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Simulations of Three-dimensional Thermal Residual
Stress and Warpage in Injection Molding

Xuejuan Li1,2, Jie Ouyang2,3, Wen Zhou2

Abstract: The three-dimensional (3D) mathematical models for thermal residual
stress and warpage are proposed in injection molding, in which the temperature
model is rebuilt by considering the phase-change effect to improve the compu-
tational accuracy. The 3D thermal residual stress model is transformed into the
incremental displacement model so that the boundary conditions can be imposed
easily. A modified finite element neural network (FENN) method is used for solv-
ing 3D warpage model based on the advantages of finite element method and neural
network. The influence of phase-change on temperature is discussed. The numer-
ical simulations of thermal residual stress and warpage are realized, and the influ-
ences of processing parameters on thermal residual stress and warpage are studied.
The numerical results are in accordance with the results in related literature and the
theoretic analysis.

Keywords: 3D, phase-change, thermal residual stress, warpage, processing pa-
rameter.

1 Introduction

Thermal residual stress and warpage affect seriously mechanical properties and vi-
sual quality of products [Shen and Li (2003)]. However, it is very difficult to con-
trol these defects effectively before polymer being processed since polymer melts
experience complex changes in injection molding process. With the rapid develop-
ment of computer technology, numerical simulation has become a powerful method
in improving quality and process technology of plastic products. However, so far
the numerical simulations of thermal residual stress and warpage mainly adopt the
Generalized Hele-Shaw (GHS) flow model based on mid-plane mesh model during
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the injection and packing stage. GHS model cannot obtain the complete informa-
tion of physical quantities. Moreover, it leads to compute thermal residual stress
only under the hypotheses of thin-wall cavity, and compute warpage only by the
way of decoupling two-dimensional plane deformation and one-dimensional nor-
mal bending. Therefore, it is necessary to develop three-dimensional (3D) mathe-
matical models and computational methods.

So far the numerical simulations of the thermal residual stress mainly adopt elastic
model, viscoelastic model and creep model based on GHS flow model in packing
and cooling stage. Boitou, Agassant and Vincent adopted elastic model to calcu-
late thermal residual stress considering thermal shrinkage and the frozen-in pres-
sure [Boitou, Agassant and Vincent (1995)]. Then Jansen, Titomanlio and Pan-
tani proposed a simple elastic model for residual stresses and shrinkage of a thin
solidifying product and studied the shrinkage based on different processing pa-
rameters [Jansen and Titomanlio (1996); Jansen, Pantani and Titomanlio (1998)].
However, since the elastic model ignores viscosity, a viscoelastic model can give
more accurate results than an elastic model. Therefore, some researchers realized
the importance of relaxation effect and proposed some viscoelastic model for ther-
mal residual stress. Baaijens, Chang and Chiou adopted linear Maxwell model
[Baaijens (1991)] and Kaye-Bernstein-Kearsley-Zapas(K-BKZ) model [Chang and
Chiou (1995)] to calculate thermal residual stress, respectively. Moreover, Bushko
and Vijay proposed a linear thermo-viscoelastic model based on the assumption
that the polymer was a thermo-rheologically simple thermo-viscoelastic material
[Bushko and Vijay (1995)]. Thereafter, this model was used in many references.
Zoetelief, Douven and Ingen Housz investigated the influence of packing stage on
the thermal residual stress [Zoetelief, Douven and Ingen Housz (1996)]. The fi-
nite difference method and finite element method were adopted to compute thermal
residual stress in the literatures [Chen, Lama and Li (2000), Kamal, Lai-Fook and
Hernandez-Aguilar (2002)], respectively. Some researchers study the influences of
processing parameters [Wang and Young (2005)], polymer type [Young (2004)],
gate location [Lee, Huang, Yang and Kim (2006)] etc. on thermal residual stress.
Zhou, Xi and Liu calculated thermal residual stress based on surface flow model
[Zhou, Xi and Liu (2008)]. In literature [Frederico, Patrick, Gerrit, António and
Han (2010)], the linear thermo-viscoelastic model was applied to gas-assisted in-
jection molding. Wu, Zhao and Shen emphasized the importance of relaxation
effect and proposed the creep model [Wu, Zhao and Shen (2008)]. By comparison,
the elastic model ignores the viscosity and the calculation results are a little big-
ger. The linear thermo-viscoelastic model is widely applied in the calculation of
thermal residual stress, but the creep model is rarely used.

Moreover, phase-change of the polymer melt is very important in injection molding
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[Yang, Fu, Yang, Huang, Yang and Feng (2008); Yang, Fu, Yang, Liang, Hu and
Yang (2009)], but it is always ignored in calculation of thermal residual stress. The
mathematical models, which are currently used for phase-change phenomena can
fall into three categories [Truex (2011)]: sharp interface models, phase field mod-
els, and enthalpy models. The sharp interface models [Kosec and Sarler (2009)]
require sharp front tracking and are typically used in one-dimensional problems.
The phase field models require a priori knowledge of the free energy density func-
tion and can not be widely used. By comparison, the enthalpy models overcome
the above limitations and have several flexible forms.

For the numerical simulation of warpage, many researchers decoupled the warpage
into two-dimensional plane deformation and one-dimensional normal bending. Then
they adopted different elements in finite element method (FEM) to calculate the
decoupled problem based on flat shell element model. For example, the constant
strain triangular element and the discrete Kirchhoff triangular element were used to
calculate the warpage [Guo, Ruan, Peng and Li (2002); Li and Zhou (2004)]. Liu,
Zhou and Li gave the modified flat shell element model for applying to the surface
model, and then adopted plane membrane element and bending plate element for
plane deformation and normal bending, respectively [Liu, Zhou and Li (2009)].
Moreover, Zhou, Wang, Li, and Li built the warpage model based on surface mesh
model directly [Zhou, Wang, Li, and Li (2011)].

