(∥∥xi− x j
∥∥ ,h)

∂xβ

i

+ fext (18)

(iii) Energy equation.

Dei

Dt
=

1
2 ∑ j∈Di

m j.

(
Pi

ρ2
i
+

Pj

ρ2
j

)
.
(

vβ

i − vβ

j

)
∂W

(∥∥xi− x j
∥∥ ,h)

∂xβ

i

+
µi

ρi
ε

αβ

i ε
αβ

i (19)

For constant and linear function, The standard SPH interpolation is not exact:

For u(xi) = 1, ∑ j∈Di
ω j..W

(∥∥xi− x j
∥∥ ,h) 6= 1 (20)

For u(xi) = xi, ∑ j∈Di
ω j.x j.W

(∥∥xi− x j
∥∥ ,h) 6= xi (21)

It is well know from previous studies [see Villa (1999,2005) and Oger(2006)] that
Eq.20 and Eq.21 are exact only if the condition ∆x

h → 0, as it is shown in Fig.4,
which is not numerically possible and it is a severe limitation to the method because
the consistency and the convergence of the method are not guaranteed and thus it
affects the accuracy of the standard SPH method. In order to improve the standard
SPH solution a renormalization technique has been introduced.
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Figure 4: Linear representation of o a constant function (left) and its relative error
(right)

3.2 Renormalized SPH Formulation

The derivative of constant functions can be represented exactly (far from a bound-
ary) by the standard SPH even for disordered particles using the symmetrical ap-
proximation for the gradient operator Eq.16 but it still not the case for linear func-
tions. In order to improve the accuracy of the SPH Method a renormalized operator
has been introduced by Randles and Libersky(1996). The employed technique en-
forces the exact representation of constant and linear functions and its derivate by
introduction a renormalization matrix B correcting the differential gradient operator
in Eq.16 such that foru(x) = a+b.x, we have for a particle "i":

∇usph(xi) = b : ∑ j∈Di
ω j.(xi− x j).∇W

(∥∥xi− x j
∥∥ ,h) : Bi = b : Id (22)

⇒∑ j∈Di
ω j.(xi− x j).∇W

(∥∥xi− x j
∥∥ ,h) : Bi = Id

Finally we identify the correction matrix Bifor a particle "i":

Bi = E−1
i ,

where

Ei = ∑ j∈Di
ω j.(xi− x j).∇W

(∥∥xi− x j
∥∥ ,h) (23)

For a 2D problem, let xi = (ai,bi) and ri j=
∥∥xi− x j

∥∥ then we have :

Ei =

 −∑ j∈Di ω j.
dW
dr

(a j−ai)
2

ri j
−∑ j∈Di ω j.

dW
dr

(a j−ai)(b j−bi)
ri j

−∑ j∈Di ω j.
dW
dr

(a j−ai)(b j−bi)
ri j

−∑ j∈Di ω j.
dW
dr

(b j−bi)
2

ri j

 (24)

In addition to the improvement of the consistency of the method, Lanson (2003)
and Vila (2005) have also shown that the renormalization technique relax the con-
vergence criterion ∆x

h → 0 to be ∆x
h → o(1) improving the global convergence of

the method.
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4 Constitutive models and equation of states for explosive and water materi-
als

In High explosive process, a rapid chemical reaction is involved, which converts
the material into high pressure gas. From a constitutive material point of view,
the gas is assumed inviscid with zero shear, and the pressure is computed through
JWL equation of state (Jones-Wilkins-Lee), a specific equation of state, commonly
used for explosive material. There have been many equations of state proposed
for gaseous products of detonation, from simple theoretically to empirically based
equations of state with many adjustable parameters, see Hallquist (1998). The ex-
plosive was modelled with 8-nodes elements. The equation of state determines the
relation between blast pressure, change of volume and internal energy. The JWL
equation of state was used in the following form :

p = A
(

1− ω

R1V

)
exp(−R1V )+B

(
1− ω

R2ω

)
exp(−R2V )+

ω

V
E (25)

In Equation (25) p is the pressure, V is the relative volume defined by V = v
v0

.

Where v and v0 are the current and initial element volume respectively, while A, B,
C, R1,R2 and ω are material constants. These performance properties are based on
the cylinder expansion test in controlled conditions.

At the beginning of the computations V =1.0 and E is the initial energy per unit
volume.

