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The MLPG(5) for the Analysis of Transient Heat Transfer
in the Frequency Domain

L. Godinho! and D. Dias-da-Costa?

Abstract: Transient heat conduction problems can be dealt with using different
numerical approaches. In some recent papers, a strategy to tackle these problems
using a frequency domain formulation has been presented and successfully applied
associated to methods such as the BEM. Here a formulation of the meshless local
Petrov-Galerkin (MLPG) is developed and presented to allow the analysis of such
problems. The proposed formulation makes use of the RBF-based version of the
MLPG and employs the Heaviside step function as the test function, leading to the
so-called MLPG(5). In addition, the method is associated with a visibility criterion
to allow the correct selection of neighbouring nodes for interpolation. This criterion
greatly simplifies the incorporation of discontinuities, such as cracks or holes, into
the numerical model, and allows handling more complex geometries. The model
is verified and application examples are presented, illustrating the usefulness of the
method in the analysis of realistic configurations.

Keywords: MLPG, Heaviside test function, Radial Basis Functions, Heat Trans-
fer, Frequency domain.

1 Introduction

Transient heat conduction problems can arise in the design and analysis of differ-
ent structures. Common examples include, for instance, the heat distribution and
evolution during the construction of dams or other structures and the simulation of
building heat losses and thermal bridges [see, for example, Branco et al. (2004)].

Typically, closed-form solutions are only known for extremely simple examples.
Therefore, more complex numerical strategies are frequently required to deal with
practical situations. The classical approaches tend to tackle this problem directly in
the time domain [Chang et al. (1973); Shaw (1974); Wrobel and Brebbia (1981);
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Dargush and Banerjee (1991)], whereas other approaches apply an inverse trans-
formation to the solution derived in a transformed domain [Cheng et al. (1992);
Zhu et al. (1994); Zhu and Satravaha (1996)], for instance using the Laplace trans-
form. In this case, accuracy can be severely compromised by the inversion pro-
cedure if specific measures are not adopted. Both approaches have already been
successfully applied using the finite element method (FEM), the finite difference
method (FDM) and the boundary element method (BEM) over the years. More
recently, meshless methods are gradually becoming very appealing due to the lack
of mesh dependency and robustness in dealing with complex geometries [Liu and
Gu (2001); Atluri (2004)]. Contributions can already be found, either in the time
domain [Shibahara and Atluri (2011)], or in transformed domains [Wang et al.
(2006)].

In order to avoid the limitations of the classical approaches, a different strategy was
recently introduced using the Fourier transform. In this case, the transform can be
applied directly to the governing differential equation and the solution is obtained
for each frequency. The corresponding time-domain solution is then computed by
means of the inverse Fourier transformation. The latter procedure was shown to
avoid the accuracy drawbacks of the transformed domain approaches [Anténio et
al. (2005); Godinho et al. (2006)] and to be rather effective using the Bound-
ary Element Method [Godinho et al. (2004;2006); Tadeu et al. (2006); Simdes et
al. (2012)] and the Method of Fundamental Solutions [Simdes and Tadeu (2005);
Godinho et al. (2006)]. However, since these approaches rely on the knowledge of
fundamental solutions, the implementations are still constrained to simpler settings.
For this reason, the authors herein propose an alternative comprehensive mesh-
less framework which allows significantly extending the capabilities of the Fourier
transformation procedure. For that purpose, the meshless local Petrov Galerkin
(MLPG) method is adopted with Radial Basis Functions (RBFs) [Xiao and Mc-
Carthy (2003); Atluri (2004); Wendland (2009)]. It is highlighted that the choice
of these interpolation functions is justified by the fact of being usually computation-
ally cheaper than the MLS approach, and additionally satisfying the delta function
property [Liu and Gu (2001); Shibahara and Atluri (2011)]. The latter property
allows easily enforcing essential boundary conditions, thus avoiding penalty or La-
grange multiplier methods.

