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Comparative Study of the Water Response to External
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Abstract: Dissipative particle dynamics (DPD) and molecular dynamics (MD)
are both Lagrangian particle-based methods with similar equations except that the
DPD specification for the force definition on the particles is the result of coarse-
graining, and these two methods usually get the similar results in some specific
cases. However, there are still some unknown differences between them. Consid-
ering the water response to external force, a comparative study of DPD and MD
is conducted in this paper, which provides a better understanding on their relation,
and a potential way to effectively bridge nanoscale and mesoscale simulation pro-
cedures. It is shown that there is a scale effect on the water response to external
force between MD and DPD, and that the size effect exists only in MD simulations.

Keywords: Dissipative particle dynamics (DPD), molecular dynamics (MD), wa-
ter response, scale and size effects.

1 Introduction

Molecular dynamics (MD) simulation is a powerful technique that has been proved
to be able to produce realistic results in a wide variety of applications [Alder
and Wainwright (1957); Atluri and Srivastava (2002); among others]. But it be-
comes inefficient and even impractical beyond extremely small spatial and tempo-
ral scales [Klein and Shinoda (2008); Ma, Lu, Wang and Hornung (2006); Tang,
Guo and Gao (2011); among others]. When it comes to larger scale, especially
when one is concerned with the scale more relevant to biological processes, the
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so-called mesoscopic (between the molecular and continuum scales) methods are
the way to go [Hoogerbrugge and Koelman (1992); Liu and Liu (2003); among
others]. Obviously, many interesting processes occur at a variety of scales span-
ning from atomistic length-scale to macroscopic world. Thus, several types of
multiscale models have been proposed to combine or couple the molecular method
with the numerical procedures at a larger scale, such as dissipative particle dynam-
ics (DPD) [Mukhopadhyay and Abraham (2009)], the multiscale material point
method (MPM) [Chen, Han, Jiang, Gan and Sewell (2012)] and Eulerian continuum-
based Navier-Stokes equations [Yasuda and Yamamoto (2008)]. Although many
efforts have been made in the past, the connection from atomistic scale to macro-
scopic scale is still not well-understood.

Mukhopadhyay and Abraham (2009) proposed a multiscale model based on the
combination of the DPD at mesocale with the MD at nanoscale, which was used
to solve Poiseuille and Couette flows and the flow over a rough wall. They em-
ployed the isothermal compressibility of the system to provide a link between the
nanoscale and mesoscale description of fluid flow, but the characteristics of com-
pression were not mentioned. Chen, Han, Jiang, Gan and Sewell (2012) presented a
particle-based multiscale simulation procedure for establishing the multiscale equa-
tion of state (EoS), in which MD at nanoscale is linked with cluster dynamics (CD)
at sub-micron scale via a hierarchical approach while CD is embedded into the
MPM via a concurrent approach. In the multiscale method combining the MD
with Eulerian continuum-based Navier-Stokes equations, MD is coupled with a
finite-discretization solver to solve the continuum equations [Connell and Thomp-
son (1995); Voulgarakis and Chu (2009)]. However, a detailed comparative study
of the responses at different scales has not been performed in the previous investi-
gations.

Groot and Warren (1997) first made a link between the DPD parameters and χ-
parameters in the Flory-Huggins type of models that bridged the gap between mi-
croscopic and mesoscopic simulations. However, the solutions obtained with the
DPD soft repulsion model differ from those with the Flory-Huggins model. On the
other hand, the DPD parameters were calibrated based on the analogy of specific
macroscopic property so that they might not be consistent with the actual conditions
in general. To clarify the size effect on the solutions obtained at different scales, a
comparative study between the MD and DPD simulations of the water response to
external force is therefore performed in this paper.

2 Particle-based simulation techniques

MD has been discussed extensively since the seminal papers of Alder (1957), Gib-
son (1960) and Rahman (1964) were published. The dynamics of a system with a
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certain amount of atoms is obtained by the numerical integration of the equation of
motion for each atom as follows:

mi
∂ 2ri

∂ t2 =− ∂

∂ri
Utot(r1,r2, . . .rN), i = 1,2, . . . ,N (1)

where, mi and ri are respectively the mass and position vector of atoms i, Utot is the
total potential energy that depends on all the atomic positions and is divided into
two parts, namely, nonbonded atom interaction and intramolecular interaction.

