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A Self-regularization Technique in Boundary Element
Method for 3-D Stress Analysis

M. G. He1 and C.L. Tan1

Abstract: The self-regularization technique in the Boundary Element Method
(BEM) originally proposed by Cruse and Richardson (1996, 1999) in their work
for two-dimensional (2-D) stress analysis is extended to three-dimensional (3-D)
elastostatics in this paper. The regularization scheme addresses the issue of ac-
curate numerical evaluation of the integrals due to the singularity of the kernel
functions of the integral equations. It is first implemented for the determination of
displacements and stresses at interior points of the solution domain, and very accu-
rate results are obtained even when these points are very close to the surface of the
domain. A self-regularized traction-BIE is then implemented with two different ap-
proaches to deal with the requirement of continuity of the displacement-gradients
across element boundaries. The examples presented suggest that when corners are
present, this smoothness requirement for the traction-BIE must be met if conver-
gence of the solution is to be assured. Finally, a self-regularized displacement-BIE
is developed which can treat thin-body problems by eliminating the near-singularity
issues encountered in conventional BEM. This is demonstrated by numerical exam-
ples.

Keywords: Boundary Element Method, self-regularization, near-singularity, thin-
body problems

1 Introduction

The Boundary Element Method (BEM) is based on boundary integral equations
(BIE), which are derived using the fundamental solutions (or Green’s functions)
to the governing differential equations and the reciprocal work theorem. These
fundamental solutions, which form the kernel functions of the BIE, are singular
with respect to the distance between the source point and the field point on the
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surface of the solution domain. The variations of the numerical values of the kernels
can be very rapid over the surface close to the source point. This near-singularity
problem mainly occurs in two situations in BEM analysis, namely: a) determination
of interior point solutions when these points are close to the surface of the domain,
and b) thin-body problems where two parts of the surface are close to each other.

A direct way of reducing singularity occurring in interior point solutions is to re-
fine the surface mesh near the interior point, or to significantly increase the number
of Gauss points, as can be seen in Li (2003). This approach, however, greatly in-
creases the number of elements used and hence the computational effort, especially
when numerous interior points are involved. It will be cumbersome indeed in 3-
D analysis. Other methods of removing the singularity include “regularization”,
see, e.g. Granados and Gallego (2001); Ma and Kamiya (2001); Niu, Wendland,
Wang and Zhou (2005); Zhou, Niu, Cheng and Guan (2008); Xie, Zhang, Qin and
Li (2011). These approaches have been shown to provide very accurate results in
two dimensions, but they are either analytically complex and/or the numerical al-
gorithm, difficult to apply to general 3-D problems. A scheme was proposed by
Cruse and Richardson (1996) and Richardson and Cruse (1999) in their 2-D analy-
sis, in which simple solutions are subtracted and added back into the Somigliana’s
identities for interior point displacements and stresses, respectively. This method
is relatively simple both analytically and in the numerical implementation, as com-
pared to the other schemes. It has been employed, e.g. Li (2003); Shah, Tan and
Wang (2006), for the determination of T-stress in fracture mechanics where inte-
rior point solutions are calculated on an integration path which can be very close to
the crack surface. In the next Section, this technique is extended to BEM for 3-D
elastostatics.

The methods proposed in the literature to solve thin-body problems are mostly to
analytically integrate the singular kernels, see e.g., Ye and Liu (1985), Liu (1987),
Krishnasamy, Rizzo and Liu (1994). In Liu (1998), a non-degeneracy approach is
proposed by adding and subtracting a term to the conventional displacement-BIE
which was then transformed into line-integrals using Stoke’s theorem and evaluated
analytically. Cruse and Aithal (1993) also proposed a scheme using regularization
of integral operators and a theta integration algorithm. All these approaches are,
again, mathematically quite involved and are less than simple to implement espe-
cially in three dimensions.

Cruse and Richardson (1996) and Richardson and Cruse (1999) also obtained the
self-regularized traction-BIE by taking the interior point to the boundary in Somig-
liana’s stress identity. They suggested that this scheme is well-suited for thin-body
problems. It will be therefore tested in this study in 3-D. An issue with this scheme
is the requirement of continuity in the displacement gradients or stresses across
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element boundaries, i.e. C1,α Holder continuity; this is discussed in Martin and
Rizzo (1996); Martin, Rizzo and Cruse (1998). In conventional BIE, the most
commonly used quadratic elements are only C0,α continuous. It should be noted
that self-regularization of the BIE has been proposed before, see, e.g. Rudolphi
(1991); Sladek, Sladek and Tanaka (1993); Matsumoto and Tanaka (1993); Frangi
and Guigianni (2001); Dong and Atluri (2012) The algorithm proposed in Cruse
and Richardson (1996) is significantly easier to implement, and it uses only C0,α

conforming boundary elements throughout, However, its theoretical validity has
been questioned, as mentioned above, since the smoothness requirement of at least
C1,α at the source points for the hypersingular integrals is not met. Several re-
searchers have dealt with this issue, although, mostly in the 2-D case (see, e.g.
Jorge, Cruse, Fisher and Ribeiro (2003); Wang and Li (2009); Jin, Zhang, Wang
and Li (2011)) in their attempts to enforce the continuity of displacement-gradients
across element boundaries. Notwithstanding the efficiency and the accuracy of
the solutions that could be obtained, these approaches are evidently not very easy
and/or practical to apply in 3-D. A ‘relaxed continuity’ was proposed in Richard-
son and Cruse (1999) to use along with the self-regularized traction-BIE. It takes
the average of the displacement derivatives at a node according to the element it
belongs to. This approach has only been implemented for simple 2-D elasticity
problems. A recommendation from this work is to employ higher-order conform-
ing elements beyond the quadratic ones instead, for better convergence. Another
approach that has been employed in Gallego and Dominguez (2000) involves the
use of non-conforming elements for 2-D elastodynamics. The collocations are done
inside the elements, where the C1,α continuity requirement is satisfied, rather than
at the boundary nodes. This strategy is also used in 3-D fracture problems where
traction-BIE is only applied to elements on the crack surfaces while for all the other
elements in the solution domain, the displacement-BIE is applied [Dominguez and
Ariza (2000)]. In Section 3, the self-regularized traction-BIE is adopted, along with
the relaxed continuity approach and this collocation strategy.

