Copyright © 2013 Tech Science Press CMES, vol.95, no.5, pp.431-452, 2013

Comparison and Performance Analysis of Multiple
CPU/GPU Computing Systems — Resin Infusion Flow
Modeling Application

R.H. Haney' and R.V. Mohan?

Abstract: The use of Graphics Processing Units (GPUs) as co-processors for
single CPU/GPU computing systems has become pronounced in high performance
computing research, however the solution of truly large scale computationally in-
tensive problems require the utilization of multiple computing nodes. Multiple
CPU/GPU computing systems bring new complexities to the observed performance
of computationally intensive applications, the more salient of which is the cost of
local CPU-GPU host and intra-nodal communication. This paper compares and an-
alyzes the performance of a computationally intensive application represented by
resin infusion flow during liquid composite molding process for the manufacture
of structural composites application via two distinct multiple CPU/GPU comput-
ing system architectures. Resin flow infusion modeling during liquid composite
molding process is the engineering application of interest in the present study. The
global domain is partitioned into a series of sub-domains each of which is solved
at the local host and reassembled for the final solution as per the domain decom-
position methodology. The candidate application, as with many scientific and en-
gineering applications, uses the Finite Element Method (FEM) to computationally
model the governing physics based mass and momentum conversation equations.
FEM discretization results in large sparse linear equation systems that are solved
iteratively for this class of free surface, moving boundary value problem. Com-
putational analysis software for the GPU environment has been developed using
CUDA API for the iterative linear equation system solver based on the precondi-
tioned conjugate gradient method for the solution of linear system of equations.
These linear equation systems are solved multiple times with intra-nodal commu-
nication utilized, resulting in the converged global system. The interplay of local
host CPU/GPU and intra-nodal communication creates mixed performance results
for the presented candidate application. The software/hardware factors that af-
fect performance for each architecture are examined and discussed in this paper —

I'North Carolina A&T State University, Greensboro, NC, U.S.A.
2 North Carolina A&T State University, Greensboro, NC, U.S.A, For Correspondence.

432 Copyright © 2013 Tech Science Press ~ CMES, vol.95, no.5, pp.431-452, 2013

understanding how the presented candidate application’s observed performance is
effected by both the individual multiple CPU/GPU computing system architecture
and algorithmic/software design is critical to optimize many modern high perfor-
mance applications which employee the GPU as a hardware accelerator.

Keywords: resin flow infusion modeling, sparse matrix, performance, multiple
GPUs.

1 Introduction

The Graphics Processing Unit (GPU) is inexorably becoming common place for the
acceleration of computationally intensive applications for single CPU/GPU com-
puting systems [Hamada, Narumi et al. (2009); Kuznik, Obrecht et al. (2010);
Corrigan, Camelli et al. (2011); Bustamam, Burrage et al. (2012)] as ever larger
computing challenges seek to leverage the dramatic computational power expressed
with the modern GPU device [Fatahalian and Houston (2008); Garland, Le Grand
et al. (2008); Grozea, Bankovic et al. (2010); Bustamam, Burrage et al. (2012)].
However, truly large scale high performance computing applications necessitate
the use of multiple computing nodes. The execution of computationally intensive
applications within the context of multiple CPU/GPU computing systems has been
shown with varying degrees of success [Karunadasa and Ranasinghe (2009); Corri-
gan, Camelli et al. (2011); Kim, Seo et al. (2012); Lee and Vetter (2012)]. This pa-
per examines the performance of computational analysis software for resin infusion
flow modeling during liquid composite molding process for structural composites
via two distinct multiple CPU/GPU computing systems — exposing the effects of
different hardware and software influencing factors.

Liquid Composite Molding (LCM) is a popular process used for the manufacture of
polymer composite structures. The process involves injection of a polymeric resin
inside a mold cavity filled with an oriented, woven dry fiber preform [Mohan, Ngo
et al. (1996); Mohan, Shires et al. (2001)]. The resin infusion flow modeling and
simulation of the LCM process involves the isothermal process flow solution based
on the conservation of resin mass as the governing equation in FEM computational
developments. The governing coupled mass and momentum conservation equa-
tion is discretized and the fill factors and pressure values are solved in an iterative
manner [Mohan, Ngo et al. (1996); Mohan, Shires et al. (2001)]. The computa-
tionally intensive portion of the analysis code is from the multiple calls to the linear
equation system solver that is solved using the Preconditioned Conjugate Gradient
(PCG) method.

The PCG iterative linear equation system solver consists of a set of matrix-vector
operations [Shewchuk (1994)] that map well to the natural matrix structure of the

Resin Infusion Flow Modeling Application 433

GPU using Nvidia Compute Unified Device Architecture (CUDA) API [Nvidia
(2012)]. The performance results of two different multiple CPU/GPU computing
systems are examined and discussed, offering possible avenues of further investiga-
tion for both rapid and robust code developments using the GPU that can be applied
for the candidate application, and translate well to other legacy FEM based codes
as well. The present paper is organized as follows.

The GPU and its evolution are briefly discussed in the first section, as well as the
details of the CPU and GPU hardware employed in the present work. The next
section provides a description of the candidate application and includes the details
of the physical problem, model equations, implementation, and the computation
solution algorithm involved. A description of the GPU implementation and devel-
opment for the resin flow infusion modeling is presented in the following section.
The final section examines and discusses the computational performance of the
presented candidate application providing analysis, comparisons, and conclusions.