Therefore, we calculate 3D thermal residual stress based on the linear thermo-
viscoelastic model and set up the temperature model of phase-change in this paper.
Moreover, we transform the 3D model into the incremental displacement model so
that the boundary conditions can be imposed easily, and adopt the enthalpy trans-
formation model and finite volume method (FVM) to calculate temperature based
on the phase-change Finally, we construct the 3D warpage model based on the
residual stress model [Choi and Im (1999)] after demolding to calculate warpage
for 3D injection molding. Then we modify the finite element neural network [Ya-
gawa and Okuda (1996); Ramuhalli, Udpa and Udpa (2005)] (FENN) for solving
3D warpage model.

2 Governing equations

The flow of polymer melts is governed by the conservation of mass, momentum
and energy equations, together with a viscosity model and a state equation. The
governing equations can be non-dimensionalized via x∗ = x

/
L, u∗ = u

/
U , t∗ =

tU
/

L, ρ∗ = ρ
/

ρr, p∗ = p
/
(ρrU2), T ∗ = T

/
Tr, η∗ = η

/
ηr, C∗p = Cp

/
C0, κ∗ =

κ
/

κ0. Where L, U , ρr, Tr and ηr are length scale, velocity scale, density scale,
temperature scale and viscosity scale, respectively. As a matter of convenience, the
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mark “*” is omitted and, and the governing equations (1), (2) and (3) can be written
as,

ρt +∇ · (ρu) = 0 (1)

ρut +ρu ·∇u = η
/

Re∇
2u−∇ · p+η

/
(3Re)∇(∇ ·u) (2)

Pe(ρTt +ρu ·∇T ) = ∇
2T +Brηγ̇

2 (3)

where the subscript t denotes time derivative, ρ is the density, u is the velocity
vector, p is the pressure, η is the viscosity, γ̇ is the shearing rate, Cp is the specific
heat,κ is thermal conductivity and T is the temperature. Reynolds number Re =
ρrUL

/
ηr, Peclet number Pe = ρrCpUL

/
κ , Brinkman number Br = ηrU2

/
(κTr).

The polymer viscosity model is

η (T, γ̇, p) =
η0 (T, p)

1+
(
η0γ̇
/

τ∗
)1−n (4)

where η0 (T, p) is the melt viscosity under zero-shear-rate conditions, τ∗ is the
model constant that shows the shear stress rate, from which the pseudoplastic be-
havior of the melt starts. n is the model constant. A WLF expression is considered
to determine the zero-shear-viscosity of the melt

η0 = D1 exp

(
−A1

(
T − T̂

)
A2 +

(
T − T̂

)) (5)

where T̂ = D2 +D3 ·P; A2 = Ã2 +D3 ·P.

A state equation is introduced to satisfy the completeness of governing equations.
Tait state equation can be represented as follows

1
ρ
=V (p,T ) =V0 (T )

{
1−C ln

[
1+

p
B(T )

]}
+Vt(T, p) (6)

The related terms can be expressed as follows:

V0(T ) =
{

b1m +b2m(T −b5) if T > Tt

b1s +b2s(T −b5) if T < Tt
(7)

B(T ) =
{

b3m exp[−b4m(T −b5)] if T > Tt

b3s exp[−b4s(T −b5)] if T < Tt
(8)

Vt(T, p) =
{

0 if T > Tt

b7 exp[b8(T −b5)−b9 p] if T < Tt
(9)
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where C = 0.0894 is universal constant; b1, b2, b3, b4, b5, b6, b7, b8, b9 are material
constants and the subscript m and s identify the melt and solid; Tt = b5 +b6 p is the
glass transition temperature of the melt.

The simulation of the flow process is used to calculate the pressure of the liquid
phase and the frozen-in stresses. The weakly-compressible Crank-Nicolson-based
split (WCNBS) scheme for finite element method (FEM) formulation is presented
in our previous work [Li, Ouyang, Li and Ren (2012)] and is used to simulate the
flow process of injection modeling. On the other hand, calculations of the energy
equation determine the temperature histories in the entire domain including both
the liquid and solid phases. The temperature histories are the key factor in calcu-
lating thermal residual stress in injection modeling. To obtain a more reasonable
temperature field, we calculate the temperature based on phase-change.

3 Temperature Calculation Based on Phase-change

3.1 Enthalpy Transformation Model

Under constant pressure, the enthalpy H is defined by Cp(T ) = ∂H
/

∂T . In en-
thalpy transformation model, the relation between T and H is [Yang, Fu, Yang,
Huang, Yang and Feng (2008); Yang, Fu, Yang, Liang, Hu and Yang (2009)]

T (H) =



lTs +
H

Cp,s
, H ≤ 0

Ts +
H ·∆T

Lh +Cp, f ·∆T
, 0 < H < Lh +Cp, f ∆T

Ts +
H

Cp,l
−

Lh +(Cp, f −Cp,l)∆T
Cp,l

, H ≥ Lh +Cp, f ∆T

(10)

where Lh is the latent heat. The subscript s, l, f denote solid phase, liquid phase
and the mushy region, respectively. By introducing Kirchhoff temperature Tkir =
Γ(H)H +S(H), the enthalpy transformation model of energy equation can be writ-
ten as