The Lennard-Jones potential is a widely used form for simple non-bonded interac-
tion fluids, and given by

UvdW (ri j) = 4ε[ci j(
σ

ri j
)12−di j(

σ

ri j
)6] (2)

where ε is the depth of the potential well, σ is the separation distance at which this
potential becomes zero, ri j is the distance between atoms i and j, and ci j and di j are
dimensionless constants. The interaction occurs within the a certain cutoff distance
rc. Based on Banerjee’s (2007) sensitivity analysis, the cutoff distance in our study
is taken to be 9.8 Å.

Another non-bonded potential is the electrostatic potential expressed by the Coulomb’s
law:

Ucoulomb(ri j) =
qiq j

4πε0ri j
(3)

where qi and q j are respectively the electrostatic charges of atoms i and j, which
are equal to 0.41 for H atom and -0.82 for O atom, and ε0 is the dielectric constant.

The intramolecular interaction in our study is based on the following approxima-
tion:

Uintramolecular =Ustretch +Uangle (4)

where Ustretch describes the potential when the bond is stretched from its initial
position r0 to a new position r,

Ustretch = kbond(r− r0)
2 (5)

and Uangle describes the potential when the angle between two specific bonds shifts
from its initial angle θ0 to a new angle θ , i.e.,

Uangle = kangle(θ −θ0)
2 (6)
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Other intramolecular potential functions such as dihedral and improper dihedral po-
tential functions are not considered here because such a possibility does not appear
in our study.

Designed conceptually by Hoogerbrugge (1992), the interactions in DPD model
are formulated based on MD by coarse-graining the details at the molecular level to
capture the essential feature of physics at the mesoscale. DPD has been developed
to simulate complex fluid flows and colloidal phenomena in mesoscopic scale. The
motion of a set of interacting “particles” instead of atoms is simulated by the DPD
method, in which the particles move according to Newton’s second law, namely

dri

dt
= vi,

dvi

dt
= ∑

j
fi j (7)

where ri and vi are respectively the position and velocity vector of the mass centre
of particle i. The particle mass is taken as the unit of mass for convenience. fi j is
the interparticle force on particle i by particle j, which is assumed to be pairwise
additive and consists of three parts: a conservative force fC

i j , a dissipative force fD
i j

and a random force fR
i j, i.e.,

fi j = FC
i j +FD

i j +FR
i j (8)

In Eq. (7), the summation runs over all other particles around particle i within a
certain cutoff radius rc, taken as the unit of length in the conventional DPD formula-
tion. The value of rc can be different for different types of forces. The conservative
force fC

i j is a soft repulsion and given by

FC
i j =

{
ai j (1− ri j) r̂i j, ri j < 1.0
0, ri j ≥ 1.0

(9)

where ai j is a maximum repulsion between particles i and j. In the current study,
the cutoff radius for the conservative force is set to be 1.0, as the unit of length;
ri j = ri−r j, with its amplitude ri j =

∣∣ri j
∣∣, and r̂i j = ri j/ri j is the unit vector directed

from the mass centre of particle j to i. The dissipative and random forces take the
form of

FD
i j =−γwD (ri j)(r̂i j ·vi j) r̂i j (10)

and

FR
i j = σζi jwR(ri j)r̂i j (11)

respectively, where γ and σ are the coefficients for characterizing the strengths of
these forces. wD (ri j) and wR (ri j) are r-dependent weighting functions vanishing
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for r > rc. Also,vi j = vi−v j, and ζi j is Wiener increment with the following prop-
erties:〈
ζ (t)i j

〉
= 0 and

〈
ζik (t)ζ jl

(
t ′
)〉

=
(
δi jδkl +δilδ jk

)
δ
(
t− t ′

)
, (12)

in which i 6= k and j 6= l. The detailed balance condition is similar to the Fluctuation-
Dissipation theorem with the relation between the strength of the random force and
the mobility of a Brownian particle, which requires that

wD (r) =
[
wR (r)

]2
, γ =

σ2

2kBT
(13)

where kB is the Boltzmann constant and T is the temperature of the system. This
ensures that the particulate temperature, strictly speaking, the fluctuation kinetic
energy of the system, remains in constant. As far as the thermal energy is con-
cerned, the random two-particle force FR

i j represents the results of thermal motion
of all atoms/molecules contained in particles i and j, “heating up” the system. The
dissipative force FD

i j reduces the relative velocity of two particles and removes ki-
netic energy from their mass centre to cool the system down. When Eq. (13) is
satisfied, the system temperature will approach the given value. The dissipative
and random forces act like a thermostat in the conventional molecular dynamics
(MD) system.