2 Graphical Processing Units

The modern GPU consists of heavy concentration of transistors in the Arithmetic
Logic Units (ALUs) and wide data bus [Boggan and Pressel (2007); Luebke and
Humphreys (2007); Fatahalian and Houston (2008)]. The memory architecture has
remained relatively simple to facilitate quicker access to input data. Unlike the CPU
[Rumpf and Strzodka (2005); Luebke and Humphreys (2007)], GPU separates the
configuration/instruction from the data to be operated on by the processor’s large
number of ALUs.

2.1 GPU evolution

The gaming industry had been a key driving force for the improvement in the com-
puting power of GPUs over the years [Buck, Foley et al. (2004); Boggan and
Pressel (2007); Luebke and Humphreys (2007)]. Images are rendered using matrix
operations applied simultaneously to large sets of data at the same time. Graph-
ics hardware receives the instruction/configuration prior to the influx of the data to
be operated, a natural Single Instruction Multiple Data (SIMD) environment seen
in many parallel systems [Wilkinson and Allen (2005); Fatahalian and Houston
(2008)]. Newer and more detailed games required faster processing of matrix op-
erations as well as a wider data bus to enable rapid execution. Transistors were
concentrated for floating point operations to facilitate large number of matrix op-
erations [Boggan and Pressel (2007)] inherent in graphical processing hardware.
The CPU on the other hand needed to maintain flexibility [Patterson and Hennessy
(1998); Silberschatz, Galvin et al. (2003)]. Both CPU and GPU must deal with
latency, and do so in distinctly different ways based on their architecture. The CPU

434 Copyright © 2013 Tech Science Press ~ CMES, vol.95, no.5, pp.431-452, 2013

maintains complex memory hierarchy to execute multiple processes in quick suc-
cession to deal with latency [Patterson and Hennessy (1998); Silberschatz, Galvin
et al. (2003); Boggan and Pressel (2007)]. GPU on the other hand deals with la-
tency by executing large data sets with the same configuration/instruction, which is
set up prior to any data processing with a wide data bus and transistors concentrated
in the arithmetic region. Fig. 1 illustrates typical CPU and GPU transistor distribu-
tion. The evolution of GPU architecture has resulted in a computational workhorse
optimized for data throughput.

CPU

control

cache
control
control

cache

control
cache

control

DRAM cache

Figure 1: Distribution of transistors for CPU and GPU hardware devices

Initially graphics hardware operated in a fixed pipeline and any programming was
low level and very complex [Boggan and Pressel (2007)]. Thus the ability to access
the GPU in any realistic way to leverage its computational power was limited. The
development of flexible pipeline as well as high level language constructs paved
the way for the use of GPU as a co-processor [Boggan and Pressel (2007); Lue-
bke and Humphreys (2007)]. GPU software paradigms are further enabling their
use as computational processors in computationally intensive engineering analysis
applications such as the one employed in the present work.

2.2 CPU and GPU architectures

In this work, we utilize two distinct multiple CPU/GPU computing systems each
consisting of multiple nodes composed of a single commodity GPU and CPU pro-
cessor for software development and comparative performance analysis. These two
multiple CPU/GPU computing systems are denoted as System A and System B and
are defined as follows.

1. System A: The CPU and GPU device architectures for this multiple CPU/GPU
computing system can be viewed as the lower-grade of the two presented in
this work. Each node in the multiple CPU/GPU computing system contains
the following technical specifications.

Resin Infusion Flow Modeling Application 435

* CPU: A dual-core Opteron processor with a clock frequency of 2.8
GHz, 64-bit DDR2, an L1 cache of 256 KBs, an L2 cache of 2 MBs
and a 1000 MHz Front Side Bus.

* GPU: Nvidia Quadro FX5600 with 1.5GBs global memory, CUDA
compute architecture 1.0, 128 cores, 8192 registers, 16 shared mem-
ory banks, a clock frequency of 1.35 GHz and GDDR3 SDRAM using
a 384-bit wide bus.

2. System B: The CPU and GPU device architectures for this multiple CPU/GPU
computing system can be viewed as the higher-grade of the two presented in
this work. Each node in the multiple CPU/GPU computing system contains
the following technical specifications.

* CPU: A 6-core Intel X5650 processor with a clock frequency of 2.6
GHz, 64-bit DDR3, an L1 cache of 384 KBs, an L2 cache of 1.5 MBs,
an L3 cache of 12 MBs and a 1300 MHz Front Side Bus.

* GPU: Nvidia Tesla M2070 with 6 GBs global memory, CUDA com-
pute architecture 2.0, 448 cores, 32768 registers, 32 shared memory
banks, a clock frequency of 1.15 GHz and GDDRS5 SDRAM using a
384-bit wide bus.

The next section provides a description of the candidate application and includes
the details of the physical problem, model equations, implementation, and the com-
putation solution algorithm involved.