As will be shown in Section 6, the veracity of the algorithm for the traction-BIE
with C0,α quadratic, conforming elements is questionable even with the two above-
mentioned schemes. This is because the accuracy of the solutions could not be
always assured. A self-regularized displacement-BIE is proposed here instead, em-
ploying similar notions as for the self-regularized traction-BIE. This will be treated
in Section 4 and will be demonstrated in Section 6 to be well-suited for analyzing
3-D thin-body problems. Throughout this study, the standard 8-noded quadrilateral
or 6-noded triangular isoparametric elements are used in the numerical BEM for-
mulation. For the evaluation of the integrals over these elements to form the system
equations, the standard 4 x 4 Gauss quadrature and the 13-point Hammer-Stroud
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quadrature schemes are used, as in the conventional displacement-BEM algorithm.

2 Self-regularization of Somigliana’s identities for interior point solutions

The Somigliana’s identities for displacements, ui, and stresses, σ i j,at an interior
point p of an elastic solid with surface S may be expressed as:

u j(p) =−
∫

S
Ti j(p,Q)u j(Q)dS(Q)+

∫
S
Ui j(p,Q)t j(Q)dS(Q) (1)

and

σi j(p) =−
∫

S
Ski j(p,Q)uk(Q)dS(Q)+

∫
S

Dki j(p,Q)tk(Q)dS(Q) (2)

where u j(Q) and t j(Q) are displacements and tractions at a field point Q on the
surface obtained from boundary solutions, and Ti j,Ui j,Ski j and Dki j are singular
kernels of orders of r−2,r−1,r−3 and r−2, respectively, where r is the distance be-
tween interior point p and field point Q. The expression of these kernels are well
established in the literature, e.g., Cruse (1969). Using the self-regularization pro-
posed in Cruse and Richardson (1996) and Richardson and Cruse (1999), a term
corresponding to rigid body motion at a surface point P closest to p is subtracted
from Equation (1) while a simple solution corresponding to a constant stress state
is subtracted from Equation (2) as follows:

u j(p)−u j(P) =−
∫

S
Ti j(p,Q)(u j(Q)−u j(P)dS(Q)+

∫
S
Ui j(p,Q)t j(Q)dS(Q) (3)

and

σi j(p)−σi j(P) =−
∫

S
Ski j(p,Q)[uk(Q)−uL

k (Q)]dS(Q)

+
∫

S
Dki j(p,Q)[tk(Q)− tL

k (Q)]dS(Q)
(4)

In Equation (4), the constant stress state terms are expressed as:

uL
k (Q) = uk(P)+uk,m(P)[xm(Q)− xm(P)] (5)

tL
k (Q) = σkm(P)nm(Q) (6)

where uk,m(P) represents the displacement gradients at P, xm is the global Cartesian
coordinate components, and nm(Q) is the unit outward normal at Q. The regular-
ization point P is chosen as the closest surface point to p.

Equations (3) and (4) have been implemented successfully on simple 2-D problems
in Richardson and Cruse (1999). In three dimensions, the singularities of all the
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kernels are one order higher than the corresponding ones in 2-D. The kernel Ui j in
Equation (3) is not regularized since it is only of order of ln(1/r) in 2-D and of order
r−1 in 3-D. Although the associated integral is only weakly singular, it is discovered
in this study that this kernel has to be regularized as well in 3-D to obtain accurate
results if no adaptive schemes are used in the numerical algorithm. This is due to
the increase rate of change of the numerical values of the integrand as r becomes
small. Using the same procedure of subtracting and adding back constant stress
terms, the following expression is obtained:

u j(p)−uL
j (p) =−

∫
S

Ti j(p,Q)[u j(Q)−uL
j (Q)]dS(Q)

+
∫

S
Ui j(p,Q)[t j(Q)− tL

j (Q)]dS(Q)
(7)

where uL
j (Q) and tL

j (Q) are given before and uL
j (p) is defined similarly as:

uL
j (p) = u j(P)+u j,m(P)[xm(p)− xm(P)] (8)

where u j,m(P) is again the displacement gradient at P. The relation between trac-
tions and displacement gradients is:

ti = σi jn j = [
2µυ

1−2υ
uk,kδi j +µ(ui, j +u j,i)]n j (9)

The tractions at point P are interpolated by nodal values of the elements containing
P using the shape functions:

ti = tc
i Nc(ξ1,ξ2) c = 1,8 or 6 (10)

The displacement gradients in global and local coordinate systems in the quadratic
elements are related by:

∂ui(ξ1,ξ2)

∂ξ j
=

8or6

∑
c=1

∂Nc(ξ1,ξ2)

∂ξ j
(ui)

c =
∂ui(ξ1,ξ2)

∂xk

∂xk

∂ξ j
(11)

Combining Equations (9) and (11), the tractions and displacement gradients in the