The first term of JWL equation, known as high pressure term, dominates first for V
close to one. The second term is influential in the JWL pressure for V close to two.
Observe that in the expanded state, the relative volume is sufficiently important so
that the exponential terms vanish, and JWL equation of state takes the form of an
ideal gas equation of state:

P = ω
E
V

(26)

The temperature T can be computer using internal energy:

E =Cv.T (27)

Where Cv is the average heat capacity. The heat capacity is held constant through-
out the calculation.

The JWL equation of state is a macroscopic description of the high explosive deto-
nation, it does not describe chemical reaction between different species of the ma-
terial, which is a complex phenomena of the explosive burn. The macroscopic de-
scription through the JWL equation of state can be used to generate pressure wave
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outside the explosive, once all explosive has burned. For a microscopic description
of explosive detonation, molecular dynamic theory can be used, as described in
detail in Benazzouz and Zaoui (2012).

After detonation, a pressure wave is propagating in a water material governed by
the constitutive fluid material model as shown,

σ =−P.Id + τ, where τ = 2µ
•
ε (28)

Where µ and
•
ε respectively denote the dynamic viscosity and the strain in rate

form. The pressure term is calculated using the Mïe-Gruneïsen equation of state
given by:

For compressed material :

P =
ρ0C2µ

[
1+
(
1− γ0

2

)
µ− a

2 µ2
]

[1− (S−1)µ]2
+(γ0 +a)µE (29a)

For expanded material :

P = ρ0C2
µ +(γ0 +a)µE (29b)

Where P, ρ0, C and γ0 are respectively the pressure, the nominal density, the speed
of sound and the specific relative volume. γ0 is the gruneïsen parameter, a is a
first order correction to the energy E and S is unitless coefficient of the slope of
the Hugoniot shock us − up curve given by Narsh (1980), where us and up are
respectively the shock and the particle velocities.

Parameters for the explosive material are given in Tab.1 and Tab.2. For the water
material are given in Tab.3 and Tab.4.

Table 1: Material model parameters for Explosive

Density (g.cm-3) Detonation Velocity Chapman-Jouget Pressure
1.7 0.753 0.255

Table 2: JWL equation of state parameters for Explosive

A B R1 R2 ω E0 V0 =
1

1+µ

5.4094 0.0937260 4.5 1.1 0.35 0.08 0.0
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Table 3: Material model parameters Water

Density (g.cm-3) Cut-off Pressure(Pa) Dynamic Viscosity(Pa.ms)
1.0 -1.0E-6 0.0

Table 4: Mïe-Gruneïsen equation of state parameters for Water

C (cm.ms-1) S1 S2 S3 γ0 a E0 V0 =
1

1+µ

0.1484 1.979 0.0 0.0 0.11 3.0 0.0 0.0

5 Numerical Simulations

5.1 ALE and SPH Models

In this example, we consider a simple structure in water subjected to blast load-
ing generated though detonation of explosive material. The FEM Structure and
ALE Fluid are modelled using eight nodes solid elements, while the SPH elements
are generated at the center of the ALE elements. A sketch at Fig.5 illustrates the
problem.

Figure 5: Sketch of the ALE-FEM model (left) and the SPH-FEM model (right)

The fluid structure interaction is modelled for both ALE-FEM and SPH-FEM prob-
lems using kinematics type contact algorithm at the fluid structure interface. The
kinematic constraints method is used where constraints are imposed on displace-
ment and velocity of the contact interface, as well as impenetrability condition, as
described Belytschko and Neal (1989). In addition, a smoothing algorithm is used
with the ALE formulation, constraining the nodes to move uniformly along straight
lines, to overcome high mesh distortion problems preserving mesh integrity.
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Slip boundary conditions are applied to the ALE elements at the top, left and bottom
boundaries, whereas the structure is fixed at the top and constrained to move in the
X-direction at the bottom.

Definition of proper boundary conditions for SPH formulation is a challenge in the
SPH theory. Several techniques has been developed in order to enhance the desired
conditions, to stop particle from penetrating solid boundaries and also to complete
the kernel function which is truncated by the physical domain for a particle close to
the boundary. Among the different techniques, the ghost particle method [see Oger
(2006); Colagrossi and Landrini(2003); Doring(2006)] is known to be robust and
accurate and is used in the simulations. When a particle is close to the boundary,
it is symmetrised across the boundary with the same density, pressure and temper-
ature as its real particle such that mathematical consistency is restored. The ghost
particles velocity is adjusted such that slip or stick boundary condition is applied.