3 Candidate engineering analysis application

Resin infusion flow modeling in liquid composite manufacturing process for the
manufacture of woven fabric structural composite parts is the candidate engineer-
ing analysis application for the computational code development and GPU, CPU
performance analysis employed in the present study. Resin flow infusion model-
ing involves the tracking of the progressing resin from the injection gates through
woven fabric filled Eulerian mold cavity mesh geometry. For thin shell composite
structural configurations employing 2D flow representation and thickness averaged
2D flow field, three-node triangular finite elements are used to discretize the mold
cavity domain [Mohan, Ngo et al. (1996); Mohan, Shires et al. (2001)]. The
finite element discretization for the computational problem involves the Galerkin
weighted residual finite element formulation of the resin mass conservation equa-
tion in conjunction with the Darcian porous media flow field representing the mo-
mentum conservation, and an implicit methodology for the transient solution [Mo-
han, Ngo et al. (1996), Mohan, Shires et al. (2001)].

436 Copyright © 2013 Tech Science Press ~ CMES, vol.95, no.5, pp.431-452, 2013

3.1 Resin infusion flow modeling

Following the discussions in [Mohan, Shires et al. (2001); Mohan, Ngo et al.
(1996)], the resin flow through the fiber preform contained within the mold cav-
ity is represented by a transient mass conservation equation. The physical mass
conservation equation (formed by coupling the mass conservation equation with
the momentum equation via Darcian velocity field) is given by Eq. (1) with K
the permeability tensor, u the resin viscosity, P the pressure field, and W the state
variable, representing the resin flow infusion state of the mold cavity region.

J B I
&!ﬁ99:1v<“wvag (1)

Further details of this above governing equation are available in [Mohan, Ngo et
al. (1996)] and [Mohan, Shires et al. (2001)]. The value of the state variable Wis 0
in the regions of the mold where the resin has not infused the fiber preform and 1
where the resin has completely infused the fiber preform in any given region of the
Eulerian mold cavity domain € in the FEM computations.

As discussed in [Mohan, Ngo et al. (1996)] and [Mohan, Shires et al. (2001)], the
application of the Galerkin weighted residual formulation and approximating for
the pressure Pand fill factor Wwith appropriate elements to define the mold cavity
resin infusion geometry, and associated shape functions yields a semi-discrete sys-
tem of equations given by Eq. (2) with Cthe lumped mass matrix, Kthe stiffness
matrix, gthe load vector, and Ythe time derivative.

CY+KP=gq (2)

The transient semi-discrete equation is then solved by introducing the finite differ-
ence approximation given by Eq. (3) for the time derivative term.

1Pn+1 _yn

¥ At)

3.2 Resin flow infusion modeling strategy

The semi-discrete Eq. (2) can be reduced to Eq. (4), as discussed in [Mohan, Ngo
et al. (1996)] and [Mohan, Shires et al. (2001)].

Ci,‘lP?Jrl — Ci,“P? + AlK,'ij = Atgq; @

The above form of the discretized equation is solved during the resin infusion flow
modeling during the transient resin progression at each time-step. Equation (4)

Resin Infusion Flow Modeling Application

defines the implicit form of the process flow modeling in LCM, as shown in refer-
ences [Mohan, Ngo et al. (1996)] and [Mohan, Shires et al. (2001)]. The gener-
alized algorithm for the finite element computations for the process flow modeling
and analysis of the resin progression in the transient, free surface flow problem for
each time step is summarized in Algorithm 1. The finite element based solution
strategy employed results in a system of linear equations that is solved using an
iterative pre-conditioned conjugate gradient method involving matrix-vector, and

dot product operations.

Algorithm 1: Implicit Pure FE methodology for Resin Infusion Flow Modeling

Computation

(For progression from time step 7 to time step n + land iteration m)

1. REPEAT
. SET {¥;}""to{W;}" (save previous fill factor values)

. CALL assembleC for C; (assembleC forms lump mass matrix)

. CALL assembleLoad on g; (assembleLoad forms load vectorg)

. REPEAT
. SET boundary conditions on K;; (Modified load vectorg)
8. SET {g;},, to ;i {¥;}" — Ci {¥;}5"' + At {q;},,

(Where K; ;is Kmatrix with boundary conditions applied)

9. SOLVE |K;;| {P;} ={si}n

(Compute new nodal resin fraction field using equation (4))
10. SET C;; {¥;)t = Ci {¥;}" — At [K;j] {P;}, + At {qi},,
11. IF HC[[(B — i {wyn! H < & THEN

12. BREAK

2
3
4. CALL assembleK for K;; (assembleK forms stiffness matrixK)
5
6
7

13. ELSE
14. SET {¥;}" o {@; 2]
15. ENDIF

16. UNTIL mass resin convergence
17. UNTIL all nodes are filled

The interested reader is referred to [Mohan, Ngo et al. (1996)] for further details on
the resin infusion flow modeling in LCM process and the finite element discretiza-

tion employed for the computational problem.

438 Copyright © 2013 Tech Science Press ~ CMES, vol.95, no.5, pp.431-452, 2013

3.3 CPU and GPU resin flow infusion modeling validation

The validity of the CPU and GPU code developments for multiple computing nodes
was determined by careful examination of the numerical results against the analyt-
ical solution for a simple 2D circular plate radial injection model (see Fig. 2). The
analytical solution for this simple circular plate geometry radial injection condi-
tion for comparison were determined based on the radial flow front location, and
injection port pressure at time step ¢ for multiple numbers of sub-domains derived
by partitioning the initial global domain and applying equations presented in refer-
ence [Mohan, Ngo et al. (1996)]. Eq. (5) and (6) define the radial flow front and
injection port pressure respectively with Ry the inner radius, u the resin viscosity, ¢
the fiber volume fraction, K the permeability, and H as the element or mold cavity
thickness.