322 Copyright © 2013 Tech Science Press CMES, vol.95, no.4, pp.317-349, 2013

local coordinate system can be expressed in terms of global displacements as:



t1
t2
t3

∂u1
∂ξ1
∂u1
∂ξ2
∂u1
∂ξ3
∂u2
∂ξ1
∂u2
∂ξ2
∂u2
∂ξ3



=



2µν(1−ν)
1−2ν

n1µn2µn3µn2
2µν

1−2ν
n1 0 µn3 0 2µν

1−2ν
n1

2µν

1−2ν
n2 µn1 0 µn1

2µν(1−ν)
1−2ν

n2µn3 0 µn3
2µν

1−2ν
n2

2µν

1−2ν
n3 0 µn1 0 2µν

1−2ν
n3 µn2µn1µn2

2µν(1−ν)
1−2ν

n3
∂x1
∂ξ1

0 0 ∂x2
∂ξ1

0 0 ∂x3
∂ξ1

0 0

0 ∂x1
∂ξ1

0 0 ∂x2
∂ξ1

0 0 ∂x3
∂ξ1

0

0 0 ∂x1
∂ξ1

0 0 ∂x2
∂ξ1

0 0 ∂x3
∂ξ1

∂x1
∂ξ2

0 0 ∂x2
∂ξ2

0 0 ∂x3
∂ξ2

0 0

0 ∂x1
∂ξ2

0 0 ∂x2
∂ξ2

0 0 ∂x3
∂ξ2

0

0 0 ∂x1
∂ξ2

0 0 ∂x2
∂ξ2

0 0 ∂x3
∂ξ2





u1,1
u2,1
u3,1
u1,2
u2,2
u3,2
u1,3
u2,3
u3,3


=[A∗]{uk,m}

(12)

Inversion of the matrix [A*] in Equation (12) gives the value of uk,min terms of
tractions and displacements at the nodes of the element containing the regulariza-
tion point P. They are then used in Equations (5), (6) and (8) to calculate the terms
for the constant stress state. Using this technique, the singular kernels in Equations
(1) and (2) are all regularized and standard Gaussian quadrature can be used to ob-
tain interior point solutions without the need for mesh refinement, even when they
are very close to the surface, as will be demonstrated in Section 6.

3 Self-regularized traction-BIE

As proposed in Richardson and Cruse (1999), if an interior point is taken to the
boundary so that p and P coincide, Equation (4) becomes

0 =−
∫

S
Ski j(P,Q)[uk(Q)−uL

k (Q)]ni(P)dS(Q)

+
∫

S
Dki j(P,Q)[tk(Q)− tL

k (Q)]ni(P)dS(Q)
(13)

where uL
k and tL

k are given before and the unit outward normal ni(P) is used to re-
duce the redundancy produced by the index i. This is the self-regularized traction-
BIE. Numerical evaluation of the integrals should no longer pose difficulties in
principle since they are fully regularized. Methods to deal with the evaluation of
singular integrals such as the process of sub-division of elements employed in con-
ventional displacement-BIE are no longer necessary. The terms for the constant
stress state, uL

k and tL
k , will have to be expressed in terms of nodal values so that the

corresponding coefficients can be put into the system matrix. From Equation (12),
the displacement gradients can be expressed by nodal tractions and displacements
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as:

u j,m(P) = Akmrtr(ξ P
1 ,ξ

P
2 )+Bkmr

8or6

∑
i=1

N′i u
i
r(ξ

P
1 ,ξ

P
2 ) (14)

where Akmr contains the first three rows of [A*]−1 and Bkmr contains the last six
rows, and N′i are the derivatives of the shape functions at local coordinates ξ P

1 , ξ P
2

corresponding to P. Substituting Equations (14) and (9) into Equations (5) and
(6), the constant stress state terms can then be expressed by nodal tractions and
displacements as:

uL
k (Q) = uk(P)+Ckmrtr(ξ P

1 ,ξ
P
2 )+Dkmr

8or6

∑
i=1

N′i u
i
r(ξ

P
1 ,ξ

P
2 ) (15)

tL
k (Q) = Ekmrtr(ξ P

1 ,ξ
P
2 )+Fkmr

8or6

∑
i=1

N′i u
i
r(ξ

P
1 ,ξ

P
2 ) (16)

where Ckmr, Dkmr, Ekmr and Fkmr are third order tensors containing components of
[A*]−1 and material constants, which are now put into the system matrix as extra
terms.

In the ‘relaxed continuity’ scheme, the average of the displacement gradients from
the different elements sharing the node is taken for uL

k , as follows,

uL
k (P) =


uk(P)+uk,m(P)[xm(Q)− xm(P)] f orP ∈ ∆S

uk(P)+ 1
M

M
∑
j=1

uk,m(P, j)[xm(Q)− xm(P)] f orP /∈ ∆S (17)

where M is the number of elements sharing node P, ∆S is the boundary element
being integrated, and uk,m(P, j) represents the displacement gradients expressed by
nodal tractions and displacements that belong to the j-th element. When ∆S is one
of the M elements, no average value is taken but only nodal values belonging to ∆S
are involved. The constant stress state tractions tL

k are defined similarly.

The modified “collocation strategy” moves the collocation points into the interior
of the elements where the C1,α continuity requirement is satisfied, instead of at the
surface nodes as in conventional BEM. The intrinsic coordinates of the colloca-
tion points are set as ξ 1, ξ 2=±0.9 rather than ±1 for quadrilateral elements, as
illustrated in Figure 1. The displacement gradients at the collocation point, and
consequently the constant stress state terms, are expressed in terms of the boundary
values of the elements containing the collocation point. For each node shared by M
elements, there will be M collocation points, each producing one set of 3 equations.
Thus for each node, there will be M sets of equations written onto it to yield only
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one set of equations, as when continuous elements are used. This is termed the
Multiple Collocation Approach (MCA) by Dominguez and Ariza (2000).

As mentioned earlier, the numerical tests that will be shown later suggest, however,
that this self-regularized traction-BIE may not be well-suited for general 3-D elas-
tostatic problems, even though good results have been obtained in 2-D with C0,α

elements relaxed continuity scheme as well as with the MCA. The examples will
also show that it is not well suited for thin-body problems either, due to the failure
of regularization of the singular kernels over the surface that is close to but do not
contain the source point P. This will be explained in more detail in Section 6.

