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Dam-breaking Flow Simulations by Particle-based Scheme
Using Logarithmic Weighting Function

K. Kakuda', K. Tochikubo' and J. Toyotani!

Abstract:  The application of a CPU/GPU-based particle method to dam-breaking
incompressible viscous fluid flow problems is presented. The particle approach
is based on the MPS (Moving Particle Semi-implicit) scheme using logarithmic
weighting function to stabilize the spurious oscillatory solutions for solving the
Poisson equation with respect to the pressure fields by using GPU-based SCG
(Scaled Conjugate Gradient) method. The physics-based computer graphics for
the results of three-dimensional simulation consist of the POV-Ray (Persistence
of Vision Raytracer) rendering using marching cubes algorithm as polygonization.
Numerical results demonstrate the workability and the validity of the present ap-
proach through the dam-breaking flow problem.

Keywords: GPU-based particle method, MPS, logarithmic weighting function,
GPU-based SCG, dam-breaking flow.

1 Introduction

From a practical point of view, three-dimensional (3D) fluid flow simulations in-
cluding free surfaces and moving interfaces are indispensable in the wide fields of
engineering and science. The fluid flow problem of broken dam includes many
interesting phenomena, such as large deformation of free-surfaces, very violent
motions including splashing, and so forth. Some experimental data have been pre-
sented in the dam-breaking flow or the collapse of a liquid column [Martin and
Moyce (1952); Koshizuka, Tamako and Oka (1995); Cruchaga, Celentano and Tez-
duyar (2007)]. The dam-breaking flow problem has been extensively used to verify
the applicability and validity of the numerical methods.

There are various grid/mesh-based methods and gridless/meshless-based particle
methods developed by many researchers for solving the complicated flow prob-
lems including free surfaces. As the approaches of the grid/mesh-based methods,
the marker-and-cell (MAC) method [Harlow and Welch (1965)], the volume of
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fluid (VOF) method [Hirt and Nichols (1981)] and the level set (LS) method [Os-
her and Sethian (1988)] are well-known methodologies in fluid dynamics frame-
works. The earliest numerical study for the dam-breaking flow was presented
by Harlow and Welch [Harlow and Welch (1965)] using the MAC method. Af-
terwards, such flow problems have been numerically investigated by several re-
searchers using the VOF methods [Hirt and Nichols (1981); Maronnier, Picasso
and Rappaz (2003); Kim and Lee (2003); Greaves (2004); Greaves (2006)] and
the LS methods [Yue, Lin and Patel (2003); Kohno and Tanahashi (2004); Lin,
Lee, Lee and Weber (2005); Trontin, Vincent, Estivalezes and Caltagirone (2012)].
Both the VOF and LS methods provide worthwhile predictions by comparing their
results with the data obtained from experiments. In the frameworks of finite el-
ement meshes with flexibility, the dam-breaking flows have also been carried out
effectively by using Lagrangian finite element approaches [Ramaswamy and Kawa-
hara (1987); Radovitzky and Ortiz (1998)] and the arbitrary Lagrangian-Eulerian
(ALE) method [Hansbo (1992); Duarte, Gormaz and Natesan (2004); Nithiarasu
(2005)]. Other interesting works have been performed efficiently using the pseudo-
concentration method (PCM) [Thompson (1986); Kaceniauskas (2005)], the edge-
tracked interface locator technique (ETILT) [Cruchaga, Celentano and Tezduyar
(2005); Cruchaga, Celentano and Tezduyar (2007)], the constrained interpolation
profile (CIP) method [Hu and Kashiwagi (2004)], and so forth [Murrone and Guil-
lard (2005); Murrone and Guillard (2008); Nikitin, Olshanskii, Terekhov and Vas-
silevski (2011)], for capturing accurately the free-surfaces/interfaces of such flow
problems.