Pe
(

∂ρH
∂ t

+
∂ρuH

∂x
+

∂ρvH
∂y

+
∂ρwH

∂ z

)
=

∂ 2Γ(H)H
∂x2 +

∂ 2Γ(H)H
∂y2 +

∂ 2Γ(H)H
∂ z2

+
∂ 2S (H)

∂x2 +
∂ 2S (H)

∂y2 +
∂ 2S (H)

∂ z2 +Brηγ̇
2

(11)
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where

Γ(H) =



ks

Cp,s
, H ≤ 0

k f ∆T
Lh +Cp, f ∆T

, 0 < H < Lh +Cp, f ∆T

kl

Cp,l
, H ≥ Lh +Cp, f ∆T

,

S(H) =


0, H ≤ 0

0, 0 < H < Lh +Cp, f ∆T

− kl
Lh +(Cp, f −Cp,l)∆T

Cp,l
H ≥ Lh +Cp, f ∆T

.

3.2 Enthalpy Transformation Model solvers for FVM formulation

FVM had been proven highly effective in solving the energy equation in our previ-
ous works [Li, Ouyang, Li, Wu and Yang (2011); Li Ouyang, Li and Ren (2012)].
So FVM is still used to solve the enthalpy transformation model and the discretiza-
tion can be written as

aPHP = aEHE +aW HW +aNHN +aSHS +aT HT +aBHB +Sϕ (12)

where Sϕ is the source term in the energy equation, and the coefficients aE , aW , aN ,
aS, aT , aB and aP can be expressed as

aE = DeA(|Pe|)+max(−Fe,0), aW = DwA(|Pw|)+max(Fw,0),

aN = DnA(|Pn|)+max(−Fn,0), aS = DsA(|Ps|)+max(Fs,0),

aT = DtA(|Pt |)+max(−Ft ,0), aB = DbA(|Pb|)+max(Fb,0),

aP = aE +aW +aN +aS +aT +aB +Peρ
∆x∆y∆z

∆t
(13)

where Pe, Ps, Pw, Pn, Pt , Pb are the Péclet numbers on the cell faces; Fe ,Fs ,Fw ,Fn

,Ft ,Fb are the cell faces flux; De, Ds, Dw, Dn, Dt , Db denote diffuse derivatives on
the cell faces. The form A(|P∆|) can be different according to the method by which
the convection terms are discretized. The upwind scheme( US) is adopted in this
paper for strongly convection-dominated problem, so that A(|P∆|) = 1. And all the
above coefficients are formulated as follows

Fe = Pe(ρu) f e ∆y∆z, De = Γ(H)
∆y∆z

xE − xP
, Pe =

Fe

De
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Fw = Pe(ρu) f w ∆y∆z, Dw = Γ(H)
∆y∆z

xP− xW
, Pw =

Fw

Dw

Fn = Pe(ρv) f n ∆x∆z, Dn = Γ(H)
∆x∆z

yN− yP
, Pn =

Fn

Dn

Fs = Pe(ρv) f s ∆x∆z, Ds = Γ(H)
∆x∆z

yP− yS
, Ps =

Fs

Ds

Ft = Pe(ρw) f t ∆x∆y, Dt = Γ(H)
∆x∆y

zT − zP
, Pt =

Ft

Dt

Fb = Pe(ρw) f b ∆x∆y, Db = Γ(H)
∆x∆y

zP− zB
, Pb =

Fb

Db
(14)

3.3 Influence of the phase-change on the temperature

To study the influence of the phase-change on the temperature, we choose the
polymer High-Density Polyethylene (HDPE) Sclair 2714, which is made by Nova
Chemicals Inc., as fluid. The thermal parameters are obtained from materials data
base of Moldflow software. Fig. 1 shows the changes of specific heat (Cp) and
thermal conductivity (κ) with temperature (T ). From Fig. 1(a), it can be seen that
the curve of specific heat exists a sharp at T =106 because of phase-change and it
changes little before and after phase-change. The material parameters of HDPE
Sclair 2714 are shown in Table 1, Table 2 and Table 3, respectively.

(a) (b)

Figure 1: The changes of specific heat (a) and thermal conductivity (b) with tem-
perature
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Table 1: Thermal property parameters

κs κl Cp,s Cp,l Lh Ts Tl

(W/m·◦C) (W/m·◦C) (J/kg·◦C) (J/kg·◦C) (J/kg) (◦C) (◦C)
0.316 0.238 2042.0 2990.0 1.8×105 104 108

Table 2: Tait state equation parameters
Parameter Value Parameter Value Parameter Value
b1,m(m3/kg)
b2,m(m3/kg)
b3,m(Pa)
b4,m(1/K)

b5(K)

1.264×103

9.847×10−7

1.062×108

4.726×103

4.052×102

b1,s(m3/kg)
b2,s(m3/kg·K)
b3,s(Pa)
b4,s(1/K)

b6(K/Pa)

1.12×103

5.852×10−7

2.43×108

2.339×103

1.6×10−7

b7(m3/kg)
b8(1/K)
b9(1/Pa)

1.44×10−4

0.1425
2.527×10−8

Table 3: Cross-WLF viscosity model parameters

Parameter Value Parameter Value
n 0.3794 D3(K/Pa) 0.1

τ∗(Pa) 105985 A1 32.344
D1(Pa·s) 5.769×1013 Ã2(K) 51.6
D2(K) 233.15

(a) (b)

Figure 2: The temperature contour distributions at t=50: (a) with phase-change, (b)
without phase-change

The temperature contour distributions at t=50 are shown in Fig. 2. From Fig.
2, it can be seen that the green color region is wider with phase-change than that
without phase-change under the same level contours. Fig. 3 shows the comparisons
of temperature with phase-change and without phase-change at different time. We
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can clearly see that there is a steep change for the case with phase-change while
there is a smooth change for the case without phase-change in phase-change region.
The results prove that phase-change has strong influence on temperature.