Figure 1: Location of the collocation points inside an element

Inspired by the simplicity of the numerical implementation of the self-regularization
scheme and the inadequacy of the traction-BIE to treat the thin-body problem, a
new scheme is proposed using the displacement-BIE in this paper; this will be dis-
cussed next.

4 A self-regularized displacement-BIE

The self-regularized displacement-BIE proposed in this study adopts the idea of
self-regularization but is applied to the displacement-BIE instead. The conven-
tional displacement-BIE is the most commonly used formulation in BEM for stress
analysis. The sub-division of the element containing the source point P when in-
tegrating the strongly singular kernels is kept as in conventional displacement-BIE
to regularize these kernels; those elements that are very close to but not containing
Pare regularized using the proposed scheme below.

The displacement-BIE is written as

Ci j(P)u j(P)+
∫

S
Ti j(P,Q)u j(Q)dS(Q) =

∫
S
Ui j(P,Q)t j(Q)dS(Q) (18)
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where P and Q are source and field points on the surface S of the elastic domain,
respectively, and Ci j(P) is the free term. In the notion of self-regularization, some
terms corresponding to a constant stress state need to be subtracted from Equation
(18). For a reference point P0 on the surface, the displacement-BIE for constant
stress state expression at P0 can be written as

Ci j(P)uL
j
(P0,P)+

∫
S

Ti j(P,Q)uL
j
(P0,Q)dS(Q) =

∫
S
Ui j(P,Q)tL

j
(P0,Q)dS(Q) (19)

where the constant stress terms are expressed as

uL
j (P0,P) = u j(P0)+u j,m(P0)[xm(P)− xm(P0)] (20)

uL
j (P0,Q) = u j(P0)+u j,m(P0)[xm(Q)− xm(P0)] (21)

tL
j (P0,Q) = σ jm(P0)nm(Q) (22)

Subtracting Equation (17) from (16) yields

Ci j(P)[u j(P)−uL
j (P0,P)]+

∫
S Ti j(P,Q)[u j(Q)−uL

j (P0,Q)]dS(Q)

=
∫

S Ui j(P,Q)[t j(Q)− tL
j (P0,Q)]dS(Q)

(23)

Similar to the traction-BIE, the constant stress state terms uL
k and tL

k need to be
expressed in terms of nodal displacements and tractions of the element containing
P0 so that the corresponding coefficients can be placed in the system matrix. The
procedure is the same as before except that in Equations (14) to (16), P is now P0
and Q can be either Q or P. The following expressions are thus obtained:

uL
j (P0,PorQ) =

8or6

∑
i=1

N′i u
i
j(ξ

P0
1 ,ξ P0

2 )+Ckmrtr(ξ
P0
1 ,ξ P0

2 )+Dkmr

8or6

∑
i=1

N′i u
i
r(ξ

P0
1 ,ξ P0

2 )

(24)

and

tL
j (Q) = Ekmrtr(ξ

P0
1 ,ξ P0

2 )+Fkmr

8or6

∑
i=1

N′i u
i
r(ξ

P0
1 ,ξ P0

2 ) (25)

Note that the shape functions Ni in Equations (24) and (25) have been changed
to those corresponding to local coordinates of P0 in the element containing P0.
Substituting Equations (24) and (25) into Equation (23), the system equations may
be obtained in the usual manner.

In conventional displacement-BIE, the values for the free term Ci j which represent
(3 x 3) sub-matrices located at the diagonal of the system matrix [A], are usually
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obtained indirectly by considering the rigid-body motion condition. In Equation
(23), however, Ci j appears not only at the diagonal sub-matrices of [A], but also
in the columns corresponding to P0 with the opposite sign. If the off-diagonal
coefficients in each line of matrix [A] are summed up as in conventional BEM,
the Ci j terms at these two places will cancel each other. The rigid-body motion
condition thus cannot beused for calculating the Ci j terms here. An alternative
approach of direct evaluation of the free terms is thus employed, which will be
described in the next section.

The regularization point P0 is located close to the source point P but does not share
the same element with P, as shown in Figure 2. This ensures that the regulariza-
tion point is located on the second nearest surface containing the near singularities
when dealing with thin-body problems. Using this self-regularization technique,
the displacement-BIE in Equation (23) can be used for treating thin-body prob-
lems without the need of very significant mesh refinement as in conventional BEM
analysis.

Figure 2: Location of the regularization point P0

5 Evaluation of Ci j

The numerical values of the components of Ci j may be obtained following the an-
alytical approach introduced by Dangla, Semblat, Xiao and Delepine (2005) as
described in the Appendix. They depend on the local geometry at P. These an-
alytically obtained Ci j sub-matrices are always symmetric. However, because of
numerical modeling with discrete elements, the computed values of Ci j are not ex-
actly symmetric in practical BEM meshes, unless the source point is shared by per-
fectly square elements, which is seldom the case in practice. Tests show, however,
that using the analytically obtained Ci j terms for general problems can sometimes
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result in significant errors; thus, this analytical approach may not be entirely suit-
able. A numerical scheme is proposed here to deal with this difficulty in which a
small auxiliary model based on the elements sharing P is created. These elements
sharing P are projected to a plane a distance L to P with L being the largest distance
between P and the nodes of the elements sharing P. The direction of the projection
is the opposite direction of the average outward normal at P,−→n (P).

 

Projection 

Figure 3: Schematic diagram of the auxiliary model based on elements around node
P, the source point.