Many types of RBFs may be adopted, e.g. thin plate spline, Multiquadric (MQ)
or Wendland type RBFs, some depending on a free (shape) parameter for which
the adequate choice is not a closed topic [Fasshauer and Zhang (2007); Sarra and
Sturghill (2009); Cheng (2012)]. Since this may influence the accuracy of the com-
puted results, this is also addressed in the manuscript.

In the MLPG there is the possibility of conveniently selecting the test function,
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leading to different classes of the method, usually identified by the abbreviation
MLPG followed by a number [Atluri and Shen (2002)]. In this case, the Heavi-
side step function is adopted in order to circumvent the need to compute some of
the required domain integrals in the weak-form of the Partial Differential Equa-
tion (PDE), leading to a MLPG(5) class method [Atluri and Shen (2002)]. Con-
sequently, there is no need to define a mesh, either for interpolation or integration
purposes. MLPG(5) methods have already been shown to be particularly accurate
and robust in different problems [Atluri and Shen (2002); Atluri (2004)], being
typically competitive with FEM or BEM approaches.

Finally, the implementation herein developed is also enhanced by a visibility crite-
rion which allows selecting the relevant neighbouring nodes for interpolation, thus
further extending the possibility of automatically dealing with complex geometries.
The proposed approach is then thoroughly discussed and realistic application ex-
amples are presented, illustrating the usefulness and convergence capabilities of the
method.

2 Mathematical formulation

2.1 Governing equations

To mathematically formulate the problem, we start by considering the standard
time-dependent heat diffusion equation, which can be written as:

19T(x.1)

V2T (x,t) =
(x1) K aJt

ey

where T (x,1) is the temperature at domain point x, K = k/(pc) is the diffusivity, ,
c and p are the thermal conductivity, specific heat and density, respectively.

Following previously published works [Anténio et al. (2005); Godinho et al.
(2004;2006); Simdes and Tadeu (2005); Tadeu et al.(2011); Simdes et al. (2012)]
and considering an initial temperature distribution defined by Tj(x), the application
of a Fourier transformation to variable ¢ allows writing equation (1) in the frequency
domain as follows:

10
K

V2T (x,0) + AT (x,0) = - To,(f)  with A% = 0)

which is a frequency dependent equation, where @ = 27 f is the angular frequency;
V2= 88722 + 88722 for 2D problems, and VZ = 59722 + g—yzz + 5722 for 3D problems. In this

A too 1
process, considering 7' (x,t) = 0 for t<0, the variable T'(x,0) = [ T(x,t)e '®dt

defines the Fourier transformed temperature.
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In the latter equation, when 7p(x) = O throughout the domain, the homogeneous
Helmbholtz equation is retrieved.

Different boundary conditions can be adopted, namely:

T(x,») = B(x,®) (Fourier transform of prescribed temperature), 3)

A

(. 0) = k0 (x.0)

= ¢g(x,m) (Fourier transform of prescribed flux along n)

“)

After solving equation (2) over a full range of frequencies, an inverse Fourier trans-
formation may be applied to recover the response in the time domain. For this
purpose, the following steps must be followed:

* the temperature variation curve at loaded boundaries must first be defined in
the time domain;

* a FFT is then applied to this curve, obtaining its frequency domain transform;

« the response of the system at each point and at each frequency (7'(x,®))
must be scaled by the corresponding amplitude of the transformed curve;

* an inverse FFT is then applied to the scaled response, obtaining the time-
domain temperature evolution curve at each point.

In this process, the Fast Fourier Transform (FFT) and inverse Fast Fourier Trans-
form (iFFT) implementations provided in Matlab are used. Further details can also
be found in Godinho et al. (2004) or Anténio et al. (2005).