On the other hand, there are also various kinds of gridless/meshless-based par-
ticle methods, such as SPH (Smoothed Particle Hydrodynamics) method [Lucy
(1977); Gingold and Monaghan (1977)], MPS (Moving Particle Semi-implicit)
method [Koshizuka and Oka (1996)], EFG (Element Free Galerkin) method [Be-
lytschko, Lu and Gu (1994)], MLPG (Meshless Local Petrov-Galerkin) method
[Atluri and Zhu (1998); Lin and Atluri (2000); Lin and Atluri (2001); Avila and
Atluri (2009)], LMFE (Lagrangian Meshless Finite Element) method [Idelsohn,
Storti and Oiiate (2001); Idelsohn, Ofiate and Pin (2003); Idelsohn, Ofiate and
Pin (2004)], and MP (Meshfree Particle) method [Li and Liu (2002)], to simu-
late effectively such complicated problems. The SPH methods for solving com-
pressible fluid flows with gravity have been firstly developed in the field of as-
trophysics [Lucy (1977);Gingold and Monaghan (1977)], and applied successfully
to a wide variety of complicated physical problems involving applications to the
dam-breaking flow problem [Monaghan (1994); Colagrossi and Landrini (2003);
Shao and Lo (2003); Sakai, Yang and Jung (2004); Lee, Moulinec, Xu, Violeau,
Laurence and Stansby (2008); Molteni and Colagrossi (2009)]. The MPS method
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as an incompressible fluid flow solver has been widely applied to the problem of
breaking wave with large deformation [Koshizuka and Oka (1996); Ishii, Ishikawa
and Tanabe (2006); Shakibaeinia and Jin (2010); Tanaka and Masunaga (2010);
Kondo and Koshizuka (2011); Yamada, Sakai, Mizutani, Koshizuka, Oochi and
Murozono (2011); Lee, Park, Kim and Hwang (2011)], the fluid-structure interac-
tion problem, and so forth. However, the standard/original MPS approach leads
to the unphysical numerical oscillation of pressure fields which are described by
the discretized Poisson equation. To improve some shortcomings of the standard
MPS method, Khayyer and Gotoh have proposed the modified MPS method for
the prediction of wave impact pressure on a coastal structure to ensure more ex-
act momentum conservation [Khayyer and Gotoh (2009)]. The improvement of
stability in the standard MPS method has been recently achieved by adding some
source terms into Poisson pressure equation [Kondo and Koshizuka (2011)]. Shao
and Gotoh have also summarized the SPH and MPS turbulence models using large
eddy simulation (LES) with a sub-particle scale [Shao and Gotoh (2005)]. They
compared the performances of two particle models through experimental data of
the dam-breaking flow and demonstrated the accuracy and robustness of two mod-
els. Atluri and Zhu [Atluri and Zhu (1998)] have developed the MLPG approach
based on the local symmetric weak form and the moving least squares for solv-
ing accurately potential problems, and the approach was extended to deal with the
problems for convection-diffusion equation [Lin and Atluri (2000)] and incom-
pressible Navier-Stokes equations [Lin and Atluri (2001)] in fluid dynamics. Avila
and Atluri [Avila and Atluri (2009)] have presented efficiently various numerical
solutions of the non-steady, two-dimensional Navier-Stokes equations by using the
MLPG method coupled with a fully implicit pressure-correction approach. They
have also proposed a novel MLPG-mixed finite volume method for solving the
steady-state Stokes flow involving complex phenomena between eccentric rotating
cylinders [Avila, Han and Atluri (2011)]. Valuable overviews of the MLPG method
involving applications to fluid flows have been presented in detail by Sladek et al.
[Sladek, Stanak, Han, Sladek and Atluri (2013)]. A group of Idelsohn et al. [Idel-
sohn, Storti and Onate (2001); Idelsohn, Ofiate and Pin (2003); Idelsohn, Ofiate and
Pin (2004)] has developed expertly the LMFE method for solving incompressible
fluid flows with free surfaces and applied to complex problems including the dam-
breaking flow and fluid-structure interactions. Some reviews of meshfree/particle
methods and their applications have been presented excellently by Li and Liu [Li
and Liu (2002)].