3 Methodology

Water is probably the most common material which has been studied widely in
the past. In the MD method, many “hypothetical” models, e.g. SPC, SPC/E,
TIP3P, TIP4P and TIM2-F, have been proposed. The effects of those models on
certain properties of water, such as density, enthalpy of vaporization, radial dis-
tribution function (RDF) and hydrogen bonding have also been investigated ex-
tensively [Alexiadis and Kassinos (2008); among others]. However, some of its
characteristics and properties have not been clearly defined yet. In this study, three
commonly used models, SPC/E [Berendsen, Grigera and Straatsma (1987)], TIP3P
[Jorgensen and Chandrasekhar (1983)] and TIP4P [Mahoney and Jorgensen (2000)]
are selected with the parameters described in Tab. 1.

Six hundred atoms, four hundred bonds and two hundred angles for each model
are created using Packmol [Martinez and Andrade (2009)] and displayed by VMD
[Humphrey, Dalke and Schulten (1996)] (Fig. 1). The MD simulations are car-
ried out by utilizing LAMMPS [Plimpton (1995)] with the initial velocities of
Maxwellian distribution for molecules at an average temperature 298K, while a
Nose-Hoover [Nose (1984), Hoover(1985)] thermostat is utilized to keep the sys-
tem at 298K during the simulation.
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Table 1: Parameters of three water models

Model σo−o(Å) ε0−0(kJ mol−1) r0(r1)(Å) qH(e) qO(e) θ0(deg)
SPC/E 3.166 0.650 1.0 +0.4238 -0.8476 109.47
TIP3 3.15061 0.6364 0.9572 +0.4170 -0.8340 104.52

TIP4P 3.15365 0.6480 0.9572 +0.52 -1.04 104.52
σo−o and ε0−0 are the Lennard-Jones parameters for the oxygen-oxygen interac-
tion, r0(r1) is the O−H bond distance, qH and qO are the partial charges located
respectively on the hydrogen and the oxygen, and θ0 is the H −O−H bonds
angle.

The DPD parameters should be carefully chosen so that the water flow could be
simulated. Groot and Warren (1997) found that, to satisfy the compressibility of
water, the coefficient of the conservation force should be

ai j = 75kBT/ρ (14)

and recommended that σ=3.0 with λ=0.65 in the Verlet-type algorithm. The den-
sity is set to be ρ=4.0. The size of the plane lattice of the wall particles is equal
to 1.0. The unit of energy is set to be kBT , i.e., kBT =1.0. According to Eq.
(13), γ=4.5. From Eq. (14), ai j = a f f =18.75. We assume that aww=5.0 and
a f w =

√a f f aww=9.6825 when the interaction between the fluid and wall particles
is calculated. In DPD simulation, fluid particles with a total number of 1932 are
bound up within the walls which consists of other 600 particles, and the computa-
tional domain is V1 =14×14×3 (see Fig. 2).

4 Results and discussion

In order to obtain the relation between density/volume and pressure, fluid parti-
cles are bounded up within walls along the x- and y-directions, while the periodic
boundary condition is applied in the z-direction. A slice of particles on the right
are treated as a rigid piston, as shown in Figs.1 and 2. There are two ways to sim-
ulate the response of water to external force. In one way, the system can be first
compressed to a relatively smaller volume, and then equilibrated at the constant
volume until it achieves a balanced state, during which the pressure can approach
to a constant value. After that, the compression and equilibrium processes can be
performed repeatedly. The average density, volume and pressure can be obtained
at the end of each equilibrium process. In another way, the volume of the system
can gradually be decreased at each time step until it reaches the desired volume,
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Figure 1: The pressure variation during the equilibrium after compression in MD
simulation

 
Figure 2: Pressure-density relation for DPD particles during the compression

during which the density, volume and pressure are obtained at the end of every cer-
tain number of time steps. In the former way, one of the equilibrium processes in
the MD simulation is shown in Fig. 1, from which we can see that the pressure de-
creases with time and tends towards a constant pressure within a variation of ∼3%.
When the fluid is compressed at a given level for a long enough time, the process
becomes quasi-static. Hence, the former method is utilized, that is, in both DPD
and MD simulations a compressive load is applied incrementally, with a period of
equilibrium between two steps, to the piston as shown in Figs. 1 and 2.
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In the MD simulations, a computational domain with 200 water molecules (V1
in Tab. 2) was studied first. As illustrated in Fig. 3, the responses of three MD
models have the same tendency. The pressure and its gradient are shown to increase
with the increase of the absolute value of ∆V/V . Figure 4 shows the equilibrium
structure of water in MD simulations by plotting the RDF curves. As can be seen,
the values of first peaks are the largest, and the magnitude of oscillations become
small with time. Similar results can also be found in the DPD simulations.