In order to treat problem involving discontinuities in the flow variables such as
shock waves, an additional dissipative term is added as an artificial pressure term.
This artificial viscosity should be acting in the shock layer and should be ne-
glected outside. In this simulation a pseudo-artificial pressure term πi j derived
by Monoghan and Gingold (1983) is used. This term is based on the classical Von
Neumann and Richtmeyer (1950) artificial viscosity and is readapted to the SPH
formulation as follow,

πi j = β µ
2
i j−αµi jc

,
i j if vi j.ri j < 0 (In the shock layer)

πi j = 0, elsewhere (Outside the shock layer)
(30)

Where µi j =
vi j.ri j

r2
i j+εh2

i j
, ρi j =

(ρi+ρ j)
2 and ci j =

(ci+c j)
2 are respectively the average

density and speed of sound, εis a small perturbation that is added to avoid singu-
larities, finally α and β are respectively the linear and quadratic coefficient.

5.2 Results Comparison and Mesh sensitivity analysis for SPH Method

For this problem ALE multi-material and SPH formulation are used to solve the
problem up to physical termination time. As mentioned in the introduction, exper-
imental tests for explosive detonation in fluid and the impact on surrounding struc-
tures, are costly to perform. The ALE formulation will be considered as reference
solution to validate the SPH formulation since it has been validated against exper-
iments in many applications involving explosions, blast impact and shock waves
[see Leblanc and Shukla (2010) or Barras, Souli, Aquelet and Cuty (2012)]. In
order to compare ALE and SPH formulations and to check the limits of the SPH
formulation solving fluid structure interaction problems, two simulations were per-
formed. A first one, using the same number of elements for both ALE and SPH
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methods, such that the space step dx separating two particles in the SPH case or the
length of an element in the ALE case is the same. A second one, refining the SPH
model by two in both direction in order to improve the accuracy of the simulation
and to see how the SPH solution behave compared to the ALE one. In both simula-
tions SPH particles are generated at the center of the ALE elements as it is shown
in Fig.6.

Figure 6: SPH particles generation for the non-refined simulation (left) and the
refined simulation (right)

Figure 7: Pressure contour for ALE and non refined SPH models at time t = 60 ms.

To illustrate pressure wave propagation through water material, Fig.7 shows the
pressure fringe at time t=60 microseconds from both ALE and non-refined SPH
simulations. At this time of the simulation, the structure is not deformed, since
the shock wave did not reach the structure yet, and it can be seen that the SPH
formulation represents well qualitatively the physics as the shock front and the
expansion waves has the same shape in both ALE and non-refined SPH solutions.

In order to compare quantitatively the solutions, the structure is examined where
the X-displacement and the X-velocity time curve of a node on the structure are
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plotted in Fig.8 and Fig.9 and the Von Mises Stress time curve of an FEM element
on the structure is plotted in Fig.10 for both ALE and non-refined SPH formulations
up to time t=130 milliseconds. If both ALE and SPH curves have the same shape,
they are not fitting which shows the limitation of the method presented in section 3
as a consequence of the convergence criterion be ∆x

h → o(1).

Figure 8: X-displacement of the structure at its base for ALE model and non-refined
SPH model

Figure 9: X-Velocity of the structure at its base for ALE model) and non-refined
SPH models.

For the refined SPH model, Fig. 11 the pressure fringe is plotted at time t=60 ms
and for the refined SPH model and Fig. 12 shows the expansion of the explosive
material in the water. and it can be seen that the refined solution is more accurate
as the expansion wave. It shows good correlation between the two results and the
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Figure 10: Von Mises stress of the structure at the middle for ALE and non-refined
SPH models.

Figure 11: Pressure contour for ALE model and refined SPH models at time t = 60
ms.

ability of the SPH method to handle naturally complex flows involving multiple
materials due to its pure langrangian nature. In the case of ALE formulation, it is
needed to add to the mixture theory an interface tracking algorithm such as Volume
Of Fluid (VOF) method or Level Set method.

In Fig.13, Fig.14, Fig.15 and Fig.16 show good correlation between the two results
and that the accuracy of the method has improved refining the SPH model and that
compared to ALE approach the SPH methods needs more elements, in particular in
this example two times more elements in each direction.

In this work, we have presented the application of SPH and ALE approaches for
simulating blast wave propagation in water. Comparisons with experimental re-
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Figure 12: Explosive expansion for ALE and refined SPH models at time t = 60
ms.