Figure 3: The comparisons of temperature between with phase-change (2) and
without phase-change (©) at different time

4 Thermal Residual Stress Simulations

Polymer melt gradually solidifies with the decrease of temperature during pack-
ing and cooling stage of injection molding. Therefore, thermal residual stress is
produced when the shrinkage of solid is constrained by mold cavity during solid-
ification, and it is caused by the change of temperature and strain. Moreover, the
thermal residual stress is the immediate cause for warpage of products.

4.1 Linear Thermo-viscoelastic Model

To describe the viscoelasticity of polymer in the calculation of thermal stress, a
thermo-viscoelastic constitutive model is the reasonable option. It can be written
as [Kamal, Lai-Fook and Hernandez-Aguilar (2002)]

σσσ =−phI+σσσ
d (15)

where, σσσ is the Cauchy stress tensor, ph is the hydrostatic pressure, I is the unit-
tensor, σσσd is the extra stress tensor. ph can be split into temperature change and
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volume shrinkage from temperature change and the expression is

ph =−1
3

tr(σσσ) =
∫ t

0

(
α

χ
Ṫ − 1

χ
tr(ε̇εε)

)
dτ (16)

where εεε is the strain tensor, α is the bulk thermal expansion coefficient, χ is the
isothermal compressibility coefficient. A multi-mode Maxwell model with a lin-
earization of the compressible Leonov model is used to describe the extra stress
tensor σσσd , that is

σσσ
d =

m

∑
i=1

2
∫ t

0
Gie−(ξ (t)−ξ (τ))/θi ε̇εε

ddτ, ξ (τ) =
∫

τ

0

1
αT

ds (17)

where Gi and θi are the shear modulus and relaxation time of the ith mode of multi-
mode Maxwell model; ξ (τ) and αT are the modified time scale and the shift factor
of the time-temperature superposition principle, respectively.

It has been proved that the elastic modulus of a polymer is influenced by the re-
sponse time. Time-temperature superposition implies that the response time func-
tion of the elastic modulus at a certain temperature resembles the shape of the same
functions of adjacent temperatures. The shift factor of polymer is usually expressed
as

Williams-Landel-Ferry (WLF) and Arrhenius equations lgαT =
−C1(T −T0)

C2 +(T −T0)
, T0 < T < T0 +100

lnαT =−C3(T −T0), T < T0

(18)

where C1, C2 and C3 are empirical constant; when T0 is glass transition temperature
or crystallization temperature, C1 and C2 usually equal 17.4 and 51.6, respectively.

4.2 Numerical method for thermal residual stress

The pressure and temperature histories should be obtained by the calculations of
governing equations before the calculations of thermal residual stresses. However,
these quantities are dimensionless. So we transform these dimensionless quantities
to dimensional quantities by p∗ = p

/
(ρrU2), T ∗ = T

/
Tr in the calculations of

thermal residual stresses.

To implement boundary conditions easily during the calculation, the linear thermo-
viscoelastic model is transformed into the incremental displacement model. Then
the thermal stress is calculated by the relations of displacement-strain and strain-
stress. The details of numerical method are given as follows.
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We firstly consider the discretization of Eq. (15) in time domain within a typical
time sub-interval [tn,tn+1], and the expressions of σ at tn and tn+1 are

σσσn =−ph
nI+σσσ

d
n =−

∫ tn

0

(
α

χ
Ṫ − 1

χ
tr(ε̇εε)

)
dτ +

m

∑
i=1

2
∫ tn

0
Gie−(ξ (t)−ξ (τ))/θi ε̇εε

ddτ

(19)

σσσn+1 =−ph
n+1I+σσσ

d
n+1

=−
∫ tn+1

0

(
α

χ
Ṫ − 1

χ
tr(ε̇εε)

)
dτ +

m

∑
i=1

2
∫ tn+1

0
Gie−(ξ (t)−ξ (τ))/θi ε̇εε

ddτ
(20)

Define some increments in ∆tn+1 = tn+1− tn sub-interva: ∆ξn+1 = ξ (tn+1)−ξ (tn),
∆Tn+1 = Tn+1 − Tn, ∆εεεn+1 = εεεn+1 − εεεn, ∆εεεd

n+1 = εεεd
n+1 − εεεd

n . The σσσn+1 can be
written as

σσσn+1 =−
(∫ tn

0

(
α

χ
Ṫ − 1

χ
tr(ε̇εε)

)
dτ+

∫ tn+1

tn

(
α

χ
Ṫ − 1

χ
tr(ε̇εε)

)
dτ

)
I

+
m

∑
i=1

2
∫ tn

0
Gie−(ξ (t)−ξ (τ))/θi ε̇εε

ddτ +
m

∑
i=1

2
∫ tn+1

tn
Gie−(ξ (t)−ξ (τ))/θi ε̇εε

ddτ

= σσσ
∗+K∗tr(∆εn+1)I+2G∗∆εεε

d
n+1

(21)

where

σσσ
∗ =−

(
ph

n +β
∗
∆Tn+1

)
I+

m

∑
i=1

2e−∆ξn+1/θi

∫ tn

0
Gie−(ξ (tn)−ξ (τ))/θi ε̇εε

ddτ,

K∗ =
1

∆tn+1

∫ tn+1

tn

1
χ

dτ,

β
∗ =

1
∆tn+1

∫ tn+1

tn

α

χ
dτ, G∗ =

1
∆tn+1

m

∑
i=1

∫ tn+1

tn
Gie−(ξ (tn+1)−ξ (τ))/θidτ.