Recently, the physics-based computer simulations on the GPU (Graphics Process-
ing Units) have increasingly become an important strategy for solving efficiently
various problems, such as fluid dynamics [Harris (2004); Crane, Llamas and Tariq
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(2008); Harada, Masaie, Koshizuka and Kawaguchi (2008); Hori, Gotoh, Ikari and
Khayyer (2011)], rigid body dynamics [Harada (2008)], and so forth. In our pre-
vious work, we have presented a GPU-based particle scheme using logarithmic
weighting function for solving effectively two-dimensional problems of incom-
pressible fluid flow [Kakuda, Nagashima, Hayashi, Obara, Toyotani, Katsurada,
Higuchi and Matsuda (2012)]. The GPU-implementation consisted mainly of the
five steps, namely, the search for neighboring particles in the influence area, the cal-
culation of the particle number density, solving the Poisson equation with respect
to the pressure fields, the calculation of the pressure gradient, and the modification
of velocities and positions of the particles. We obtained that the performance on
GPU with about 120, 000 particles led to approximately 12 times speed-up.

The purpose of this paper is in detail to present the application of the GPU-based
particle method using logarithmic weighting function to 2D/3D dam-breaking in-
compressible fluid flow problem [Martin and Moyce (1952); Hirt and Nichols
(1981); Ramaswamy and Kawahara (1987)]. As the physics-based computer graph-
ics for 3D simulation, the polygonization of numerical data is also constructed by
using the well-known marching cubes technique [Lorensen and Cline (1987)] as
the most popular iso-surfacing extraction algorithm, and also the rendering is il-
lustrated in using the generated polygons and POV-Ray [Kakuda, Obara, Toyotani,
Meguro and Furuichi (2012)]. The workability and validity of the present approach
are demonstrated through the dam-breaking flow problem, and compared with ex-
perimental data and other numerical ones.

Throughout this paper, the summation convention on repeated indices is employed.
A comma following a variable is used to denote partial differentiation with respect
to the spatial variable.

2 Statement of the particle-based flow simulation

Let Q be a bounded domain in 2D/3D Euclidean space with a piecewise smooth
boundary I'. The unit outward normal vector to I" is denoted by n. Also, 3 denotes
a closed time interval.

The motion of an incompressible viscous fluid flow is governed by the following
Navier-Stokes equations :

Du; 1 .

Dl‘l :—Ep7i+\/u,-7jj+fi in3 xQ (1)
D

F’; =0 in3 xQ ()

where u; is the velocity vector component, p is the density, p is the pressure, f; is
the external force, v is the kinematic viscosity, and D/Dt denotes the Lagrangian



Dam-breaking Flow Simulations 355

differentiation. In addition to Eq. 1 and Eq. 2, we prescribe the Dirichlet and Neu-
mann boundary conditions, and the initial condition u;(x,0) = u?, where u? denotes
the given initial velocity.

The particle interaction models of the MPS as illustrated in Fig. 1(a) are prepared
with respect to differential operators, namely, gradient, divergence and Laplacian
[Koshizuka and Oka (1996)]. The incompressible viscous fluid flow is calculated
by a semi-implicit algorithm, such as SMAC (Simplified MAC) scheme [Amsden
and Harlow (1970)]. For the standard MPS formulation, the selection of a weight-
ing function is a key factor in the particle-based framework. If the distance r be-
tween the coordinates r; and r; is very close, then there is a possibility that the
computation fails suddenly with unphysical numerical oscillations. Therefore, in
order to stabilize such spurious oscillations generated by the standard MPS strategy,
we adopt the following logarithmic-type weighting function as shown in Fig. 1(b),
and also consider the reduction of ad hoc influence radius, r,, for solving the pres-
sure fields [Kakuda, Nagashima, Hayashi, Obara, Toyotani, Katsurada, Higuchi
and Matsuda (2012)].

