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Numerical Solutions for Free Vibration Analysis of Thick
Square Plates by the BEM
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Abstract: In this work, the BEM is applied to obtain the numerical solutions for
free vibration analysis of thick square plates with two edges simply supported or
clamped, and the other two edges free. A formulation based on Reissner’s theory
is used here, which includes the contribution of the additional translational inertia
terms to the integral equation of displacements and internal forces. The boundary
element method is used to discretize the space, where it is employed the static
fundamental solution. In literature, the responses for the kind of problem addressed
here are very important in the hydroelastic analysis of very large floating structures
(VLFS) which are commonly modeled as plates with free edges. To verify the
accuracy this formulation some analyses are presented at the end of the paper.
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1 Introduction

A vast literature exists for free vibration analysis of square plates, but there are
still some hypotheses either not introduced or not sufficiently tested that need to be
studied. Plates, in general, are three dimensional structures used in many areas of
applications such as in the civil engineering and in the aerospace, marine and nu-
clear industries, among others. In practical applications, two-dimensional theories
may be considered to analyze plates.

In literature, there are three theories to study plates. The Kirchhoff’s theory does
not take into account the effect of shear deformation and rotatory inertia and is lim-
ited to thin plates, being it well described in Timoshenko and Woinowsky-Krieger
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(1959), Leissa (1973), Shames and Dym (1985). Another plate theory was pro-
posed in the decade of 1940 [Reissner (1944); Reissner (1945); Reissner (1947)],
and considers the effect shear deformation and requires three boundary conditions,
instead of two, as established by the thin plates theory. The third is the Mindlin’s
theory that takes into account the effect of shear deformation based on a proposed
displacement field through the plate thickness and incorporated the effect of rota-
tory inertia [Mindlin (1951); Mindlin, Schacknow, and Deresiewicz (1956)].

Due to difficulty in finding close solutions for free vibration analysis of plates,
numerical methods are employed to compute the field variables such as: the collo-
cation method [Takashi and Jin (1984)]; the boundary element method [Banerjee
(1994)]; the finite element method [Bathe (1996)]; the meshless method [Gu and
Liu (2001); Qian, Batra, and Chen (2003)]. Following this search line there are
some methods that simulate plate as 3D bodies [Cheung and Chakrabarti (1972);
Liew, Hung, and Lim (1993); Liew, Xiang, and Kitipornchai (1993); Malik and
Bert (1998)].

Nowadays, we are facing a population growth and a corresponding expansion of
urban centers as is the case of Japan. For solve this problem type, engineers have
proposed the construction of very large floating structures (VLFS) to long coast-
lines. In literature, VLFS may be classified under two broad categories, namely
the pontoon-type and the semi-submersible type. The pontoon-type VLFS may
be modeled as plates with free edges [Wang, Wang, Watanabe, Utsunomiya, and
Xiang (2001); Watanabe, Utsunomiya, Wang, and Xiang (2003); Watanabe, Ut-
sunomiya, and Wang (2004); Chen, Wu, Cui, and Jensen (2006)], thus using bound-
ary conditions adequate in the formulation, a set of equations is obtained, from
which it is possible to compute modal shapes and stress-resultants.

Recently, two theories of shear deformable plate vibrations that account for the
influence of the transverse normal stress components were presented in Batista
(2011), being one of them based on the Mindlin’s theory and the other on the Reiss-
ner’s theory. Moreover, the transverse normal stress components are included in the
boundary element method (BEM) for analysis of free and forced vibration of thick
elastic plates [Pereira, Mansur, Karam, and Carrer (2011); Pereira, Karam, Carrer,
and Mansur (2012)].

This work attempts to present accurate numerical results for free vibration analysis
of thick square plates with two edges simply supported or clamped, and the other
two edges free. For this, the BEM is applied to obtain the numerical solutions for
free vibration analysis of thick square plates. A formulation based on Reissner’s
theory is used here, which includes the contribution of the additional translational
inertia terms to the integral equation of displacements and internal forces. The
boundary element method is used to discretize the space, where it is employed the
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static fundamental solution. In literature, the responses for the kind of problem
addressed here are very important in the hydroelastic analysis of very large floating
structures (VLFS) which are commonly modeled as plates with free edges.