The Ci j values can now be calculated using rigid body motion on the auxiliary
model as in conventional BEM. When dealing with thin-body problems, however,
at some of the nodes, the corresponding auxiliary model will become another thin
body, such as the mid-side node Aat the short edge of a thin plate shown in Figure 4.
In this case, the analytical approach in Dangla, Semblat, Xiao and Delepine (2005)
is used instead. In the BEM computer code used in this study, if a node is shared
by an element having an aspect ratio larger than 3, the Ci j terms at this node will
be calculated using the analytical approach; for smaller aspect ratios, the Ci j values
will be obtained using the numerical integration over the auxiliary model. Tests
show that this approach provides accurate solutions for both thick and thin bodies.

6 Numerical examples

Several numerical examples are presented here to demonstrate the respective self-
regularization algorithms described in the previous sections. The implementation
has been carried out with modifications made to an existing BEM code for 3-D
isotropic elastostatics in which 4x4 Gauss and 13-points Hammer-Stroud quadra-
tures are employed for quadrilateral and triangular elements, respectively. Exam-
ples (A) and (B) demonstrate the efficiency and accuracy of the self-regularization
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  a) original model - a thin plate        b) mid-node A     c) auxiliary model of node A 

A 

Figure 4: a) original model - a thin plate b) mid-node A c) auxiliary model of node
A

technique in interior point solutions in 3-D as discussed in Section 2. Examples (C)
and (D) provide tests using the self-regularized traction-BIE and adopting the re-
laxed continuity and the multiple collocation strategies. Finally, Examples (E) and
(F) will illustrate the performance of the proposed self-regularized displacement-
BIE when dealing with thin-body problems. Analysis using the conventional BEM
is also carried out on each of these problems, as well as with the finite element
method for some cases, for the purpose of comparison of the corresponding results.

6.1 Interior point solutions

Example (A): The first example considered for obtaining interior point solutions
is a cantilever beam subject to a unit shear load on the free end. The beam has a
length of 8 units and square cross-section of side length 1 unit, as shown in Figure
5. Young’s modulus was set to 1000 units and Poisson’s ratio to zero to enable
comparison with the results of one-dimensional simple beam theory. The mesh
used has 72 elements and 218 nodes. Interior points were arbitrarily chosen to be
located along a central line in the cross-section 3 units from the fixed end. The
interior points were deliberately located as close to the upper and lower surfaces of
the beam for the purpose of this exercise, the distance to the surface reducing to as
low as 0.0001unit.

The results obtained using the BEM, with and without the self-regularization tech-
nique, are listed in Table 1 and compared with the corresponding values from sim-
ple beam theory. As can be seen, the results obtained using self-regularization
scheme remains very accurate even as the interior point is very close indeed to
the boundary, while with the conventional BEM code with the same fixed quadra-
ture, the stress results begin to deteriorate very sharply when the distance reaches
0.1from the surface; this being so because the singularity of the kernels in the inte-
grals for the stresses is one order higher than that of the displacements.

Example (B): A thick-walled spherical vessel under internal pressures is consid-
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Figure 5: Problem definition and mesh discretization: Example (A)

Table 1: Displacements and stresses at interior points: Example (A)

Axial stress Vertical displacement
y Beam

Theory
Self-
reg.

Without
Self-reg.

Beam
Theory

Self-
reg.

Without
Self-reg.

0.4999 -29.994 -29.640 -7879.0 0.378 0.380 0.191
0.499 -29.940 -29.586 -7791.4 0.378 0.380 0.197
0.49 -29.400 -28.804 -1537.3 0.378 0.380 0.269
0.4 -24.000 -23.538 -103.7 0.378 0.380 0.381
0.2 -12.000 -11.786 -11.8 0.378 0.380 0.380
0 0.000 0.000 0.00 0.378 0.380 0.380
-0.2 12.000 11.786 11.8 0.378 0.380 0.380
-0.4 24.000 23.539 103.7 0.378 0.380 0.381
-0.49 29.400 28.805 1537.3 0.378 0.380 0.269
-0.499 29.940 29.587 7791.4 0.378 0.380 0.197
-0.4999 29.994 29.641 7879.0 0.378 0.380 0.191

ered next (see Figure 6); it has inner and outer radii of 2 and 3 units, respectively.
Young’s modulus was set to 1000 units and Poison’s ratio was taken to be 0.3. Due
to symmetry, only one-eighth of the problem was modeled with 48 elements and
148 nodes (see Figure 6). Also shown in the figure are a series of interior points
arbitrarily located from inner surface to the outer surface along a radial plane. Ta-
ble 2 lists the results obtained from the BEM analysis with and without the self-
regularization, and compared with the well-known Lame’s exact solution. Again,
the use of self-regularization yields very accurate results even when the interior
point is close to either of the surfaces with standard integration scheme; no special
transformation or further mesh refinement was required.



330 Copyright © 2013 Tech Science Press CMES, vol.95, no.4, pp.317-349, 2013

Table
2:Principalstresses

and
radialdisplacem

ents
ofthe

pressurized
sphere:E

xam
ple

(B
)

σ
1

σ
2

σ
3

R
adialdisplacem

ent,u
r

r
E

xact
Self-
reg.

W
ithout

self-reg.
E

xact
Self-
reg.

W
ithout

self-reg.
E

xact
Self-
reg.

W
ithout

self-reg.
E

xact
Self-reg.