R(t) = 75,;, + RS)
[uno R(1)
Po = [2n1€H In <RO>] ©

w0 o7

infection
ports

2™

Not to scale

Figure 2: 2D circular plate radial injection flow model

The radial flow front and injection port pressures for this thin shell circular plate
model from the computational CPU and GPU analysis values for serial and 2-

Resin Infusion Flow Modeling Application

439

partitions were compared to the analytical values. Fig. 3, Fig. 4, Fig. 5 and
Fig. 6 clearly demonstrate the congruency of CPU and GPU numerical solutions
to the analytical solutions at each time step for serial and multiple partitions for
both System A and System B. Additional computational modeling analysis com-
parisons for other complex composite structures also showed excellent numerical
congruency between CPU and GPU analysis code execution runs.

100

Flow Front Radius em?

—Analytical

20 y X CPU (Serial)
O GPU (Serial)

0 2 8 1216 20 24 28 30 34 38 40 44 48 50 34 38 60 64 68 70 74 78
Time Step

100

80

6.0

40

Flow Front Radius cm?

—Analytical
X CPU-MPI(2 Partitions)
O GPU-MPI (2 Partitions)

00 &

0 2 8 12 16 20 24 28 30 34 38 40 44 48 50 54 58 60 64 68 70 74 78
Time Step

(a) Analytical to serial CPU/GPU

(b) Analytical to multiple partition CPU/GPU

Figure 3: Transient flow front locations comparisons for serial/multiple CPU/GPU

System A

(Pa./em? x10°
o
2

—Analytical
20 X CPU (Serial)
O GPU (Serial)

0 2 8 12 16 20 24 28 30 34 38 40 44 48 50 54 58 60 64 68 70 74 78
Time Step

2

x

g 60

2

g

= 40
—Analytical

20 X CPU-MPI (2 Partitions)

O GPU-MPI (2 Partitions)

0 2 8 1216 20 24 28 30 34 38 40 44 48 50 54 58 60 64 68 70 74 78
Time Step

(a) Analytical to serial CPU/GPU

(b) Analytical to multiple partition CPU/GPU

Figure 4: Transient injection pressure comparisons for serial/multiple CPU/GPU

System A

The mapping of the candidate application to the multiple GPU/CPU computing

system environments is discussed next.

440

Copyright © 2013 Tech Science Press

CMES, vol.95, no.5, pp.431-452, 2013

100

Flow Front Radius em?

—Analytical

20 y X CPU (Serial)
O GPU (Serial)

0 2 8 1216 20 24 28 30 34 38 40 44 48 50 54 58 60 64 68 70 74 78
Time Step

100

80

6.0

4.0

Flow Front Radius ¢cm?

—Analytical
X CPU-MPI(2 Partitions)
© GPU-MPI (2 Partitions)

00 B
0 2 8 1216 20 24 28 30 34 38 40 44 48 50 54 38 60 64 68 70 74 78
Time Step

(a) Analytical to serial CPU/GPU

(b) Analytical to multiple partition CPU/GPU

Figure 5: Transient flow front location comparisons for serial/multiple CPU/GPU
System B

120 A 120)
100 100
2 80 2 80
X 3
% w0 g 60
g =
g g
S 10 = 40
—Analytical — Analytical
20 X CPU (Serial) 20 X CPU-MPI (2 Partitions)
G GPU (Serial) O GPU-MPI (2 Partitions)
0 2 § 1216 20 24 28 30 34 38 40 44 48 50 54 58 60 64 68 70 74 7§ 0 2 8 121620 24 28 30 34 38 40 44 48 50 54 5% 60 64 68 70 74 78
Time Step Time Step
. AN S

(a) Analytical to serial CPU/GPU (b) Analytical to multiple partition CPU/GPU

Figure 6: Injection pressure comparisons for serial/multiple CPU/GPU System B

4 GPU implementation and code development strategies

Finite element discretization of the transient, moving boundary value problem in-
volves the solution of linear system of equations multiple times during the com-
putational analysis and is the computationally intensive portion in the resin flow
infusion modeling analysis of complex composite structures. The Preconditioned
Conjugate Gradient (PCG) solution methodology for the solution of linear system
of equations (line 9 of Algorithm 1) executes matrix operations, involves signifi-
cant computational load, and was chosen as the key resin flow infusion modeling
kernel to port to the GPU. The PCG solver is composed of sparse matrix-vector
multiplication and vector operations which is shown in Algorithm 2.