2.2 Formulation of the MLPG

The MLPG formulation herein adopted requires a set of points scattered throughout
the domain and along its boundary. In this case, the following weak form of the
governing equation around each node i is considered [Atluri (2004)]:

To (X)
K

/sz(x,w)v d9+//12T(x,a))v dQ = — vdQ, 5)

Qi Qi Qi

where €; is the integration subdomain around the node i for the MLPG.
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Considering that the test function v is the Heaviside step function (with unit value
inside Q; and zero outside), and applying the divergence theorem to the first inte-
gral, the above equation can be rewritten in the more convenient form:

/VT(x,w).n dF+/VT(x,a)).n drmz/f(x,w)dgz
. ] Q;

rsz rjt (6)
B To(x) §(o) ’
= _/71( dQ—l—/ik dar

Q; Ly

in which I’y is the boundary of subdomain €; around the node, which can be de-
composed in I'y; (internal boundary), I'y; (essential conditions boundary) and I'ss
(where g is imposed); T stands for the Fourier transform of the temperature and §
is the imposed heat flow with respect to the normal direction (n) to the boundary. A
schematic representation of the local boundaries around differently located nodes
is illustrated in Figure 1.

r

t

Figure 1: Illustrative representation of a portion of the MLPG domain of analysis,
identifying the different local boundaries.

To approximate the solution of the PDE, a set of shape functions are built incorpo-
rating polynomial terms of the first order. Considering a point x, and defining an
interpolation domain around the point with M distinct nodes, the point temperature



298 Copyright © 2013 Tech Science Press ~ CMES, vol.96, no.5, pp.293-316, 2013

can be defined by:
T(x)=Y R/(x)xB/+ ) P/(x)xC/, @)
j=1 j=1

with the following constraints:

M . . .

Y P'(x’) x B/ =0,fori=1.NP, (8)
j=1

where R/ is the selected interpolation RBF, B/ and C/ are nodal amplitudes, NP
equals 3 when the polynomial terms are of first order, in that case P/ being the ;"
element of P(x,y) = [1 xy].

The following different RBFs are tested in the present work:

R/(x) = r’log(r) (thin plate spline RBF), )
R/(x) =vr2+c* (MQRBF), (10)

4

R/(x) = <1 - r) <4r + 1) (Wendland’s compact support RBF of order 2),
ro) ., \ 10

1D

where ‘c’ is a shape parameter, rg is the radius of the support domain and r =
||x — x| in all cases.

Writing equations (7) and (8) for a set of M nodes (x' to x™) within a local inter-
polation domain, the following system of equations can be defined:

T=RQ=Q=R,'T (12)

where Ry is a matrix given by:

B RI(XI) RM(XI) Pl(xl) PNP(XI) T
1 :XM M:XM 1 XM NP:XM
S e S T8y T (13)
: - : 0 0 0
| PNP(x!) ... PNP(xM) 0 0 0 ]

and T is the vector containing the Fourier transformed temperatures at the nodal
points of the interpolation domain and Q = [B! ... BM C' ... CMP|T.
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The Fourier transformed temperature at a generic point X, not necessarily coincid-
ing with a node, can now be written as:

A

T(x) =RT(x)R,'T = ®(x)T, (14)

where ®(x) = [@'(x) ... @¥(x)] are the nodal shape functions and R = [R!(x) ...
RM(x) P'(x) ... PNP(x)]” is the vector containing the values of the RBFs and poly-
nomial functions at point x. It should be noted that the constructed shape functions
in equation (14) possess the Kronecker’s delta property.

The weak form in equation (6) replaces most of the necessary integrations (more
importantly those involving second order derivatives) by boundary integrals at each
subdomain, thus significantly reducing the computational effort and improving the
accuracy. Using this weak form representation, the following system of equations
can be defined:

(K+A120)T(0) =F(0), (15)

where matrices K and C are independent of the frequency, ¥ stands for a vector
containing the Fourier transform of both boundary conditions and external loads,
and T is the vector of unknown nodal temperatures in the frequency domain. The
entries of these matrices and vectors can be defined as:

K= / Ve (x).n dl + / V! (x).ndr, (16)
Ty Iy
Cii= [ ¢/ de (17)
Q;
o T()(X) q‘
F=- [ dQ+/%dl“, (18)
Ql‘ st

where ¢/(x) stands for the shape function of node j.