W
ithout

self-reg.
2.001

1.131
1.121

144080
1.131

1.099
48620

-0.998
-0.980

23350
2.143E

-03
2.183E

-03
9.18E

-02
2.01

1.121
1.115

1772
1.121

1.095
1669

-0.979
-0.969

-9387
2.134E

-03
2.168E

-03
5.67E

-02
2.1

1.035
1.046

2.985
1.035

1.038
2.840

-0.807
-0.812

-7.420
2.010E

-03
2.029E

-03
2.21E

-03
2.5

0.785
0.792

0.784
0.785

0.790
0.784

-0.307
-0.326

-0.306
1.602E

-03
1.603E

-03
1.60E

-03
2.9

0.654
0.653

13.595
0.654

0.648
-2.681

-0.045
-0.040

-2.790
1.362E

-03
1.367E

-03
1.84E

-03
2.99

0.634
0.641

13808
0.634

0.634
-2505

-0.004
-0.008

-2917
1.321E

-03
1.330E

-03
7.76E

-02
2.999

0.632
0.640

-8737
0.632

0.633
-29729

0.000
-0.006

-58414
1.319E

-03
1.327E

-03
6.67E

-02



A Self-regularization Technique in Boundary Element Method 331

                                                 

Interior 

points 

Figure 6: Problem definition and mesh discretization: Example (B)

6.2 Boundary solutions with the self-regularized traction-BIE

Example (C): The first example for the self-regularized traction-BIE is a thick-
walled cylinder with a radius ratio of 2 and unit height, subject to axial loading and
internal pressure separately. Taking advantage of symmetry, only one-quarter of the
physical problem is modeled, as shown in Figure 7. The results for a series of nodes
along two vertical lines on the inner and outer surfaces are observed. For the axial
loading case for which the stresses are uniform throughout the domain, both the re-
laxed continuity approach and multiple collocation strategy gave very good results,
as shown in Table 3. However, in the internal pressure load case for which the stress
distributions in the cylinder are not uniform, the relaxed continuity approach was
found to produce very unsatisfactory results; they are therefore not presented here.
The results obtained from the multiple collocation approach (MCA) and from the
conventional displacement-BIE are shown in Table 4. The MCA satisfies better the
continuity requirement, since collocation points are always within the elements.
However, the results are still not very accurate, with errors exceeding 10%. The
serious errors in these two schemes are found to be caused by the presence of the
corners in the model. This suggests that neither of them can sufficiently meet the
continuity requirement of the displacement-gradients across element boundaries,
especially at corners. No further tests on a thin-walled cylinder are therefore con-
ducted.

Example (D): To establish that the errors in Example (C)are indeed due to the
presence of geometric corners in the BEM model, an internally pressurised sphere
is then tested using the full geometry, as shown in Figure 8. It has 48 elements and
148 nodes. The numerical results are compared with the well-known Lame’s exact
analytical solution. Figure 9 and Tabel 10 present the variations of the maximum
errors in the stresses and displacements, respectively, with the radius ratio Kranging
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Figure 7: BEM mesh of the thick-walled cylinder: Example (C)

from 1.1 to 2.

The results show that with the absence of corners, the traction-BIE provides even
better results (less than 2%) than the displacement-BIE when K is high, with ei-
ther the relaxed continuity or multiple collocation strategy. When the thickness of
the hollow sphere reduces, however, the accuracy of the traction-BIE algorithms
starts to degenerate even faster than the displacement-BIE, and no convergence is
observed with mesh refinement. This suggests that when stresses are not uniformly
distributed within the body, even with the absence of corners, the BEM formulation
using the traction-BIE is not able to recover good results for the thin-walled sphere.

The above two examples are part of a more extensive range of simple problems that
have been tested with the traction-BIE formulation. It appears that the convergence
of the results is not always assured for 3-D problems when corners are present in
spite of the schemes aimed at trying to satisfy the continuity requirement for the
displacement gradients across inter-element boundaries. In the axial loading case
for Example (C) treated here, it involves only uniform stress and no stress discon-
tinuity is present, thus the results remain very accurate. In the internal pressure
load case, however, it suffers from the discontinuity of the displacement gradients
at the edges of the cylinder ends, giving rise to the errors in the results near there.
Dramatic mesh refinement, as has been carried out in previous 2-D studies (e.g.

Richardson and Cruse (1999)) that had yielded convergence of the solutions us-
ing this approach is cost prohibitive n 3-D. It is therefore questionable if the self-
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Figure 8: BEM mesh of the hollow sphere subject to internal pressure: Example
(D)

 
Figure 9: Variation of maximum error in stresses with radius ratio of the hollow
sphere: Example (D)

regularized traction-BIE here can be well suited for 3-D general elastostatic prob-
lems unless an analytically simple scheme is developed to ensure stress continuity
around geometry corners. The same can be said of its use for treating thin-body
problems. This can be argued as follows with reference to Figure 11: the self-
regularization adopted in this scheme only regularizes the singular kernels at field
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Figure 10: Variation of maximum error in displacements of the hollow sphere:
Example (D)

Figure 11: Schematic diagram of the location of source point P and the surfaces Sa

and Sb

points Qon the surface Sa containing source point Pby the constant stress terms at P
itself. When dealing with thin-body problems, another surface Sb is very close to P
as well, but the singular kernels at a field point Q′ on this surface cannot be regular-
ized using Pas the regularization point. This explains the dramatic drop in accuracy
for the solutions in Example (D) as the radius ratio of the sphere is decreased to
1.1.
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6.3 Boundary solutions with the self-regularized displacement-BIE

Example (E): The thin-walled pressurized cylinder and sphere are the first set first
set of thin-body problems considered here. The regularization points of the nodes
on the inner/outer surface are the closest points located on the opposing surface to
regularize the singular kernels. Taking advantage of symmetry, only one-quarter
of the thin-walled cylinder is modeled. The initial BEM mesh for the cylinder is
shown in Figure 12a; it has 38 elements and 116 nodes. The inner radius of the
cylinder is set at unity while the outer radius is reduced from 1.1 to 1.001, so that
the thickness t decreases from 0.1 to 0.001. The results at a series of nodes on
the inner surface located from the bottom (z/H = 0) to the top surface (z/H = 1)
are examined. The accuracy of the results deteriorates with the mesh used when
thickness reduces to 0.001. To establish that it is indeed due to the extraordinarily
large aspect ratios of the element dimensions of those used to model the cylinder
ends (524:1) and the radial planes of symmetry (333:1), a refined mesh, as shown in
Figure 12b is tested for this case. It has 160 elements and 482 nodes. The errors in
the stresses at the nodes on the inner surface for cases of t=0.1, 0.01 and 0.001are
shown in Figure 13.