In this work, an indicial notation is used, where Latin subscripts vary from 1 to 3,
while the Greek subscripts range is from 1 to 2.

2 Basic equations

Consider a plate of thickness h made from homogeneous and isotropic elastic ma-
terial with the modulus of elasticity E, Poisson’s ratio ν and mass density ρ . The
equilibrium equations governing its free vibrations, for an infinitesimal element of
the thick elastic plate in a Cartesian coordinate system xi, are given by

Mαβ ,β −Qα =
ρh3

12
φ̈α (1a)

Qα,α = ρhẅ (1b)

where overdots indicate to differentiation with respect to time t. Mαβ and Qα are
the moments per unit length and the shear forces per unit length, respectively. The
other variables involved in the problem are the generalized displacements which
are the rotations φα and the vertical deflection w.

Due to hypothesis of Reissner (1944), it is admitted linear distribution of stresses
through the thickness of the plate defined as

σαβ =
12
h3 Mαβ x3 (2)

whose loading conditions at x3 = ±h/2, for upper and lower surfaces of the plate
and the considerations made in this work, are given by

σα3 = 0 and σ33 = 0 (3)

Reissner (1945) in your work, consider which the generalized displacements can
be represented by weighted averages over the thickness of the plate, related to real
displacements uα and u3 defined as

φα =
12
h3

+h/2∫
−h/2

uαx3 dx3 (4a)

w =
3

2h

+h/2∫
−h/2

u3

[
1 −

(
2x3

h

)2
]

dx3 (4b)
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The equations of motion of the three-dimensional elastic theory, in terms of the real
displacement, can be written as

σαβ ,β + σα3,3 = ρ üα (5a)

σ3β ,β + σ33,3 = ρ ü3 (5b)

where σi j are the normal stresses for i = j and the shear stresses for i 6= j.

To determine the stress-force relations, the five equations above are used. Thus,
after all mathematics manipulation one has

σα3 =
3
2h

Qα

[
1 −

(
2x3

h

)2
]

and σ33 =−
1
2

ρ ẅ

[
1 −

(
2x3

h

)2
]

x3 (6)

Note that the expression of the normal stress σ33 presents one additional term of
translational inertia, due to the hypothesis assumed, that is commonly disregarded
in the thick elastic plate theory.

Based on Reissner’s theory, the resultant moments and shear forces can be written
as [Pereira, Mansur, Karam, and Carrer (2011)]

Mαβ = mαβ − kρhẅδαβ with mαβ =
1
2

D(1−ν)

[
2χαβ +

2ν

(1−ν)
χγ,γ δαβ

]
(7a)

Qα =
5
6

Ghγα (7b)

where D = Eh3/12(1−ν2) is the flexural rigidity of the plate, G = E/2(1+ν) is
the shear modulus, δαβ is the Kronecker delta, and k = ν/6(1−ν)λ 2 with λ 2 =
10/h2.

The expressions of the generalized strains for the linear theory, in terms of the
generalized displacements that appear in Eq. (7) can be written as

Flexural strains components: καβ = 2χαβ = φα,β +φβ ,α (8a)

Transverse shear strains components: γα = φα +w,α (8b)

For simplicity, from this point on, the generalized displacements φα and w will be
written generically as ui.
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3 Boundary integral equations

Let us consider Ω as being the domain represented by the middle surface of the
plate, and Γ be its contour. Thus, the following initial conditions are considered in
the domain:

Initial displacements: ui(x,0) = ui(x) (9a)

Initial velocity: u̇i(x,0) = u̇i(x) (9b)

The prescribed boundary conditions on Γ for the three generalized directions of the
plate are defined by

ui = ūi on Γu (10a)

pi = p̄i on Γp (10b)

so that Γ = Γu +Γp, and pi are the generalized surface forces, defined as

p̄α = M̄αβ nβ and p̄3 = Q̄β nβ (11)

where nβ is the outward normal vector to the boundary Γ.