If temperature 7'(®) is prescribed at a nodal point i, the corresponding entries in
matrices K and C, and in vector F, can simply by written as:

Kij = &, (19)
Cij=0, (20)

F(0) =T (o). D
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2.3 Support domain for interpolation

In the general case of a continuous domain, the choice of the neighbouring nodes
for the interpolation is a trivial task, and usually those within a pre-defined distance
(within the support domain) from the nodal point can be chosen. As suggested in
several works (as in [Xiao and McCarthy (2003)]), this distance can be given by
d = a.rpin, Where rpy;, is the distance from the nodal point to its closest neighbour
and ‘a’ is an arbitrary parameter. In this case, the choice of very large values for ‘a’
can lead to densely populated equation systems, whilst small values may originate
an insufficient number of points to construct the shape functions. Values between
2.5 and 5 are usually recommended [Xiao and McCarthy (2003); Atluri (2004)].

Although the above described process is quite straightforward to implement, and
leads to accurate results in simple geometries, the presence of discontinuities in
the domain (e.g. holes or cracks) can pose some problems in this interpolation. In
fact, if a thin discontinuity is present, the above strategy can misleadingly select
nodes which are on opposite sides of the discontinuity. To avoid this problem,
the authors herein make use of the following algorithm for choosing the nodes for
interpolation:

1. a “bounding box” is defined for the material domain under analysis, clearly
identifying the physical boundaries including all discontinuities;

2. for each node, an initial approximation to the interpolation subdomain is
obtained using the general procedure introduced above;

3. aline-of-sight analysis is performed between the analysis node and the nodes
in the neighbouring interpolation subdomain;

4. only nodal points “visible” from the analysis node are included in the inter-
polation (e.g. those for which a line segment between the analysis node and
the nodal point does not intersect any segment of the bounding box).

3 Accuracy of the model
3.1 Comparison with benchmark solutions

The accuracy and convergence of the proposed numerical model is first analysed by
considering a simple problem consisting of a circular homogeneous domain with
unit radius. The domain material has a density of 2500 kg/m?, a conductivity of
1.4 W/m/°K and a specific heat of 840 J/kg/°K. Within this medium, at x=-0.75 m
and y=0.0 m, a 2D point heat source is positioned (see Figure 3a). In the frequency
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Figure 2: Sketch illustrating the support domain of a node in the presence of a
material discontinuity.

domain, the effect of such source, positioned at x;, can be accounted assuming its
contribution to be given by:

. —i
Ps(x,%,,0) = 2 Hy (A x=xi]). (22)

where Héz) is the Hankel function of the second kind and order ‘0’.

The latter function corresponds to the fundamental solution of the homogeneous
PDE obtained from equation (2) when Ty (x) = 0. One should note that if the null
frequency needs to be calculated, then the right-hand-side term in equation (15)
cannot be computed. In this case, complex frequencies with a very small imaginary
part must be used (see [Anténio et al. (2005)] for details).

The proposed problem has been analysed making use of shape functions con-
structed using the three types of RBFs identified in equations (9)-(11). In the case
of Wendland’s RBF the support domain has the same radius as the interpolation
domain at the node. In addition, different values of the free parameter are tested for
the MQ RBF, trying to associate the optimal values to the average spacing between
nodal points (h) by ¢ = L.h (see in Figures 3b-d the selected point distributions and
corresponding average spacing). It should be noted that in the works of Xiao and
McCarthy (2003), concerning 2D elasticity problems, a good value of this parame-
ter was found to be obtained when L = 6. In all tests, the relative L2 error norm is
used with the following definition:

e = \/Z (Texact - Tnumerical) 2/ Z (Texact)z. (23)