The components of the formula (21) are

σ11 = σ
∗
11 +K∗ (∆ε11 +∆ε22 +∆ε33)+2G∗

(
∆ε11−

1
3
(∆ε11 +∆ε22 +∆ε33)

)
(22a)

σ22 = σ
∗
22 +K∗ (∆ε11 +∆ε22 +∆ε33)+2G∗

(
∆ε22−

1
3
(∆ε11 +∆ε22 +∆ε33)

)
(22b)

σ33 = σ
∗
33 +K∗ (∆ε11 +∆ε22 +∆ε33)+2G∗

(
∆ε33−

1
3
(∆ε11 +∆ε22 +∆ε33)

)
(22c)
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σ12 = σ21 = 2G∗∆ε12 (22d)

σ23 = σ32 = 2G∗∆ε23 (22e)

σ13 = σ31 = 2G∗∆ε31 (22f)

The relation between stress and strain increments of formulas (22a) ∼ (22f) can be
written as

σσσn+1 = D ·∆εεεn+1 +σσσ
∗ (23)

where σσσ = [σ11,σ22,σ33,σ12,σ23,σ31]
T , σσσ∗ = [σ∗11,σ

∗
22,σ

∗
33,σ

∗
12,σ

∗
23,σ

∗
31]

T ,

εεε = [ε11,ε22,ε33,2ε12,2ε23,2ε31]
T ,

D =



a b b 0 0 0
b a b 0 0 0
b b a 0 0 0
0 0 0 G∗ 0 0
0 0 0 0 G∗ 0
0 0 0 0 0 G∗

 , where a = K∗+ 4
3 G∗,b = K∗− 2

3 G∗.

In linear elastic space, the geometric equation of strain-displacement is

εi j(x, t) =
1
2

[
∂ui(x, t)

∂x j
+

∂u j(x, t)
∂xi

]
, i, j = 1,2,3 (24)

and the tensor form is

εεε = Ad (25)

where

d = [d1,d2,d3]
T , AT =


∂

∂x 0 0 ∂

∂y 0 ∂

∂ z
0 ∂

∂y 0 ∂

∂x
∂

∂ z 0
0 0 ∂

∂ z 0 ∂

∂y
∂

∂x

 .
Due to the linear relationship, the increments of strain and displacement also satisfy
the above relation

∆εεε = A∆d (26)

The equilibrium equation of stress-force is

∂σi j

∂x j
+Fi = 0, i, j = 1,2,3 (27)
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and the tensor form is

AT
σσσ +F = 0 (28)

where F = [F1,F2,F3]
T is the body force. Substituting Eq. (23) into Eq. (28) results

in the following equation

AT (D ·∆εεεn+1 +σ
∗)+F = 0 (29)

Substituting Eq. (26) into Eq. (29) results in the following equation(
AT DA

)
∆dn+1 =−AT

σσσ
∗−F (30)

Define S = AT DA, and the matrix S is

S =


a ∂ 2

∂x2 +G∗ ∂ 2

∂y2 +G∗ ∂ 2

∂ z2 (b+G∗) ∂ 2

∂x∂y (b+G∗) ∂ 2

∂x∂ z

(b+G∗) ∂ 2

∂x∂y G∗ ∂ 2

∂x2 +a ∂ 2

∂y2 +G∗ ∂ 2

∂ z2 (b+G∗) ∂ 2

∂y∂ z

(b+G∗) ∂ 2

∂x∂ z (b+G∗) ∂ 2

∂y∂ z G∗ ∂ 2

∂x2 +G∗ ∂ 2

∂y2 +a ∂ 2

∂ z2

 .
The F equals zero in Eq. (30) in packing and cooling stage of injection molding.
The displacements on boundaries are zero until mold cavity pressure reads zero,
but since then, free boundary conditions are used in Eq. (30). The displacements
are obtained first by solving Eq. (30), followed by the increments of strain by
solving Eq. (26), and then thermal residual stress by solving Eq. (23). The 8-nodes
hexahedral elements are used in above calculations.

4.3 Results Analysis

The numerical simulation is performed in a Cuboid mold cavity (10×5×1), as
shown in Fig. 4. Therefore, we only discuss the calculation of temperature based on
phase-change in this paper. The enthalpy transformation model is used to calculate
the enthalpy and then obtain the temperature by enthalpy in 3D injection modeling.

4.3.1 The distribution of thermal residual stress

We adopt the cavity as in Fig.4and Shear modulus data as in Table 4 to calculate
the thermal residual stress.

Fig. 5 shows the distributions of pressure and thermal residual stress at t=1205 with
holding pressure pholding = 105, mold temperature Tw = 313 and melt temperature
Tm = 513. From Fig. 5, it can be seen that the distributions of residual stress
embody the characteristic of the pressure distribution and the values are degressive
from the gate to the end of the cavity.



392 Copyright © 2013 Tech Science Press CMES, vol.96, no.6, pp.379-407, 2013

Figure 4: Sketch map and the computational area of the mold

Table 4: Shear modulus data for multi-mode Maxwell model
XXXXXXXXXXVariable

No.
1 2 3

θ i(s) 5.000×10−7 3.099×10−3 2.154×10−1

Gi(Pa) 1.900×108 0.909×108 1.460×108

XXXXXXXXXXVariable
No.