From the above considerations, the integral equation for displacement can be writ-
ten for three generic directions as [Pereira, Mansur, Karam, and Carrer (2011)]

ci j(ξ )u j(ξ , t) =
∫
Γ

p j(x, t)u∗i j(ξ , x)dΓ(x)−
∫
Γ

p∗i j(ξ , x)u j(x, t)dΓ(x)

− ρh3

12

∫
Ω

üα(x, t)u∗iα(ξ , x)dΩ(x)−ρh
∫
Ω

ü3(x, t)u∗i3(ξ , x)dΩ(x)

+ kρh
∫
Ω

ü3(x, t)u∗iα,α(ξ , x)dΩ(x)

(12)

where ξ and x are source point and field point, respectively. The above equation
holds for internal points with ci j = δi j and for boundary points, with ci j = δi j/2 for
smooth boundaries. In this equation, the asterisk indicates the corresponding terms
refer to the static fundamental solution [Vander Weeën (1982)].

Eq. (12) presents three terms of inertia, where the last term corresponds to an
additional part of the integral equations of BEM for free vibration analysis of thick
elastic plate. In next section, will be shown terms like this within of the integral
equations for moments and shear forces.
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4 Integral equations of the stress-resultants

The integral equations for moments and shear forces at internal point ξ are ob-
tained from Eq. (7), where the differentiation of displacements is substituted by
the derivatives of the integral equation (12). Thus, the resulting equations can be
written as

Mαβ (ξ , t) =
∫
Γ

pk(x, t)u∗αβk(ξ ,x)dΓ(x)−
∫
Γ

uk(x, t)p∗
αβk(ξ ,x)dΓ(x)

− ρh3

12

∫
Ω

üη(x, t) u∗
αβη

(ξ ,x)dΩ(x)−ρh
∫
Ω

ü3(x, t) u∗
αβ3(ξ ,x)dΩ(x)

+ kρh
∫
Ω

ü3(x, t) z∗
αβ

(ξ ,x)dΩ(x)

(13a)

and

Qβ (ξ , t) =
∫
Γ

pk(x, t)u∗3βk(ξ ,x)dΓ(x)−
∫
Γ

uk(x, t)p∗3βk(ξ ,x)dΓ(x)

− ρh3

12

∫
Ω

üη(x, t) u∗3βη
(ξ ,x)dΩ(x)−ρh

∫
Ω

ü3(x, t) u∗3β3(ξ ,x)dΩ(x)

+ kρh
∫
Ω

ü3(x, t) z∗3β
(ξ ,x)dΩ(x)

(13b)

where the tensors of the third order that appear with the asterisk in Eq. (13) repre-
sent the static fundamental solution [Karam and Telles (1988); Pereira (2009)].

5 Numerical procedure

As shown in Fig. 1, the boundary Γ is discretized by quadratic elements, each one
denoted by Γ j, and the domain Ω is discretized by constant triangular cells, with
Ωl being the domain of each cell, and thus, the integral equation present in the
previous section can be solved.

BEM guidelines consider boundary element and internal cell approximations as
follows. The displacements u j and surface forces p j for an element j are computed
from its nodal values, un and pn, according to the following approximations

u j = Nun and p j = Npn, (14a)
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Figure 1: Discretization with boundary elements and internal cells.

while the translational inertia term ül at internal points are approximated by

ül = N̄üm (14b)

By substituting Eq. (14) into (12) and from these resulting equations, we write the
equations for all boundary nodes and for all cell nodes, with nodes being colloca-
tion points ξ . Then, the following system of equations is formed:[

Hbb 0
Hdb I

]{
ub

ud

}
=

[
Gbb 0
Gdb 0

]{
pb

0

}
−
[

0 Mbd

0 Mdd

]{
0
üd

}
(15)

The superscripts b and d in the above matrix equation correspond to the boundary
and domain, respectively. Moreover, the first superscript corresponds to the source
point, while the second concerns to the field point.

The integrals over the boundary elements and internal cells are computed numer-
ically, using Gaussian quadrature. In the case of singular integrals, special proce-
dures can be used for the integrals on the boundary [Telles (1987); Karam (1992)],
while that the finite part numerical quadrature is utilized for the integrals in the
domain [Kutt (1975)].