Figure 4 exhibits the computed error (considering the nodal temperature values)
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Figure 3: Model used for analysing the accuracy of the proposed approach, in-
cluding: (a) a sketch of the problem geometry; and point distributions with: (b)
h=0.4 m; (c) h=0.25 m; and (d) h=0.125 m.

for the MQ RBF and varying values of L, when the average spacing between
nodal points is h=0.25 m (see Figure 3c). Two frequencies are analysed, namely
f=1x10""Hz and f = 1 x 107> Hz, together with two distinct boundary con-
ditions, i.e., null temperatures (Figure 4a) and null fluxes (Figure 4b). The pre-
sented results reveal a clear trend for the response to improve with higher values of
L = c/h. However, in Figure 4b, a minimum seems to occur for L = 8, after which
the accuracy starts decreasing due to numerical instability. This value is somewhat
higher than the one reported in [Xiao and McCarthy (2003)], indicating that for this
type of problem it can be more adequate to consider slightly higher values than the



The MLPG(5) for the Analysis of Transient Heat Transter 303

“optimal” ones observed in elasticity problems.
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Figure 4: Relative L2 error as a function of the free parameter of the MQ RBF for a
system with: (a) null boundary temperature; and (b) null flux boundary conditions.

Figure 5 illustrates the convergence of the response computed with the different
RBFs. Again, two frequencies are analysed, namely f = 1 x 107 Hz and f =
1 x 1073 Hz, both for null temperature and null flux boundary conditions.

The presented plots allow concluding that convergence is observed for the tested
RBFs and for the MQ with two different shape parameter values. An exception
occurs for the lower frequency when using the MQ RBF, for which case the con-
vergence is not evident in the plotted results; however, even for that case, the com-
puted results exhibit a very low error, which is less than 0.001 in the measured L2
error norm. Among the tested RBFs, it seems that Wendland’s compact support
RBF (here used with a support radius equal to the radius of the interpolation do-
main) provides the less accurate solutions, whereas the MQ RBF seems to provide
the best overall accuracy in the calculation. Indeed, it can be seen that the MQ RBF
has always the best performance in all tested cases, in particular when c=8h. The
TPS RBF can be considered to be an intermediate performer, which is very close in
terms of accuracy to the finite element solution (also presented in the plots). From
all obtained results, it can be concluded that both the TPS and the MQ RBF are
valid choices to build the MLPG shape functions, with better accuracy being given
by the MQ. However, it must be stated that the presence of a shape parameter need-
ing to be defined a-priori can pose some limitations to the use of these functions.
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Figure 5: Relative L2 error for different choices of RBFs. On the left, a system with
null boundary temperature is considered, whereas on the right null flux boundary
conditions are assumed. (a) and (b) correspond to results for f = 1 x 10~° Hz,
whereas (c¢) and (d) correspond to f =1 X 1073 Hz.

3.2 Analysis of a non-trivial model

To further scrutinise the influence of the different RBFs and of a possible free pa-
rameter of those functions, a more complex configuration is now analysed. For
this case, a rectangular domain with 2.0 m x 1.0 m, with a circular cavity of radius
0.5 m, is studied; as in the previous example, the solid domain has a density of 2500
kg/m?, a conductivity of 1.4 W/m/°K and a specific heat of 840 J/kg/°K. Instead of
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Figure 6: Non trivial domain used for assessing the accuracy of the MLP(5): (a)
schematic representation; (b) point distribution PD1; (c) point distribution PD2; (d)
point distribution PD3.

a domain source, boundary conditions corresponding to a fixed temperature of 40°
and of 20° are enforced, respectively, at the right boundary and along the internal
cavity’s boundary; along the remaining boundaries, null fluxes are considered. This
configuration is illustrated in Figure 6a.