The PCG solver is executed with an element-centric [Mohan, Ngo et al. (1996);
Mohan, Shires et al. (2001)] rather than node-centric focus which results in a larger

Resin Infusion Flow Modeling Application 441

Algorithm 2: Preconditioned conjugate gradient (solves Ax = b)
Input: Matrix A and load/force vector b
Output: solution vector x

1. Set ro<=b—Axy

2.Setzo =M 'rg

3. Set py < 29

4.Setk <=0

5. DO UNTIL CONVERGENCE

6

7

8

Ty
PLAP

- Xkl <= Xk + Ok i

Tl & Tk — O Ay
9.1F (||re — res1 || < €) BREAK
10. o1 =M gy

11. B PR 51,55
. k erk

12. prs1 < 21 + Brpr
13.k<=k+1
14. END DO

O <=

ratio of computation to communication cost [Haney (2006)] — an optimal strategy
to leverage the dramatic floating point power of the GPU. The sparse matrix-vector
operation (line 2 and 10 of Algorithm 2) is the largest computational cost of the
PCG solver [Buatois, Caumon et al. (2009); Helfenstein and Koko (2011)] and
an obvious section for porting to the GPU device. The other major computational
portions of the linear system solver are vector updates and scalar dot-products, both
of which are handled via the CUBLAS library calls [Shewchuk (1994); Nvidia
(2007)].

The presented candidate application for this study utilize domain decomposition to
partition a global problem domain such that each resulting sub-domain is solved
with a local CPU/GPU host — communication is handled via the MPI. The inter-
play of the coarse-grained parallelism expressed by MPI and the fine-grained par-
allelism of the GPU is the source of often disappointing performance of computa-
tionally intensive applications employing multiple CPU/GPU computing systems
[Papadrakakis, Stavroulakis et al. (2011); Wang, Huang et al. (2011); Song and
Dongarra (2012)].

442 Copyright © 2013 Tech Science Press ~ CMES, vol.95, no.5, pp.431-452, 2013

5 Computational performance analysis and comparison

initial matrix
117121 3| 9|4 | non-zeros

1700 -
o200 T17111]
g g 3 2 2;'_: I—; 3|3 | column indices

0|2|3(5]6 row pointers

Figure 7: Compressed Sparse Row (CSR) format

The first half of this section produces the preliminary data for the models being
examined and the second half of this section presents the observed performance
using System A and System B multiple CPU/GPU computing systems. The input
unstructured mesh models are initially solved using the CSR (Compressed Sparse
Row) compression format shown in Fig. 7 then the BCSR2x2 (Block Compressed
Sparse Row) compression format is utilized. The CSR compression format is well
documented as a potential performance problem as increased pointer indirection
can magnify irregularity of data element access for sparse matrix-vector multi-
plications [Baskaran and Bordawekar (2008); Hugues and Petiton (2010)]. The
BCSR2x2 compression format, shown in Fig. 8, has been shown to increase lo-
cality in cases where dense sub-blocks exist in the sparse matrices [Baskaran and
Bordawekar (2008); Hugues and Petiton (2010)], such as with linear equations gen-
erated for the presented candidate application — effectively isolating the influence
of spatial locality for both System A and System B architectures.

5.1 Preliminaries

The computational performance of the GPU and CPU code developments and their
comparative performance were studied employing two separate unstructured finite
element mesh models representing resin infusion in a composite structural part
configuration. For the computational performance comparisons, this resulted in
two computational models composed of differing numbers of nodes with three-
node triangular elements but with the same geometries (Fig. 9). The unstructured

Resin Infusion Flow Modeling Application 443

initial matrix
17 00 172|

3(9(4
0
9 /I
4 0| 2| column indices
0|2

0O 0 0 4]| i

Figure 8: Block Compressed Sparse Row with 2x2 sub-blocks (BCSR2x2) format

non-zeros

o OO
CON
o Wwo

=

row pointers

OO =
ONN
w o O
o o O

mesh models are labeled as follows.

* Model MA: Model consisting of 26,936 nodes and 53,148 triangular ele-
ments.

* Model MB: Model consisting of 103,196 nodes and 204,970 triangular ele-
ments.

Computational performance benchmarking for the GPU and CPU developments
and resin flow infusion modeling was accomplished as follows.

* Speedup factor: The ratio of CPU execution time to GPU execution time
whereby the larger the value, the more optimal the performance obtained
through GPU.

5.2 Observed performance and analysis — System A

Executing with the CSR format we observe that MPI provides a distinct perfor-
mance boost over the serial versions for this multiple CPU/GPU computing system
regardless of the input unstructured meshes. However, when using MPI in combi-
nation with the local GPU we get less distinct benefit over MPI without employing

444 Copyright © 2013 Tech Science Press ~ CMES, vol.95, no.5, pp.431-452, 2013

3-noded triang

you 40 unstructured mesh

Figure 9: Unstructured mesh geometry that represents both MA and MB models

the local GPU. Fig. 10 shows the smaller unstructured mesh model MA and Fig.
11 shows the larger unstructured mesh model MB. Table. 1 and Table. 2 are the
observed full solution times for the MA and MB models respectively.

Table 1: System A execution time for mesh MA

Partitions | MPI + GPU Time (secs.) | MPI + CPU Time (secs.) | Speedup Factor
2 1,604.200 1,666.960 1.034
4 1,357.890 825.989 0.608
16 1,461.590 260.669 0.178

The unstructured mesh model MA exposes a nearly constant total solution time
when using MPI and the local GPU regardless of the number of partitions, whereas
MPI with no GPU displays a nearly linear decrease in this time as shown in Fig.
10. The unstructured mesh model MB displays a slight performance boost when
using MPI and the local GPU for partition counts less than 16 as the larger mesh
will inexorably utilize more of the GPU computational resources to mitigate la-
tency — higher probability of memory address coalescing with the CUDA-enabled
hardware.