W@_{mmg (r<r)

= 3)
0 (r>re)

The common logarithmic-type weighting function is also similar to the profile of
the weighting function proposed by Kondo and Koshizuka to stabilize the pressure
calculations [Kondo and Koshizuka (2011)](see Fig. 1(b)).

The particle number density #n at particle i with the neighboring particles j is defined
as

<n>= Zw(]rj—ri\) 4
J#i

The model of the gradient vectors at particle i between particles i and j is weighted
with the kernel function and averaged as follows :

L (r = r)w(|r; - ri])] (5)

where d is the number of spatial dimensions, ¢; and ¢; denote the scalar quantities
at coordinates r; and r;, respectively, and n° is the constant value of the particle
number density.

The Laplacian model at particle i is also given by

2d
<V >i= WZ((PJ — ¢)w(|r;—ri) (6)
7
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where A is an ad hoc coefficient.

The Poisson equation for solving implicitly the pressure field at particle i is also
given as follows [Kondo and Koshizuka (2011)]:

1 1—B<n* > -2<nf>+<n1>;

Lovpa= o P ' -~ ’

Po At n
B-—y<n*> —<nt> v <n*> —n’ ;
Ar? no A2 no @)

where py is the density in the initial state, < n* >; is an auxiliary particle number
at particle i, and f and y denote the adequate dimensionless parameters.

4.0 ;
| : -
F E ——=- Natural logarithm (2012)  {
F \] Common logarithm
o Standard MPS (1996)
3.0r ! —-— Kondo & Koshizuka (2011)7
E
w

1.0k,

o5 r 70
(a) Particle interaction models (3D) (b) Profiles of weighting functions
Figure 1: Particle interaction models and weighting functions

3 GPU-implementation using CUDA

The specification of CPU and GPU using CUDA is summarized in Tab. 1. A physi-
cal value at particle position is calculated as a weighted sum of the values of neigh-
boring particles in the influence area. Therefore, we have to search for neighboring
particles. The difficulty in implementing MPS on the GPU is that the neighbor-
hood relationship among particles dynamically changes during the simulation. The
GPU implementation consists mainly of the five steps as described to the reference
[Kakuda, Nagashima, Hayashi, Obara, Toyotani, Katsurada, Higuchi and Matsuda
(2012)]:
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Table 1: A summary of the specification of CPU and GPU

CPU Intel Core 17, 3.50GHz
Memory DDR3 PC3-10600 16GB
(0N} Cent OS 6.0 64bit

Bus PCI Express 2.0x16
GPU NVIDIA GeForce GTX580
Global Memory 1.5GB

Processor Clock 1544MHz

Streaming Multiprocessor (SM) | 16

CUDA core 512

Memory Transfer Rate 192.4GB/s

Memory Interface 384bit

CUDA Driver Version 4.10

Tool kit & SDK Version 4.0

4 Numerical example

In this section we present numerical results obtained from applications of the above-
mentioned numerical method to incompressible viscous fluid flow problems, namely
dam-breaking flow problem involving free surface and gravity. The initial veloci-
ties are assumed to be zero everywhere in the interior domain. In 2D/3D simula-
tions, we set the CFL condition uy At /1in < C, where C is the Courant number.
The kernel sizes for the particle number density and the gradient/Laplacian models
are r, = 4.0y and 7, = 2.0l for velocity and pressure calculations, respectively, in
which [y is the distance between two neighboring particles in the initial state. In
this case, we set [p = 0.012m and also (8,7) = (0.5,0.05).