Since no closed-form solution is known for this case, alternative strategies must
be used to address the accuracy of the model. Here, a comparison is performed
with a reference numerical solution computed with the Boundary Element Method
[see, for example, Godinho et al. (2004)], using a discretisation with 400 ele-
ments. In the following analysis, frequencies ranging from f = 1 x 1077 Hz to
f =1 x 107> Hz are analysed using three different point distributions, comprising,
respectively, 166 (PD1), 342 (PD2) and 679 (PD3) points distributed throughout
the domain and the boundary of the problem. These distributions are illustrated in
Figures 6b, 6¢ and 6d.

Figure 7 illustrates the errors computed using the L2-norm defined in equation (20)
with respect to the reference numerical solution. For this purpose, a full range of
the RBF free parameter ¢ = L h, with L ranging from 1 to 20 was considered. The



306 Copyright © 2013 Tech Science Press ~ CMES, vol.96, no.5, pp.293-316, 2013

obtained results allowed selecting an optimal value of L, minimising the error norm
at the full set of nodes. Clearly, the right column of Figure 7 reveals that the optimal
value of the parameter depends on the analysed frequency. Moreover, in the case
of a coarse point distribution (PD1), the variation can be significant, ranging from
14 at the lower frequency, to 5 at the higher frequencies. Nevertheless, for the less
coarse distributions (PD2 and PD3) this variation is less noticeable, although still
occurs. It is important to note from the obtained results, that no single “optimal”
value of L can be defined covering all cases.

To assess the influence of this variation in the error norm, the left column on Figure
7 illustrates the error for the three distributions. Furthermore, for each distribution
the following several curves are depicted using: a MQ with “optimal” L; a MQ with
L = 6, as suggested by Xiao and McCarthy (2003); a MQ with L = 8, as adopted
in the previous section; a TPS RBF; and a FEM model. In all plots, the solution
computed using the TPS RBF is always less accurate than the ones computed with
the MQ RBEF, confirming the findings of the previous section; additionally, the FEM
solution always presents lower accuracy than the MQ RBFE, but it remains more
accurate than the TPS RBF. Clearly, when using the MQ RBF in the MLPG(5)
model, the results computed with L = 8 seem to be very close to those computed
with the optimal L, and only for the PD3 (finer) distribution the difference between
both cases becomes more evident. Again, this suggests that using ¢ = 8 & as the
free parameter of the MQ RBF is a very simple but quite good and safe strategy to
tackle frequency domain heat transfer problems. However, if maximum accuracy is
required, some strategies may be devised to optimise the value of the free parameter
without requiring a reference solution. Recent works [Godinho and Tadeu (2012)]
suggest a procedure based on the minimisation of the average domain residual to
optimise this parameter; although in that case the authors apply that strategy to the
so-called Kansa’s method, this can be easily extended to the MLPG(5). It should be
noted, however, that those alternatives require the problem to be solved for several
values which are used to retrieve the “optimal” value or, alternatively, the use of
elaborate and time-consuming optimisation routines.

4 Numerical applications

The proposed MLPG(S) formulation is herein applied to simulate transient heat
conduction problems involving complex geometries. Two different configurations
are addressed and discussed, considering for both cases a material with a density
of 2500 kg/m?, a conductivity of 1.4 W/m/K and a specific heat of 840 J/kg/K. It is
highlighted that the MQ RBF is adopted in all cases. In addition, a total of 257 fre-
quencies (including the null frequency) is used for the calculation, considering an
increment of Af = 2.5 x 10~ ®Hz, and using the heating curve described in Figure 8
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Figure 7: Results for the non-trivial test case using the PD1((a) and (b)), PD2((c)
and (d)) and PD3((e) and (f)) point distributions. The left column exhibits the
relative L2 error norm results and the right column exhibits the optimal values of L

calculated for each frequency.
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(in the time domain). A small numerical damping is introduced in the calculations,
by using complex frequencies defined as @, =27 f — 0.7 x 2xAf, and its effect is
later taken into account when computing the result in the time domain, by rescaling
the time window by the factor e07*2%A/ 7
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o

Figure 8: Heating curve used in the examples.
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Figure 9: MLPG point distribution, using 311 points distributed throughout the
domain and boundaries.