Resin Infusion Flow Modeling Application 445
Table 2: System A execution time for mesh MB
Partitions | MPI + GPU Time (secs.) | MPI + CPU Time (secs.) | Speedup Factor
2 16,985.600 20,169.400 1.187
4 8,570.300 9,633.960 1.124
16 23,956.100 2,495.580 0.104
' 3.0 ™
25
'gz_o X
X
§ L5 _":".n-.-q.;-;;
: - = - S
E1o S~
= Te~a
0.5 - Tt -e o
0.0 .
2 4 16
Number of Partitions
| —cpPUSserial - GPU-MPI - — CPU+MPI |
A J
Figure 10: Total solution time for mesh MA with CSR compression using System
A
(" 900 A
80.0
70.0
'S 600
x
2 500
2100
E 300
=
00 =~ e
P T el h-___
0.0 . E——
2 4 16
Number of Partitions
| —cpUSserial - GPU-MPI - — CPU+MPI |
A vy
Figure 11: Total solution time for mesh MB with CSR compression using System

A

446 Copyright © 2013 Tech Science Press ~ CMES, vol.95, no.5, pp.431-452, 2013

=3

=

!
!

=

in
!
!

Time (secs. X10°)
.C> (=)
5] =
I
!
!

(=T =]
i]
1 1

(=1
=]

[
.
—
>

Number of Partitions

| —cCPUSerial - GPU-MPI - = CPU+MPI |
- S

Figure 12: Total solution time for mesh MA with CSR compression using System
B

~

-1

=1
)

Time (secs. X 10%)
[() e Lh (=2
5 5 b &5 o

—
o
1

=1
(=]
(=]
ga
—_
(=2}

Number of Partitions

——CPU Serial -+ GPU+MFI = — CPUTMPI
p vy

Figure 13: Total solution time for mesh MB with CSR compression using System
B

Resin Infusion Flow Modeling Application

447

1.6

1.4

0.6

Speedup Factor

1 Speedup = (GPU,, / GPUx2)

4
Partitions

Mesh MA ===-Mesh ME |

16

S/

Figure 14: Mesh MA and MB with CSR and BCSR2x2 compression - System A

(" a0)
35
3.0
)
25
g
=2.0
=]
=
$15
2
)
1.0
03 Speedup = (GPU, / GPU yax2)
0.0
2 4 16
Partitions
| Mesh MA ===-Mesh MB |
\ J

Figure 15: Mesh MA and MB with CSR and BCSR2x2 compression - System B

448 Copyright © 2013 Tech Science Press ~ CMES, vol.95, no.5, pp.431-452, 2013

The dramatic decrease in performance for MPI employing local host GPU after
4 partitions correlates well with the inefficiency of the fine grained parallelism
of the GPU to cooperate with the coarse grained parallelism defined by domain
decomposition methodology as implemented by the MPI standard [Papadrakakis,
Stavroulakis et al. (2011); Wang, Potluri et al. (2011)] —i.e., the GPU cannot di-
rectly access the communication buffers of the MPI calls and must cross the local
CPU-GPU communication bus as defined by PCle and this is a well documented
bottleneck in GPGPU computing [Luebke (2008); Lee, Kim et al. (2010); Rehman
(2010)].

Executing with the BCSR2x2 compression format, as shown in Fig. 14, spatial
locality appears to be a larger factor in performance for the smaller model MA with
partitions less than 16 when intra-nodal communication assumes a larger cost of
execution. The larger model MB has a different behavior with the smaller partitions
yielding a lower performance and the higher partition showing better performance
—as seen in Fig. 14.

5.3 Observed performance and analysis — System B

Executing with the CSR compression format we observe the performance of the
input unstructured mesh models for this multiple CPU/GPU computing system to
be the relative inverse of that seen with System A. The larger unstructured mesh
model MB performs worse for the MPI and local GPU paradigm (Fig. 13) and the
smaller mesh model MA performs better using MPI and the local GPU (Fig. 12).
This behavior is counter-intuitive as previous experience with GPU enhanced ap-
plications have shown increased performance benefit for problems requiring larger
floating-point operations [Boggan and Pressel (2007); Baskaran and Bordawekar
(2008); Grozea, Bankovic et al. (2010); Bustamam, Burrage et al. (2012)]. Table.
3 and Table. 4 are the observed full solution times for the MA and MB models
respectively.

Table 3: System B execution time for mesh MA

Partitions | MPI + GPU Time (secs.) | MPI + CPU Time (secs.) | Speedup Factor
2 220.462 767.364 3.481
4 98.034 448.665 4.577
16 44.392 307.081 6.917

Given that the input mesh models have the same parameters and geometries for Sys-
tem B and System A, the inverted performance of the candidate application solved
with the defined input meshes using System B are likely due to a faster memory

Resin Infusion Flow Modeling Application 449

Table 4: System B execution time for mesh MB

Partitions | MPI + GPU Time (secs.) | MPI + CPU Time (secs.) | Speedup Factor
2 2,995.870 1,675.850 0.559
4 2,172.520 872.019 0.401
16 1,490.310 318.895 0.214

I/O for the local GPU. Both System A and System B have 384-bit wide bus, but
System B uses a GDDR5 memory I/O device whereas System A employees the
GDDR3 memory I/0 device. The GDDRS5 can execute on both edges of the clock
pulse and thus push the input data to the processing cores of System B GPU at a
higher rate than System A, exposing the significant latency generated as a product
of the local CPU-GPU host and intra-nodal communications.