Figure 13: X-displacement of the structure at its base for ALE refined SPH models.

Figure 14: X-Velocity of the structure at its base for ALE and refined SPH models.
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Figure 15: Von Mises stress of the structure at the middle for ALE and refined SPH
models.

Figure 16: Von Mises stress on the FEM structure subjected to the shock wave in
the ALE and refined SPH models at time t = 130 ms.

sults from literature and CONWEP predictions were made in order to validate the
numerical model. Several parametric studies were conducted.

Once simulations are validated by test results, it can be used as design tool for the
improvement of the system structure involved.

6 Conclusion

In this paper we present ALE and SPH methods as well as their limitations for spe-
cific problems. Underwater explosion is commonly solved using ALE formulation,
in defence industry; some of these problems are solved using SPH method. For the
last decade, SPH methods are gaining in accuracy numerical stability, and the use
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of SPH method is becoming more common in industry for solving fluid structure
coupling problems. For instance, in aerospace, where bird impacts on aircraft are
very common and cause significant safety threats to commercial and military air-
craft. According to FAA (Federal American Aviation) regulations, aircraft should
be able to land safely, see Souli and Gabrys (2012). For decades engineers in
aerospace industry were using ALE method to simulate bird impact on aircrafts,
where a viscous hydrodynamic material is used for the bird. These applications
require a large ALE domain for the coupling between the bird material and the sur-
rounding structure, mainly when the bird is spread all over the space. According to
technical reports from engineers in aerospace, ALE formulation is more CPU time
consuming and requires more memory allocation that SPH method. In this paper,
first we describe both ALE and SPH methods, and we compare numerical results
between the two methods using similar mesh size, each ALE element is replaced
by an SPH particle at the element center. Using a simple fluid structure interac-
tion problem, it has been observed that using same mesh size for both methods,
numerical results, displacement, velocity and Von Mises stress on the structure, are
underestimated with SPH method. When refining the SPH particles, where each
ALE element is replaced by 4 SPH particles in two dimensional and 8 particles
in three dimensions, numerical results form SPH method are in good correlation
with those from ALE simulation; in terms of displacement, velocity and Von Mises
stress on the structure. Since the ultimate objective is the design of structure re-
sisting to load blast, numerical simulations from ALE and SPH methods can be
included in shape design optimization with shape optimal design techniques, see
Souli and Zolesio (1993), and material optimisation, see Erchiqui, Souli and Ben
Yedder (2007). Once simulations are validated by test results, they can be used as
design tool for the improvement of the system structure being involved.

References

Aquelet, N.; Souli, M.; Olovson, L. (2005): Euler Lagrange coupling with damp-
ing effects: Application to slamming problems. Computer Methods in Applied
Mechanics and Engineering, vol. 195, pp. 110-132.

Barras, G.; Souli, M.; Aquelet, N.; Cuty, N. (2012) : Numerical simulation
of underwater explosions using ALE method. The pulsating bubble phenomena.
Ocean Engineering, vol. 41, pp. 53-66.

Belytschko, T.; Neal MO. (1989) : Contact-impact by the pinball algorithm with
penalty, projection, and Lagrangian methods. Proceedings of the symposium on
computational techniques for impact, penetration, and perforation of solids AMD,
vol.103, New York, NY: ASME, pp. 97–140.



454 Copyright © 2013 Tech Science Press CMES, vol.96, no.6, pp.435-455, 2013

Belytschko, T.; Liu, W.K.; B. Moran. (2000) : Nonlinear Finite Elements for
Continua and Structure. Wiley.

Benson, D. J. (1992) : Computational Methods in Lagrangian and Eulerian Hy-
drocodes. Computer Method Applied Mech. and Eng, vol. 99, pp. 235-394.

Benazzouz, B. K; Zaoui, A. (2012) :Thermal behavior and super heating temper-
ature of Kaolinite from molecular dynamics. Applied Clay Science, vol. 58, pp.
44-51.

Boyer, D.W. (1960) : An experimental study of the explosion generated by a pres-
surized sphere. Journal of Fluid Mechanics, vol. 9, pp. 401–429.

Colagrossi, A.; Landrini, M. (2003) : Numerical simulation of interfacial flows
by smoothed particle hydrodynamics. Journal of Computational Physics, vol. 191,
pp. 448.