4.1 Rectangle with multiple cavities

The geometry selected for the first example consists of a rectangular block, with
the properties defined above and incorporating a total of 5 holes. A total of 311
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Figure 10: Temperature distribution for different time instants and for null temper-
atures (left) and flux (right) at the top boundary of the model: (a) t = 0.1 x 100 s;
(0)t=0.2x10°s; (c)t =0.5x10°s; and (d) r = 0.75 x 10° s.

nodal points were scattered throughout the domain and boundaries, as shown in
Figure 9. It should be noted that no special care was taken in order to enforce a
regular distribution of those points. The heating curve represented in Figure 6 is
imposed at the bottom of this model as a Dirichlet’s boundary condition, whereas
two different boundary conditions are tested at the top boundary of the model: null
temperature or null heat flux.

Figure 10 illustrates the temperature distribution throughout the domain at differ-
ent time instants, namely for = 0.1 X 100s,t=02x%x10°s,t=0.5x 10° s and
t =0.75 x 10% s. At the first instant, the results for both top boundary conditions re-
veal very similar patterns, although a faster heating of the domain is already slightly
noticeable in the case of null flux conditions (right column of Figure 10). As time
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progresses, the differences between both cases become more visible, and the pres-
ence of non-zero temperatures at the top surface of the model for null flux condi-
tions is evident in that case. For r = 0.5 x 10° s, the model with null top temperature
shows a progressive decrease of the temperature from bottom (10°C) to top (0°C),
while much higher temperatures are visible for the null flux condition at the top
region of the model. For the latter, it is interesting to note that the intermediate
and top horizontal walls on the right side exhibit lower temperatures. This is due
to the longer travel paths between the hot lower surface and those regions. For the
last instant, already during the descending part of the heating curve, an inversion of
the temperature profile between the two tested models is reported. In this case, the
lower temperatures occur at the bottom, when null fluxes are enforced, and at the
top, when null temperatures are enforced.

To validate the presented results, the same calculation was performed using a time
marching semi-implicit algorithm (with At = 250 s) and a finite-element formula-
tion (with a total of 2799 nodes). Comparison with the proposed model is presented
in Figure 11a and 11b for a receiver located at x=0.7437 m and y=0.2184 m, also
for the two tested cases. As can be seen, there is an excellent match between the
two methods, with the temperature evolution computed in the time domain being
almost identical for the two models. In Figures 11c and 11d the relative difference
between the two models, calculated as (Trgy — Tyrrg)/ max(Trey ), is illustrated.
This confirms that the proposed method provides good results irrespectively of the
presence of complex geometries, with maximum relative differences between meth-
ods of about 1.5% for the worst case.

4.2 Block with a thin crack

To further test the MLPG(5) model, a second example is considered which consists
on a rectangular domain (1.0 m x 0.4 m) with a thin embedded crack. This model
is described using 1170 nodal points and the visibility algorithm is applied in order
to clearly identify the two sets of nodes placed on each side of the crack surface,
thus avoiding interpolations between opposite sides. A global view of the model
is shown in Figure 12a, and a detailed view of the crack region can be seen in
Figure 12b. The heating curve of Figure 8 is applied at the leftmost surface of the
model, whereas null flux is considered for all remaining surfaces (including crack
surfaces).