Executing the candidate application using the BCSR2x2 compression format, as
shown in Fig. 15, spatial locality appears to provide a nearly consistent advantage
with the smaller input unstructured mesh model MA - regardless of number of par-
titions. The larger mesh model MB illustrates consistent performance degradation
— immune to any number of partitions used.

6 Concluding Remarks

The multiple CPU/GPU computing systems examined in this work illustrate the
sometimes deleterious effects that iterative sparse matrix solvers can present when
MPI and the local GPU device are combined, illustrating the critical importance of
understanding the role of both hardware and software in high performance appli-
cations. In the general case, MPI that employees either CPU or GPU as the local
backend device will produce a performance benefit for either System A or System
B — as shown in Fig. 10, Fig. 11 and Fig. 12, Fig. 13 respectively. However the
advantage of using MPI with the local GPU over MPI without the local GPU is
not as discernible as this depends heavily on the specific hardware and algorithmic
approaches employed.

This work has illustrated that later generations of GPU devices, such as System
B, have mitigated much of the spatial locality issues that plagued earlier devices
executing sparse matrix-vector operations with necessary data compression but has
revealed other concerns as shown by comparing Fig. 12 and Fig. 13.. The Faster
memory I/O employed by System B increases the potential process throughput, de-
fined as the central paradigm of latency mitigation for GPU devices, but can actu-
ally create paradoxical situations where increased computational loads can degrade
application performance. Software/algorithmic factors can mitigate poor applica-

450 Copyright © 2013 Tech Science Press ~ CMES, vol.95, no.5, pp.431-452, 2013

tion performance to a degree, as with increasing spatial locality via a compression
format that load near-by elements of the matrix to on-board GPU device registers
as is the case with the 2x2 blocks of BCSR2x2 compression.

Critical to the optimal performance of computationally intensive applications for
multiple CPU/GPU computing systems is the understanding of the underlying ar-
chitecture and the application to execute.

Acknowledgement: The support in part by contracts/grants from Office of Naval
Research and Clarkson Aerospace is acknowledged.

References

Baskaran, M. M.; Bordawekar, R. (2008): Optimizing Sparse Matrix-Vector
Multiplication on GPUs, IBM Research: 11.

Boggan, S. K.; Pressel, D. M. (2007): GPUs: An Emerging Platform for General-
Purpose Computation. Aberdeen Proving Ground, MD, USA, Army Research Lab:
50.

Buatois, L.; Caumon, G.; Levy, B. (2009): Concurrent number cruncher: a GPU
implementation of a general sparse linear solver. International Journal of Parallel,
Emergent and Distributed Systems, vol. 24, no. 3, pp. 18.

Buck, I.; Foley, T.; Horn, D.; Sugerman, J.; Fatahalian, K.; Houston, M.;
Hanrahan, P. (2004): Brook for GPUs: Stream Computing on Graphics Hardware.
ACM Transactions on Graphics - Proceedings of ACM SIGGRAPH, vol. 23, no. 3,
pp. 777-786.

Bustamam, A.; Burrage, K.; Hamilton, N. A. (2012): Fast Parallel Markov Clus-
tering in Bioinformatics Using Massively Parallel Computing on GPU with CUDA
and ELLPACK-R Sparse Format. IEEE/ACM Trans Comput Biol Bioinform., vol.
3,n0. 9, pp. 13.

Corrigan, A.; Camelli, F. F.; Lohner, R.; Wallin, J. (2011): Running unstruc-
tured grid-based CFD solvers on modern graphics hardware. International Journal
for Numerical Methods in Fluids, vol. 66, no. 2, pp. 221-229.

Fatahalian, K.; Houston, M. (2008): GPUs: A Closer Look. ACM Queue, vol. 6,
no. 2, pp. 10.

Garland, M.; Le Grand, S.; Nickolls, J.; Anderson, J.; Hardwick, J.; Morton,
S.; Phillips, E.; Zhang Y.; Volkov, V. (2008): Parallel Computing Experiences
with CUDA . Micro, IEEE, vol. 28, no. 4, pp. 13-27.

Grozea, C.; Bankovic, Z.; Laskov, P. (2010): FPGA vs. Multi-Core CPUs vs.
GPUs: Hands-on Experience with a Sorting Application. Facing the multicore-

Resin Infusion Flow Modeling Application 451

challenge Berlin, Heidelberg, Springer-Verlag Berlin, Heidelberg pp. 105-117.
Hamada, T.; Narumi, T.; Yasuoka, K.; Nitadori, K.; Taiji, M. (2009): 42 TFlops
Hierarchical N-body Simulations on GPUs with Applications in both Astrophysics
and Turbulence. The International Conference for High Performance Computing,
Networking, Storage, and Analysis, ACM New York, NY, USA.

Haney, R. H. (2006): Study and Evaluation of Domain Decomposition Approaches
in two Parallel Software Code Developments for Process Flow Modeling in Liquid
Composite Molding. Master of Science, North Carolina A & T State University.