On the hypothesis of harmonic response, the displacement field is expressed as

u = φφφ(x)sin(ω t) (16)

where φφφ(x) is the amplitude of the nodal displacement and ω is the natural fre-
quency of plate.

By substituting Eq. (16) into (15) yields to the following eigenvalue problem:

(A−λ I)φφφ d = 0 with λ = 1/ω
2 (17a)
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and

A = Mdd − K∗K−1 Mbd (17b)

In the BEM method, A is a real matrix that is commonly sparse, non-symmetric
and non-positive definite. This form, to evaluate the natural frequency of plate
is necessary to use an iterative algorithm to solve the eigenvalue problem [Smith,
Boyle, Dongarra, Garbow, Ikebe, Klema, and Moler (1976)].

6 Numerical examples

Consider a square plate with side length b = 1.0, mass density ρ = 1.0, modulus
of elasticity E = 1.0 and Poisson’s ratio ν = 0.3. Fig. 2 shows the two problems
analyzed, as depicted in Fig. 2(a) and Fig. 2(b). In both cases the plate is discretized
by a mesh with 40 boundary elements and 400 internal cells, as shown in Fig. 2(c).

 

 

 

 

 

 

 

 

  

 

  

  

 

  

 

  

Figure 2: Problems for the analysis: (a) Square plate with SFSF boundary condi-
tions, (b) Square plate with CFCF boundary conditions, (c) Mesh with 40 boundary
elements and 400 internal cells.

In this work, two symbolism are used for identify a square plate with the edges
x = 0, y = 0, x = b, y = b as having boundary conditions. For example, the sym-
bolism SFSF having simply supported, free, simply supported, and free boundary
conditions, respectively. Thus, boundary conditions must be satisfied for a sim-
ply supported edge, Mx = φy = w = 0, and for a free edge, Mxy = My = Qy = 0.
The another symbolism CFCF having clamped, free, clamped, and free boundary
conditions, respectively, whose boundary conditions must be satisfied for clamped
edge, φx = φy = w = 0.

The boundary element method described in this work has been applied to compute
the non-dimensional frequency parameter, ∆ =

(
ω b2/π2

)√
ρh/D. Thus, the two

examples presented here tries to establish the influence of the additional transla-
tional inertia term in the formulation. Numerical results are made to various thick-
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nesses of plates, where are considered thickness-side ratios h/b covering the range
0.01 to 0.5.

To validate the accuracy of the present method, comparison studies have been car-
ried out for cases where the solutions for exact three-dimensional analysis (3D
DQM) and the Mindlin theory analysis (2D Ritz) are available.

Table 1 presents the lowest eight frequency parameters for square plate with SFSF
boundary conditions with different thickness-side ratios h/b. In this table, are pre-
sented two responses using the boundary element method, i.e., the results with the
additional translational inertia terms (Present), and the results without these terms
(BEM). It should be observed that for small values of the thickness-side ratio, the
additional terms have no influence. While that for the others thickness-side ratios
of plate, the responses already show some differences. For thickness-side ratios
h/b = 0.1 and 0.2, one may observe which the responses of the present formula-
tion with the inertia terms are better than 2D Ritz method. In Table 2, the same
observations can be made for square plate with CFCF boundary conditions.

7 Conclusion

In this work, the BEM is applied to obtain the numerical solutions for free vibration
analysis of thick square plates with two edges simply supported or clamped, and the
other two edges free. A formulation based on Reissner’s theory is used here, which
includes the contribution of the additional translational inertia terms to the integral
equation of displacements and internal forces. The boundary element method is
used to discretize the space, where it is employed the static fundamental solution.
The numerical simulations carried out with the additional term considered by the
present formulation modified results in comparison with results obtained without
this term and its contribution in the analyses carried out here was more relevant for
thickness-side ratio h/b = 0.20. The responses for the kind of problem addressed
here are very important in the hydroelastic analysis of very large floating structures
(VLFS) which are commonly modeled as plates with free edges.
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