Figure 13 shows the temperature distribution computed at two different time in-
stants, one at f = 0.3 x 10° s (at which the maximum temperature is reached at the
left wall) and the other at = 0.6 x 10 s (when the temperature is decreasing at the
left wall). The first stage (r = 0.3 x 10° s) clearly shows that the maximum tem-
perature has already been reached at the leftmost surface, whilst at the rightmost
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surface lower temperatures are still registered. However, the most striking feature
in this plot is the temperature disparity between both sides of the crack, clearly
evidencing that no energy is crossing this surface and that a correct choice of inter-
polation points is being made. For the later time (t = 0.6 x 10° s), slightly higher
temperatures are registered at the right side of the model, whereas a visible temper-
ature decrease is identified at the left boundary. The contrast between both sides
of the crack is still noticed, while above the crack a perfect continuous temperature
field can be observed.
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Figure 11: Comparison of the computed responses at a single receiver located at
x=0.7437 m and y=0.2184 m for the case of null temperatures (a) and null fluxes
(b) at the top boundary of the model (the continuous line represents the calculation
using the proposed strategy, whereas the circular symbols are representing the re-
sponse of a time marching FEM algorithm). In (c) and (d) the relative discrepancy
between both responses is presented.

o

As in the previous case, the results have been computed at a specific domain point
(now positioned at x=0.7796 m and y=0.3354 m) using a finite element time-
marching algorithm. The corresponding results computed with that strategy and
with the proposed method are illustrated in Figure 14a. As in the previous exam-
ple, a perfect agreement is observed, with maximum relative discrepancies between
the two approaches of less than 1% (Figure 14b).
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Figure 12: Second example, consisting of a rectangular domain with a thin crack:
(a) global geometry and point distribution; and (b) detail of the point distribution
around the thin crack.
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Figure 13: Temperature distribution along the domain for: (a) # = 0.3 x 10° s; and
(b)1=0.6x10°s.

5 Final remarks

The use of the Fourier transform for solving transient heat transfer problems can
be found in the literature. However, existing contributions are usually limited con-
cerning the complexity of the tackled problems. This fact is naturally related with
the limitations inherited from the adopted numerical framework (e.g. the boundary
element method (BEM) or the method of fundamental solutions (MFS)). Aiming
at solving these limitations, an entirely general framework was herein proposed,
which promptly tackles complex geometric settings typically found in real prob-
lems and can handle imposition of initial conditions without requiring additional
strategies. In addition, the proposed framework can be easily extended to incor-
porate space-dependent thermal properties, which are typically cumbersome to im-
plement in BEM or MFS models. In this scope, it was proposed and discussed the
implementation of the Meshless local Petrov-Galerkin for transient heat diffusion
problems using the Heaviside test (MLPG(5)) function and RBFs to construct the
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Figure 14: In (a) the computed responses at a single receiver located at x=0.7796 m
and y=0.3354 m are represented (the continuous line represents the calculation us-
ing the proposed strategy, whereas the circular symbols are representing the re-
sponse of a time marching FEM algorithm). In (b), the relative discrepancy be-
tween both responses is presented.

shape functions. In this approach, the solution of the problem is calculated in a
transformed (frequency) domain.

The proposed method was tested for different types of RBFs, and comparison
with reference results obtained using a closed-form solution revealed that good
responses can be retrieved. Among the tested RBFs, it was found that the MQ RBF
can be a good choice, with accurate results and a fast convergence. Furthermore,
it was also observed that, in this case, a good choice of the shape parameter can
be ¢ = 8 h, which is somewhat higher than what is usually suggested for elasticity
problems. The topic of the selection of this parameter is not a closed matter and
may require the use of optimisation algorithms if high accuracy is needed. It should
also be highlighted that results computed with the TPS RBF also evidenced a good
accuracy, although with lower convergence rates.

The method was also applied to calculate the evolution of the temperature within
complex shaped domains, incorporating multiple holes or a crack, for which a vis-
ibility algorithm was also implemented to avoid erroneous choices of the interpo-
lating neighbours. Comparison with a standard time-marching algorithm applied
together with finite element models also revealed the good accuracy of the method.
One should note that, in this case, the response is first calculated in the frequency
domain and then transformed to time domain by means of an inverse FFT.

Finally, it must be mentioned that the implemented method is truly meshless, since

no connectivity between nodes is required, neither it becomes necessary to use any
kind of background mesh for integration purposes.
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