4 5 6

θ i(s) 8.036×100 3.276×102 7.626×104

Gi(Pa) 1.355×108 1.079×108 1.538×108

(a) p (b) σxx

(c) σyy (d) σzz

Figure 5: The distributions of pressure and thermal residual stress
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Fig. 6 and Fig. 7 show the distributions of temperature and thermal residual stress
of x = 2.5 mid-plane and of z=0.5 mid-plane, respectively. It can be seen from
Fig. 6 and Fig. 7 the distributions of residual stress imply the characteristic of
the temperature distribution. To sum up, the changes of thermal residual stress are
influenced by the pressure and temperature in mold cavity, and the phenomenon is
consistent with the theoretical analysis in literature [Zheng, Kennedy, Phan-Thien
and Fan (1999)].

(a) T (b) σxx

(c) σyy (d) σzz

Figure 6: The distributions of temperature and thermal residual stress of x = 2.5
mid-plane

  
(a)T                                (b) xx  

  
           (c) yy                               (d) zz  

Figure 7: The distributions of temperature and thermal residual stress of z=0.5 mid-
plane
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The distributions of thermal residual stress along the z-axis are shown in Fig.8. The
ordinate value is shrunk to a 1,000 times smaller in Fig. 8 and the same as in the
following Figures. In Fig. 8(a), t1 denotes the time that mold cavity is filled; t2
denotes the time that pressure of cavity reaches the maximum; t3denotes the time
that the melt is almost completely solidified, t4 denotes the time that the solid is
cooled. The evolution of σyy with time is good agreement with that in the literature
[Zoetelief, Douven and Ingen Housz (1996)]. The normal stresses comparisons at
time t4 are shown in Fig. 8(c). It can be clearly seen that the curves shape ofσyy, σxx

and σzz are very similar. It’s worth noting that the value of σzz is obviously smaller
than those of σyyandσxx. This may be both relevant to the less size of thickness and
the faster temperature decrease along the direction of thickness.

(a) (b)

(c)

Figure 8: The evolution of σyywith time (a):our results,(b) results from [Zoetelief,
Douven and Ingen Housz (1996)]and the normal stresses at time t4(c) along the
z-axis.
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4.3.2 Influence of processing parameters on thermal residual stress

The processing parameters, especially holding pressure, melt temperature and mold
temperature have significant influence on the production of the thermal residual
stress in injection molding. The influences of different processing parameters on
the thermal residual stress are shown in Fig. 9.

(a) holding pressure (b) melt temperature

(c) mold temperature

Figure 9: The influences of different processing parameters on σyy.

Fig. 9(a) shows the residual stress σyy distribution along z-axis with Tw = 313,
Tm = 513 and different holding pressures. It can be clearly seen that as the values
of holding pressure increase, the values of σyy decrease. Therefore, the holding
pressure should be as high as the condition allows for decreasing the residual stress.
Fig. 9(b) shows the residual stress σyy distribution along z-axis with Tw = 313,
pholding = 105 and different melt temperatures. It can be seen that the values of σyy

have slightly changes. Fig. 9(c) shows the residual stress σyy distribution along
z-axis with Tm = 513, pholding = 105 and different mold temperatures. It can be
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clearly seen that the values of σyy decrease with the values of mold temperature
increase.

5 Warpage simulations

5.1 Warpage Calculation Model

The σσσ in formula (15) denotes the thermal residual stress before the product is re-
leased from the mold. However, the temperatures of products continue to decrease
until room temperature after demolding. If we mark the difference of temperature
as ∆T , the stress from ∆T is 3KαI∆T and K is the bulk modulus. Moreover, since
the shrinkage of the product is no longer restricted after demolding, the relaxed
stress results in the warpage of the product. Therefore, the relation of stress-strain
can be written as [Choi and Im (1999)]

σσσ
r = Dεεε−3KαI∆T +σσσ (31)

where σσσ r =
[

σ r
11

σ r
22

σ r
33

σ r
12

σ r
23

σ r
31

]T , I = [1 1 1 0 0 0]T , D is
the 3D elastic matrix and the values of components are determined by elastic mod-
ulus E and Poisson’s ratio ν . The D matrix and K are given as follow

D =
E

(1+ν)(1−2ν)



1−ν ν ν 0 0 0
ν 1−ν ν 0 0 0
ν ν 1−ν 0 0 0
0 0 0 (1−2ν)

/
2 0 0

0 0 0 0 (1−2ν)
/

2 0
0 0 0 0 0 (1−2ν)

/
2

 ,

K =
E

3(1−2ν)
.

According to formulas (26) and (29), formula (31) can be rewritten as(
AT DA

)
d = 3KαAT I∆T −AT

σσσ
r−F (32)

Formula (2) is the calculation model of warpage. F =
[

Fb1 Fb2 Fb3
]T is zero

for warpage problem. Moreover, the boundary conditions of warpage are free
boundary conditions because the deformation of product is free after demolding.