Doring, M. (2006) : Développement d’une méthode SPH pour les applications à
surface libre en hydrodynamique. PhD thesis, Ecole Centrale de Nantes, France.

Erchiqui, F.; Souli, M.; Ben Yedder, R. (2007): Non isothermal finite-element
analysis of thermoforming of polyethylene terephthalate sheet: Incomplete effect
of the forming stage. Polymer Engineering and Science, vol. 47 , pp. 2129-2144.

Gingold, R. A.; Monaghan, J. J. (1977) :Smoothed particle hydrodynamics: the-
ory and applications to non-spherical stars. Mon. Not.R. Astr. Soc, vol. 181, pp.
375–389.

Hallquist, J. O. (1998) : LS-DYNA THEORY MANUEL. Livermore Software Tech-
nology Corporation.

Kingery, C.; Bulmarsh, G. (1984) : Airblast Parameters from TNT spherical air
burst and hemispherical surface burst. ARBRL-TR-02555, U.S. Army Ballistic

Lanson, N. (2003) : Etude des méthodes particulaires renormalisées. Applications
aux problèmes de dynamique rapide. PhD Thesis, Université Toulouse 3 INSA

Leblanc, J.; Shukla, A. (2010) : Dynamic response and damage evolution in com-
posite materials subjected to underwater explosive loading: An experimental and
computational study. Composite Structures, vol. 92, pp. 2421-2430.

Libersky, L. D.; Petschek, A. G.; Carney, T. C.; Hipp, J. R., Allahdadi, F.
A. (1993) : High Strain Lagrangian Hydrodynamics: A Three-Dimensional SPH
CODE for Dynamic Material Response. Journal of Computational Physics, vol.
109, pp. 67-75.

Lucy, L. B. (1977): A numerical approach to the testing of fission hypothesis.
Astronom. J. vol. 82, pp. 1013–1024.

Liu, M. B.; Liu, G. R. (2010) : Smoothed Particle Hydrodynamics (SPH): an



SPH and ALE Formulations for Fluid Structure Coupling 455

Overview and Recent Developments. Arch Comput Methods Eng, vol. 17, pp.
25–76.

Monaghan, J. J.; Gingold, R. A. (1983) : Shock Simulation by particle method
SPH. Journal of Computational Physics, vol. 52, pp. 374-389.

Narsh, S. P. (1980) : LASL Shock Hugoniot Data. University of California Press.

Oger, G. (2006) : Aspects théoriques de la méthode SPH et applications a l’hydrodynamique
a surface.

PhD Thesis, Ecole Centrale de Nantes

Ozdemir, Z.; Souli, M.; Fahjan Y.M. (2010) : Application of nonlinear fluid–
structure interaction methods to seismic analysis of anchored and unanchored tanks.
Engineering Structures, vol. 32, pp. 409-423.

Randles, P. W.; Libersky, L. D. (1996) : Smoothed Particle Hydrodynamics:
Some recent improvements and applications. Comput. Methods Appl. Mech. En-
grg, vol. 139, pp. 375-408.

Souli, M.; Zolesio, J. P. (1993): Shape Derivative of Discretized Problems. Com-
puter Methods in Applied Mechanics and Engineering, vol. 108, pp. 187–199.

Souli, M.; Erchiqui, F. (2011) : Experimental and Numerical investigation of hy-
perelastic membrane inflation using fluid structure coupling. Computer Modeling
in Engineering & Sciences, vol. 77, pp. 183-200.

Souli, M.; Gabrys, J. (2012) : Fluid Structure Interaction for Bird Impact Problem:
Experimental and Numerical Investigation. CMES, vol. 2137, no. 1, pp. 1-16.

Vignjevic, R; Reveles, J.; Campbell, J. (2006): SPH in a Total Lagrangian For-
malism. Computer Modelling in Engineering and Science, vol. 14, pp. 181-198.

Vila, J. (1999) : On particle weighted method and smoothed particle hydrodynam-
ics. Mathematical Models and Method in Applied Science, vol. 9, pp. 161-209.

Vila, J. (2005): SPH renormalized hybrid methods for conservation laws: applica-
tions to free surface flows.Mesh free Methods for Partial Differential Equations II.
Vol.43 of Lecture Notes in Computational Science and Engineering. Springer

Von Neumann, J.; Richtmeyer, R. D. (1950): A method for the numerical calcu-
lation of hydrodynamical shocks. Journal of Applied Physics, vol. 21, pp. 232.