1=0.216m

(a) Geometrical configuration (b) Initial state of particles
Figure 2: Dam-breaking flow configuration for 2D
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4.1 2D dam-breaking flow simulation

Fig. 2 shows the geometry and the initial state of particles for 2D flow in the dam-
breaking problem. In this two-dimensional CPU-based simulation, we set 1,458
particles in the initial configuration. The standard MPS method leads to irregular
pressure distributions at early times (see, Fig. 3(a)), while the present distributions
are slightly improved as well as the results of Fig. 3(b). The pressure distributions
are also smoother in the results obtained by means of the improved scheme with
Eq. 7 (see, Fig. 3(c)). Fig. 4 shows the time histories of the pressure at particles 1
and 2 as shown in Fig. 2(b). We can see from Fig. 4 that the pressure behaviors at
particles 1 and 2 in Fig. 4(c) are smoother than the standard MPS calculations of
Fig. 4(a).

(a) Standard MPS method

(c) Improved MPS using logarithmic-type weighting function
Figure 3: Particle and pressure behaviors at time 0.25 (left) and 0.5 (right)
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(b) MPS using logarithmic-type weighting function
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(c) Improved MPS using logarithmic-type weighting function
Figure 4: Time histories of the pressure at particles 1 (left) and 2 (right)

4.2 3D dam-breaking flow simulation

Let us consider the GPU-based simulation using the improved approach for 3D
flow in the dam-breaking problem. Fig. 5 shows the geometry and the initial state
of particles 89,168 for the dam-breaking flow problem. The particle and pressure
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(a) Geometrical configuration (b) Initial state of particles
Figure 5: Dam-breaking flow configuration for 3D

(e) t = 0.60s )t~ 1.0s
Figure 6: Particle and pressure behaviors at different time



Dam-breaking Flow Simulations 361

(e) t = 0.60s )t~ 1.0s
Figure 7: POV-Ray rendering representations at different time
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Figure 8: GPU-accelerating performance and comparisons with experimental data
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behaviors at different time are shown in Fig. 6, and more smoother results are ob-
tained certainly by means of the improved scheme. The convincing representations
are obtained when the iso-surface of the color field is visualized using the POV-Ray
rendering with the marching cubes algorithm [Lorensen and Cline (1987)] as illus-
trated in Fig. 7 [Kakuda, Obara, Toyotani, Meguro and Furuichi (2012)]. Using
the generated polygons and the POV-Ray, our computational results show satis-
factory rendering effects. Fig. 8 shows the accelerating performance of GPU for
3D simulation, and also the time evolutions of the leading-edge of the water us-
ing the present approach and the standard MPS method through comparison with
experimental data [Martin and Moyce (1952)]. We can see from Fig. 8 that the
performance with 89,168 particles leads to approximately 14.02 times speed-up.
The agreement between the present results and the experimental data appears also
satisfactory.

5 Conclusions

We have presented the CPU/GPU-based MPS approach using logarithmic weight-
ing function for solving numerically 2D/3D incompressible viscous fluid flow of
the broken dam problem. The standard MPS scheme has been widely utilized as a
particle strategy for free surface flow, the problem of moving boundary, and multi-
physics/multi-scale ones. To overcome spurious oscillations in the standard MPS
method, we have proposed to utilize the logarithmic weighting function and also
consider the influence radius reduction for solving an auxiliary Poisson equation
for the pressure field. The GPU implementation consists of the five steps, namely,
the search for neighboring particles, the calculation of the particle number density,
solving the Poisson equation with respect to the pressure fields by using GPU-
based SCG method, the calculation of the pressure gradient, and the modification
of velocities and positions of the particles.

As the numerical example, the well-known 2D/3D dam-breaking flow simulations
were carried out and compared with experimental data and standard MPS data. The
qualitative agreement between our 3D simulation and experimental data appears
satisfactory. The GPU-performance with about 90,000 and 200,000 particles led
to approximately 14 and 17 times speed-up, respectively. The polygonization of nu-
merical 3D data has been also constructed by using the marching cubes algorithm,
and then the rendering has been significantly illustrated in using the generated poly-
gons and POV-Ray as the physics-based computer graphics.
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