5.2 The modified FENN Method for warpage

The idea of FENN method is to embed the finite element discrete model in a neural
network structure. It derives the neural network using the energy functional result-
ing from the finite-element formulation based on error minimization. The details
will be precisely delineated in subsequent sections.
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5.2.1 FEM discretization

If the computational region is Ω and the F is zero in formula (32), the weak form
of (32) can be written as∫ ∫ ∫

Ω

((
AT DA

)
d
)
dxdydz =

∫ ∫ ∫
Ω

(
3KαAT I∆T −AT

σσσ
)

dxdydz (33)

The 8-nodes hexahedral element is used for spatial discretization. The primitive
unknown variable d is spatially approximated using standard finite element shape
functions N and expressed in terms of their nodal values d as

d = Nd jd j, j = 1,2, . . .,8 (34)

The strain matrix of formulas (25) on an element is

B = [B1 B2 ... Bm] (35)

where Bi =


∂Ni
∂x 0 0 ∂Ni

∂y 0 ∂Ni
∂ z

0 ∂Ni
∂y 0 ∂Ni

∂x
∂Ni
∂ z 0

0 0 ∂Ni
∂ z 0 ∂Ni

∂y
∂Ni
∂x


T

.

The stiffness matrix on an element is

Ke =
∫ ∫ ∫

Ωe

BT DBdxdydz (36)

where Ke
i j =

∫∫∫
Ωe

BT
i DB jdxdydz. The total stiffness matrix is

Ki j =
M

∑
e=1

Ke
i j (37)

The right term on an element is

be
i =

∫ ∫ ∫
Ωe

BT
i (3KαI∆T −σ)dxdydz (38)

The total right term is

bi =
M

∑
e=1

be
i (39)

After the discretization in FEM formulation, Eq. (33) is transformed into the fol-
lowing linear equations

Kd = b (40)
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5.2.2 The structure design of FENN

The structure design of FENN is shown in Fig.10. M and N correspond to the
numbers of discrete elements and nodes in finite element method.

Figure 10: The structure design of FENN

The inputs of input layer are α1 = α2 = · · · = αM = 1. The weighs between the
input layer and hidden layer is we

i j = Ke
i j and we

i j is constant when the finite element
mesh and shape function remain unchanged. The active function of hidden layer

is constant 1, and the output of hidden layer is Ki j =
M
∑

e=1
we

i j. The weighs between

the hidden layer and output layer is d j, the ith output of the neural network is

b̂i =
L
∑
j=1

Ki j×d j. Therefore, FENN has M neurons in input layer, 3N×L neurons in

hidden layer and 3N neurons in output layer. Where, L is the bandwidth of stiffness
matrix. The subjective function of FENN is

E(t) =
∥∥ b̂(t)−b

∥∥ (41)

The weight d j needs to be optimized in FENN. The particle swarm optimization
is used to optimize d j to overcome the shortcomings of traditional gradient de-
scending method, such as falling easily into local optimal solution and slower con-
vergence speed. In particle swarm optimization, the update formulas of velocity,
position and inertia weight are [Li, Ouyang, Yang and Jiang (2010)]

Vi (t +1) =WVi (t)+C1r1 (t) [Pi (t)−Xi (t)]+C2r2 (t) [Pg (t)−Xi (t)] (42)
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Xi (t +1) = Xi (t)+Vi (t +1) (43)

wi j = 1− rand ()
(

1
1+ e−Ii j

)
Ii j =

∣∣xi j− pi j
∣∣∣∣pi j− pg j
∣∣+ ε

, (44)

where rand ( ) is a random number in the interval of [0, 1]; xi j is the position of
the ith particle in the jth dimension; pi j is the own best solution, while pg j is the
current global best solution; ε is a positive constant close enough to zero; α is a
positive constant in the range (0,1].

5.2.3 The calculation steps of FENN

The detailed numerical steps for solving 3D warpage are summarized as follow:

Step1: Choose the type of the element, determine the numbers of elements M and
nodes N;

Step2: Calculate per output of neurons of hidden layer;

Step3: Set the size of population (Pn) and the terminating condition of FENN (ε);
Initialize the position and velocity of the particles in admissible parameter spaces
randomly;

Step4: Initialize the variable of iteration: t =1;

Step5: Initialize the variable of the particle iteration: i=1;

Step6: Set the weights (d j) of FENN with the best position of the ith particle;

Calculate the output of FENN and the fitness of ith particle (Ei(t)), then i = i+1;

Step7: If i <Pn, go to Step6; otherwise, evaluate the fitness of each particle and
store best position of each particle and the whole particle swarm, then t = t+1;

Step8: Calculate the best fitness of the whole particle swarm: Ebest(t)=
∥∥ b̂(t)−b

∥∥;
If Ebest(t) < ε , output the results; otherwise, update the position and velocity of
each particle and go to Step5.

5.3 Calculation Results

5.3.1 The validation of FENN

To verify the effectiveness of FENN method, two examples of 3D displacement are
calculated in this section. The sizes of calculation areas for example 1 and example
2 are 0.2×0.8×0.3 and 0.5×3.0×2.0, respectively. The 3D finite element meshes
are shown in Fig. 11. The numbers in Fig. 11 are the global number of the nodes.

In example 1, the displacements in three directions of nodes 1, 2, 5 and 6 are zero;
force load along the negative direction of z-axis is 105 N and is exerted on the
nodes 7 and 8; elastic modulusE = 1.0×1010Pa, Poisson ratioν = 0.25.
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 (a) example 1          (b) example 2 

 Figure 11: The finite element mesh

(a) d1 (b) d2 (c) d3

Figure 12: The 3D displacement distributions of example 1

 

   

            (a) d1                    (b) d2                     (c) d3 

Figure 13: The 3D displacement distributions of example 2
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The 3D displacement distributions of example 1 are shown in Fig. 12. The results
comparison of non-zero displacement between FENN and FEM are given in Table
5. The values in Table 5 are magnified 1000 times for better displays than real
values. From Table 5, it can be seen that the calculation results of FENN and FEM
consistent. Moreover, if the values contain up to 4 digits after the decimal point,
the results of FENN and FEM are completely same.