As shown in the results, the stresses at the nodes on the smooth surface generally
have less than 2% error. For the nodes at the corners, i.e., when z/H = 0or z/H =1,
however, the errors in radial stresses are found to be very high. This was again
established to be due to the large aspect ratio of the elements representing the wall
thickness. To verify this, a partially refined mesh for the case of t =0.1 is tested, as
shown in Figure 14. The aspect ratios of the elements across the wall thickness are
reduced to be close to unity. With this mesh, the errors in radial stresses at every
node decreased to be less than 3%.

         
      (a) Initial mesh                              (b) Refined mesh 

Figure 12: BEM meshes for the thin-walled cylinder
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(a) t=0.1  

(b) t=0.01 

 

(c) t=0.001 (refined mesh) 
 

Figure 13: Percentage errors of the computed stresses at the nodes for the thin-
walled cylinders
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Figure 14: A radial plane of a tapered cylinder

 
Figure 15: BEM mesh for the thin-walled sphere

Figure 16: Variation of the maximum errors in the circumference stress with the
thickness ratio K for the pressurized thin-walled sphere problem
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The BEM mesh for the thin-walled sphere is shown in Figure 15. Only one-eighth
of the sphere is modeled by taking advantage of symmetry; it has 36 elements and
110 nodes. The inner radius is kept at unity, and the thickness t is reduced from
0.1 to 0.001 so that the thickness ratio K decreases from 1.01 to 1.001. As dis-
cussed above, the stresses at the corners have relatively high errors due to the very
large aspect ratio of the elements representing the wall thickness, thus only those
on the smooth surface are investigate. Figure 16 show the maximum error of the
circumferential stresses at an arbitrary node on the inner surface with the variation
of the thickness ratio K. the regularized displacement-BIE gives less than 3% error
for thickness up to 0.005 and starts to deteriorate at t=0.001. This is, again, due
to the large aspect ratio of the elements across the wall thickness. In comparison,
the conventional BIE is also tested on these examples and was found to fail from
t=0.1, demonstrating the efficiency and accuracy of the proposed self-regularized
displacement-BIE when dealing with thin-body problems. It should perhaps be
noted that when using the finite element method with solid elements to treat such
problems, very refined meshes will also be needed to maintain a reasonable aspect
ratio of the element dimensions, unless a judicious choice of shell elements is made
for the analysis.

Example (F): A very useful application of the proposed self-regularized displacement-
BIE algorithm is for treating physical problems which cross-sections varying from
very thick to relatively thin. Two examples involving varying thicknesses are con-
sidered here for illustration. They are, namely, a pressurized tapered cylinder, and
an ellipsoid containing a spherical cavity under pressure. As no analytical solu-
tions are readily available, finite element analysis is conducted using very refined
meshes to check the accuracy of the solutions obtained using the BEM. Although
both problems are axisymmetric, the 3-D BEM analysis is performed as tests for
the algorithm developed. Figure 17 shows the radial plane of cylinder with linearly
varying thickness; it is subject to an internal pressure of unity. The inner radius of
the cylinder is kept at unity while the outer radius is linearly decreased from 1.5
at the bottom to a smaller value rat the top. Three cases are treated here, namely,
r=1.05, 1.01, and 1.005.

Figure 18 shows the typical finite element mesh of the problem using axisymmetric
elements. The mesh around the thinner part of the model is refined as rdecreases to
ensure accuracy. As a test of the 3-D BEM code, only one-quarter of the physical
problem is modeled in the BEM analysis. As r is decreased, the aspect ratio of the
elements at the top surface increases, thus the mesh there is refined accordingly.
Figure 19 shows a series of three gradually refined meshes, which are all tested to
observe the convergence of the results.

The maximum circumferential stress occurs at the top inner surface of the cylinder
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Figure 17: A radial plane of a tapered cylinder

Figure 18: Finite element mesh of the cylinder with varying thickness (320 Ele-
ments; 3059 nodes)

and only its results are presented for the sake of brevity. They are listed in Table
5 where those obtained from FEM and the BEM using the three different meshes,
with and without self-regularization are compared. It can be seen that as the aspect
ratio of the elements at the top surface decreases, the self-regularized displacement-
BIE gives results very close to the FEM results. The conventional BIE, on the
other hand, produces results with higher discrepancies as r decreases. It should
be pointed out that both the self-regularized and conventional BIE gave accurate
results at the thick portion of the models.

The cross-section of a pressurized ellipsoid is shown in Figure 20 with the z-axis
as an axis of revolution. The vessel has a spherical cavity with radius, a, under
unit pressure, the outer surface of the cross-section has an elliptical profile, the
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(a) Mesh #1: 4 elements across top surface  

 (b) Mesh #2: 12 elements across top surface 

 

 
(c) Mesh #3: 20 elements across top surface 

 Figure 19: BEM meshes for the pressurized tapered cylinder
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Table 5: Maximum stress in the pressurized cylinder with varying thickness

r FEM No. of elements
across top surface

BEM (with
regularization)

BEM (without
regularization)

1.05 15.23
4 14.34 14.25
12 14.79 14.87
20 14.88 14.72

1.01 39.01
4 34.03 27.53
12 34.65 31.44
20 37.77 27.72

1.005 50.98
4 43.58 -494.53
12 46.61 71.58
20 51.92 99.18

Table 6: Hoop stresses in the pressurized ellipsoid

c/a FEM BEM Conventional BEM

1.05
Point A 9.440 9.159 9.725
Point B 3.080 3.109 3.175

1.01
Point A 46.867 44.677 54.073
Point B 3.268 3.151 3.162

1.005
Point A 93.655 89.495 170.30
Point B 3.2938 3.2408 3.2369

 