 
Figure 3: The response to external force of water molecules in MD and particles in
DPD

 
Figure 4: The radial distribution function in MD simulations
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Table 2: Different sizes and quantities in MD and DPD simulations

Nos. type size molecules/particles quantity
V1 MD 31.6×31.6×6 Å3 200
V2 MD 111.8×111.8×6 Å3 2509
V3 MD 223.6×223.6×6Å3 10036
V4 DPD 14×14×3 1932
V5 DPD 50×50×3 28500
V6 DPD 100×100×3 117000

 
Figure 5: MD pressure-volume relations with different simulation box sizes

 
Figure 6: DPD pressure-volume relations with different simulation box sizes
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Figure 7: Pressure-volume relations at different temperatures in MD simulations

Figure 8: DPD pressure-volume relations at different temperatures

To verify the compressibility of coarse-grained DPD, the pressure-density relation
for V4 in Tab. 2 was examined first. As shown in Fig. 2, the data points of
pressure calculated for the DPD fluid at different densities are consistent with the
curve predicted by Groot’s equation. Although the DPD results demonstrate the
same trend as the MD ones within a certain range of ∆V/V , the difference be-
tween the DPD and MD results become significant with the decrease of volume
(increase of pressure), as shown in Fig. 3. The reason might be due to the fact that
DPD is a coarse-grained method, in which one DPD particle represents a group of
MD molecules. Thus, the DPD fluid particles may show a different performance
of physical properties from those in MD, which implies that a scale effect exists.
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Besides, the DPD fluid properties depend on the potential functions and other pa-
rameters, but the connection between a DPD particle and real material behavior is
still unknown for most cases. A better understanding and formulation of the inher-
ent relationship between the MD molecule and DPD particle are therefore required
in the future study.

To investigate the size effect, another two computational domains with different
sizes and numbers of atoms/particles are considered in MD and DPD simulations
as listed in Tab. 2. In the MD simulations, SPC/E water model is employed. As
shown in Fig. 5, the water response is significantly different with three box sizes
in MD simulations. Although the pressure increases with the decrease of volume
for all the three cases, the pressure for V3 is more than twice of that for V1. In
DPD simulations, however, the pressure varies in the same trend with the volume
change, and there is no size effect on the simulation results.

In both DPD and MD simulations, temperature effect has also been considered. At
microscopic scale, the water molecules show almost the same characteristics during
the compression at 298K, 323K and 373K, as illustrated in Fig. 7. There is only a
small difference during the volume change, and the higher temperature would lead
to a higher pressure. In contrast, as shown in Fig. 8 for DPD simulations, the pres-
sure has a relatively large increment from kBT =1 to kBT =2, which means that the
pressure is sensitive to the temperature. Besides, the increment of the conservation
force coefficient also plays an important role on the increase of pressure.

5 Conclusions

The MD and DPD simulations have been performed to investigate the water re-
sponse to external force. In the MD simulations, three molecular water models
(SPC/E, TIP3P and TIP4P) show a similar exponential relation between the pres-
sure and volume change, and there are small variations for different temperatures.
The DPD simulations illustrate a discrepant trend which is close to a linear relation
with either varying temperature or conservative force coefficients. Hence, it is not
feasible to relate the DPD results directly to the MD ones. The comparative study
indicates that there is a scale effect of the water response to external force between
the microscopic scale (MD) and the coarse-grained mesoscale (DPD). The scale
effect is caused not only by the coarse-graining and the mapping reliability from
MD to DPD, but also by the different interactional potentials at different scales. In
addition, the response is dependent on the size of computational domains for MD
simulations, but independent to that in DPD ones, implying that there exists a size
effect in the atomistic scale simulation. The DPD method appears to be closer to a
continuum description of a physical model.
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