Table 5: The results comparison of non-zero displacement between FENN and
FEM

FENN
Node d1 d2 d3

3 0.022295 −0.276913 −0.672802
4 −0.022293 −0.276908 −0.672797
7 −0.012911 0.310821 −0.777389
8 0.012884 0.310807 −0.777395

FEM
Node d1 d2 d3

3 0.0223499 −0.27687 −0.672764
4 −0.0223499 −0.27687 −0.672764
7 −0.012889 0.310772 −0.777425
8 0.012889 0.310772 −0.777425

In example 2, when x=0, d1=0; when y=0, d2=0; when z=0, d1= d2= d3=0; force
load along the negative direction of z-axis is 0.125kN and is exerted on the nodes
5, 6, 11 and 12; elastic modulus E = 100kN

/
m2, Poisson ratio ν = 0.3.

The 3D displacement distributions of example 2 are shown in Fig. 13. The dis-
placement of each node is shown in Table 6. The values in Table 6 are magnified
100 times for better displaying than real values. If the calculation results of FENN
contain up to 4 digits after the decimal point, the results are the same as the results
of literature [Smith and Griffiths (1988)].

5.3.2 The calculation results of warpage

The material parameters of HDPE Sclair 2714 are E = 9.11× 108Pa, ν = 0.426
and α = 0.00015 in calculation of the warpage. The warpage describes the defor-
mations of the product about a fixed point. Here, we choose the middle node of
those nodes within gate.

Fig. 14 gives the warpage distribution withpholding = 105, Tw = 313 and Tm = 513.
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Table 6: The displacement of each node

Node d1 d2 d3

1 0 0 0
2 0 0 0
3 0 0 −0.653387
4 0.155035 0 −0.684212
5 0 0 −1.59494
6 0.229728 0 −1.61189
7 0 0 0
8 0 0 0
9 0 0.163174 −0.42718
10 0.103009 0.181983 −0.443678
11 0 −0.153021 −0.903392
12 0.105607 −0.11962 −0.90115

Node d1 d2 d3

13 0 0 0
14 0 0 0
15 0 0.143115 −0.096413
16 0.030998 0.155727 −0.0972196
17 0 −0.119298 −0.110708
18 −0.0136702 −0.105009 −0.0966473
19 0 0 0
20 0 0 0
21 0 0.0848723 0.0265386
22 0.00369352 0.0892407 0.0281824
23 0 −0.0639011 0.0576026
24 −0.0173517 −0.0662872 0.0655168

The displacement in x direction is shown in Fig. 14(a). Due to the mid node of
the gate locates the origin of x-axis, the displacement of x direction is symmetrical
about the y-axis. The displacement in y direction is shown in Fig. 14(b). From
Fig. 14(a) and Fig. 14(b), it can be seen that the maximum values of displacement
appear in the location away from the gate. Fig. 14(c) gives the warpage distribution
of the product. It can be seen that the maximum values appear in two corners of the
product, and the corners are away from the gate. The results are good agreement
with the facts.
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(a) the displacement of x direction      (b) the displacement of y direction 

 
(c) warpage of the product 

 Figure 14: The warpage distribution of the product (unit: mm)

Warp

p  

Warp

wT  

Warp

mT  

     (a) holding pressure          (b) mold temperature          (c) melt temperature 

 
Figure 15: The influences of different processing parameters on the maximum
warpage(unit: mm)

The influences of different processing parameters on the maximum warpage are
shown in Fig. 15(a), (b) and (c). Fig. 15(a) shows that the warpage decreases with
the increasing of holding pressure. It can be proved that the enough holding pres-
sure can decrease the warpage of the products. From Fig. 15(b), it can be seen that
the warpage increases as the mold temperature increases. It may be possible that
high mold temperature results in large shrinkage which leads great warpage. The
influence of melt temperature on warpage is shown in Fig. 15(c) and the influence
of melt temperature is slight.
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6 Conclusions

In this paper, the numerical simulation of the thermal residual stress and warpage of
injection molding products based on there-dimensional (3D) mathematical models
are studied, and the phase-change effect is considered in the calculation of tempera-
ture field. The 3D thermal residual stress model is transformed into the incremental
displacement model for solving. The 3D warpage mathematical model is solved by
a modified FENN. The numerical results show:

(1) There is a steep change for the case with phase-change while there is a smooth
change for the case without phase-change in the region of phase-change.

(2) The changes of thermal residual stress are influenced by pressure and temper-
ature in mold cavity, and the phenomenon is consistent with the theoretical analy-
sis in literature [Zheng, Kennedy, Phan-Thien and Fan (1999)]. The evolution of
thermal residual stress with time is good agreement with the literature [Zoetelief,
Douven and Ingen Housz (1996)].

(3) The values of thermal residual stress decrease with the increasing holding pres-
sure and decrease with the increasing mold temperature. However, thermal residual
stress has slightly changes with the changes of melt temperature.

(4) The simulation of warpage proves that the 3D warpage model can describe the
warpage of the product and FENN method can solve the 3D warpage model. The
maximum values of the product warpage appear in two corners which are away
from the gate.

(5) The maximum value of warpage decreases with the increasing of holding pres-
sure and increases with the increasing of mold temperature. The influence of melt
temperature on warpage is slight.
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