Figure 20: Cross-section of an ellipsoid with a pressurized spherical cavity
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Figure 21: FEM mesh of the pressurized ellipsoid

(a) Top view     (b)  Bottom view 

Figure 22: BEM mesh of the pressurized ellipsoidal vessel

semi-major axis being cand the semi-minor axis, d.The ratio c/a is kept at 1.2
while d/ais varied from 1.05, 1.01 to 1.005. The axisymmetric finite element mesh
used for the purpose of comparison of the results is shown in Figure 21; it has 431
elements and 1480 nodes. The BEM mesh employed is shown in Figure 22, with
88 elements and 266 nodes. The half model with symmetry about the horizontal
plane is employed to avoid further discussion on the large aspect ratios that would
occur at the thin portion if a quarter-model is used instead.

Table 6 lists the hoop stresses at points A and B from the FEM, and BEM analy-
ses, with and without the self-regularization. As can be seen in the table, very good
agreement with the FEM results are obtained with the self-regularized displacement-
BIE algorithm of the BEM using the relatively coarse mesh, while with the con-
ventional BEM, the accuracy deteriorates as c/a decreases.
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These two examples demonstrate that the self-regularized displacement-BIE can
provide very accurate solutions for geometries with continuously varying thickness
irrespective of whether it is thin or thick, provided due care is taken with the BEM
model to avoid excessive aspect ratios of the element dimensions.

7 Conclusions

In this paper, the self-regularization technique proposed in Cruse and Richardson
(1996) and Richardson and Cruse (1999) in 2-D BEM stress analysis has been
extended to 3-D. It has been first implemented to obtain interior point solutions in
the three-dimensional solid domain and excellent accuracy of the numerical results
is maintained even when the interior point is very close to the surface of the domain
with relative coarse mesh and fixed quadrature schemes. This is unlike with the
use of conventional displacement-BEM. Using the same strategies that have been
previously suggested in 2-D analysis, the self-regular traction-BIE has also been
extended to 3-D elasostatics. However, the numerical tests undertaken in this study
suggest that unless a more efficient and accurate means is found to preserve the
smoothness requirements of displacement gradients across the element boundaries,
the use of C0,α conforming elements with the traction-BIE developed in Cruse and
Richardson (1996) and Richardson and Cruse (1999) cannot ensure convergence
of accurate solutions. Neither is this scheme suited for treating thin-body problems
due to the near singularities that occur by the presence of the second surface nearby.

A self-regularized displacement-BIE has been proposed in this study that provides
a very effective tool to treat thin-body problems that neither the conventional BEM
nor the self-regularized traction-BIE algorithm is well suited for. Numerical exam-
ples have been presented to demonstrate the efficiency of this scheme with BEM us-
ing standard quadratic isoparametric elements and fixed integration schemes. Due
care to avoid excessive aspect ratio of the element dimensions need to be taken,
however, to ensure consistent accurate results are obtained throughout the solution
domain.

Appendix

An analytical expression for the free term in the displacement-BIE, Ci j, has been
derived by Dangla, Semblat, Xiao and Delepine (2005). It is given as follows:

Ci j(P) =
ψ

4π
δi j−

1
8π(1−ν)

E

∑
e=1

sin(
θ e

2
)(be

i ne
j +be

jn
e
i ) (A-1)

where Eis the number of elements sharing the node P, θ eis the angle formed by
the two edges of element e at P, be

i is the unit vector of the bisecting line of these
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two edges, and ne
i is the unit outward normal of element e. These quantities are

illustrated in Figure A-1, with a unit sphere centered at P. The solid angle ψ can
be calculated using

ψ =
E

∑
e=1

(ψe
1 +ψ

e
2 +ψ

e
3−π) (A-2)

Figure A-1: Schematic of elements sharing node P

where ψe
i are the angles formed by the planes of the trihedron as shown in the

figure. This trihedron is formed by the two edges of element e, the semi-axis in the
direction of−n(P), and the part of the unit sphere cut off by these three lines, where
n(P) is an arbitrarily chosen normal at P, usually taken as the average of outward
normal of the elements sharing P. It was suggested that the choice of this n(P) does
not affect the accuracy of the free term as the solid angle will be recovered whatever
the n(P) is. Since n(P) is the average of the normal of the elements sharing P, its
opposite will always be located between the edges of the elements. Thus, the sum
of ψe

3 will become 2π , and Equation (A-2) becomes

ψ =
E

∑
e=1

(ψe
1 +ψ

e
2)+2π−Eπ) (A-3)

To obtain the angles ψe
i , we need the vectors vi as shown in Figure A-2. These

vectors are obtained as follows:
⇀v1 =

⇀n
e×⇀a1

⇀v2 =
⇀a1× (

⇀n(P)×a1)
⇀v3 =

⇀a2×
⇀n

e

⇀v4 =
⇀a2× (

⇀n(P)×⇀a2)

(A-4)
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Figure A-2: Illustration figure for solid angle ψ

where ⇀a1 and ⇀a2 are the unit vectors of the two edges. ψe
i can now be obtained by:

ψ1 = cos−1(
⇀v 1

⇀v 2

|⇀v 1||
⇀v 2|

)

ψ2 = cos−1(
⇀v 3

⇀v 4

|⇀v 3||
⇀v 4|

)
(A-5)

Once all the quantities in Equation (A-1) are obtained, the explicit terms Ci j can
be computed and appropriately placed into the system matrix corresponding to the
node P and nodes of the elements containing P0.
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