Helfenstein, R.; Koko, J. (2011): Parallel preconditioned conjugate gradient algo-
rithm on GPU. Journal of Computational and Applied Mathematics, vol. 236, no.
15, pp. 6.

Hugues, M. R.; Petiton, S. G. (2010): Sparse Matrix Formats Evaluation and
Optimization on a GPU, IEEE Computer Society Washington, DC, USA.

Karunadasa, N. P.; Ranasinghe, D. N. (2009): Accelerating High Performance
Applications with CUDA and MPI. 2009 International Conference on Industrial
and Information Systems (ICIIS). Sri Lanka, IEEE, pp. 331-336.

Kim, J.; Seo, S.; Lee, J.; Nah, J.; Jo, G.; Lee, J. (2012). SnuCL: An OpenCL
Framework for Heterogeneous CPU/GPU Clusters. International Conference on
Supercomputing, ACM New York, NY, USA.

Kuznik, F.; Obrecht, C.; Rusaouen, G.; Roux, J.-J. (2010): LBM based flow
simulation using GPU computing processor. Computers & Mathematics with Ap-
plications, vol. 59, no. 7, pp. 12.

Lee, S.; Vetter, J. S. (2012): Early Evaluation of Directive-Based GPU Program-
ming Models for Productive Exascale Computing. The International Conference
for High Performance Computing, Networking, Storage, and Analysis, IEEE Com-
puter Society Press Los Alamitos, CA, USA.

Lee, V. W.; Kim, C.; Chhugani, J.; Deisher, M.; Kim, D.; Nguyen, A. D.; Satish,
N.; Smelyanskiy, M.; Chennupaty, S.; Hammarlund, P.; Singhal, R.; Dubey,
P. (2010): Debunking the 100X GPU vs. CPU Myth: An Evaluation of Throughput
Computing on CPU and GPU.

Luebke, D. (2008): CUDA: Scalable parallel programming for high-performance
scientific computing. Biomedical Imaging: From Nano to Macro, 2008, Paris,
ACM New York, NY, USA.

Luebke, D.; Humphreys, G. (2007): How GPUs Work. IEEE Computer, 2007.
Mohan, D. R.; Shires, D.; Mark, A. (2001): Scalable Large Scale Process Model-

ing and Simulations in Liquid Composite Molding. Computational Science - ICCS
2001, Springer Berlin Heidelberg, pp. 1199-1208.

452 Copyright © 2013 Tech Science Press ~ CMES, vol.95, no.5, pp.431-452, 2013

Mohan, R. V.; Ngo, N. D.; Tamma, K. K.; Fickie, K. D. (1996): On a Pure Finite-
Element-Based Methodology for Resin Transfer Mold Filling Simulations, Army
Research Lab, pp. 18.

Nvidia (2007): CUDA CUBLAS Library: Version 1.1, Nvidia Corporation, pp. 84.

Nvidia (2012): NVIDIA CUDA C Programming Guide: Version 4.2, Nvidia Cor-
poration, pp. 173.

Papadrakakis, M.; Stavroulakis, G.; Karatarakis, A. (2011): A new era in sci-
entific computing: Domain decomposition methods in hybrid CPU-GPU architec-
tures. Computer Methods in Applied Mechanics and Engineering, vol. 200, no.
13-16, pp. 1490-1508.

Patterson, D. A.; Hennessy, J. L. (1998): Computer Organization & Design: The
Hardware/Software Interface. San Francisco, California, USA, Morgan Kaufmann
Publishers, Inc.

Rehman, M. S. (2010): Exploring Irregular Memory Access Applications on the
GPU. Master of Science, International Institute of Information Technology.
Rumpf, M.; Strzodka, R. (2005): Graphics Processor Units: New Prospects for
Parallel Computing. Numerical Solution of Partial Differential Equations on Par-
allel Computers. A. M. a. T. Bruaset, Aslak, Springer. vol. 51, pp. 89-134.
Shewchuk, J. R. (1994): An Introduction to the Conjugate Gradient Method With-
out the Agonizing Pain. Pittsburgh, PA, USA, Carnegie Mellon University, pp. 64.
Silberschatz, A.; Galvin, P.; Gagne, G. (2003): Applied Operating System Con-
cepts: windows XP update, John Wiley & Sons, Inc.

Song, E.; Dongarra, J. (2012): A Scalable Framework for Heterogeneous GPU-
Based Clusters. ACM Symposium on Parallel Algorithms and Architectures, ACM
New York, NY, USA.

Wang, H.; Potluri, S.; Luo, M.; Singh, A. K.; Sur, S.; Panda, D. K. (2011):
MVAPICH2-GPU: optimized GPU to GPU communication for InfiniBand clusters.
Computer Science - Research and Development, vol. 26, no. 3-4, pp. 257-266.
Wang, L.; Huang, M.; Narayana, V.; El-Ghazawi, T. A. (2011): Scaling Scien-
tific Applications on Clusters of Hybrid Multicore/GPU Nodes. Computing Fron-
tiers Conference, ACM New York, NY, USA.

Wilkinson, B.; Allen, M. (2005): Parallel Programming: Techniques and Applica-

tions Using Networked Workstations and Parallel Computers. Upper Saddle River,
NJ, USA, Pearson Education, Inc.

