
Copyright © 2013 Tech Science Press CMES, vol.95, no.3, pp.235-258, 2013

Numerical Integration with Constraints for Meshless
Local Petrov-Galerkin Methods

L. Sun1, G. Yang2 and Q. Zhang3

Abstract: We propose numerical integration rules for meshless local Petrov-
Galerkin methods (MLPG) employed to solve elliptic partial different equations
(PDE) with Neumann boundary conditions. The integration rules are required to
satisfy an integration constraint condition of Green’s formula type (GIC). GIC was
first developed in [Babuska, Banerjee, Osborn, and Zhang (2009)] for Galerkin
meshless method, and we will show in this paper that it has better features for
MLPG due to flexibility of MLPG in choosing different trial and test function
spaces. A general constructive algorithm is presented to design the integration
rules satisfying GIC. We also present a useful situation, where GIC holds automat-
ically for Gaussian rules. According to this, we conclude that the conical weight
is suggested to adopt in MLPG from viewpoint of reducing integration complex-
ity. Approach to extending GIC in [Babuska, Banerjee, Osborn, and Zhang (2009)]
to more general elliptic PDE, such as elasticity equation, is discussed. The 1D
and 2D numerical results illuminate that GIC reduces the errors in the approximate
solutions of MLPG significantly.

Keywords: Meshless Petrov-Galerkin method (MLPG), numerical integration,
integration constraint, Green’s formula, correction algorithm, conical weight.

1 Introduction

For last decades, a lot of progress has been made in the development of mesh-
less methods (MM). These methods have been extensively applied to solve engi-
neering problems, especially those where mesh-generation is complicated, e.g., the
problems with crack propagation or large deformation. We refer to [Atluri and

1 School of Science, Guangdong University of Petrochemical Technology, Maoming, Guangdong,
525000, China.

2 School of Computer Science, Zhongyuan University of Technology, Zhengzhou, 450007, China.
3 Corresponding author. Guangdong Province Key Laboratory of Computational Science and De-

partment of Scientific Computing & Computer Applications, Sun Yat-Sen University, Guangzhou,
510275, China. E-mail:zhangqh6@mail.sysu.edu.cn.

236 Copyright © 2013 Tech Science Press CMES, vol.95, no.3, pp.235-258, 2013

Shen (2002); Atluri (2004); Babuska, Banerjee, and Osborn (2003); Belytschko,
Krongauz, Organ, Fleming, and Krysl (1996); Belytschko, Lu, and Gu (1994);
Fries and Matthies (2004); Li and Liu (2002); Liu, Jun, and Zhang (1995); Sch-
aback and Wendland (2006); Sladek, Stanak, Han, Sladek, and Atluri (2013)]
for various details on MM. There are many classes of MM in practice, such as
element-free Galerkin methods (EFGM) [Belytschko, Krongauz, Organ, Fleming,
and Krysl (1996); Belytschko, Lu, and Gu (1994)] reproducing kernel particle
methods (RKPM) [Liu, Jun, and Zhang (1995)], particle-partition of unity methods
(PPUM) [Griebel and Schweitzer (2002)], meshless local Petrov-Galerkin methods
(MLPG) [Atluri and Zhu (1998); Atluri and Zhu (2000); Atluri and Shen (2002);
Atluri (2004); Sladek, Stanak, Han, Sladek, and Atluri (2013)], generalized fi-
nite element method (GFEM) [Babuska, Banerjee, and Osborn (2003)], collocation
meshless methods [Schaback and Wendland (2006); Fries and Matthies (2004);
Zhang, Dong, Alotaibi, and Atluri (2013)], etc.

Among these methods, MLPG has caught much attention due to its two main ad-
vantages: (a) flexibility in designing different trial and test spaces; (b) easy im-
plementation of numerical integration, which could be done in supports of the test
shape function without an auxiliary integration mesh (“truly” meshless method).
As in all the Galerkin mehsless methods (GMM) [Babuska, Banerjee, Osborn, and
Li (2008); Babuska, Banerjee, Osborn, and Zhang (2009); Beissel and Belytschko
(1996); Carpinteri, Ferro, and Ventura (2002); Chen, Wu, Yoon, and You (2001) De
and Bathe (2000); Dolbow and Belytschko (1999); Duan and Belytschko (2009);
Fries and Belytschko (2008); Griebel and Schweitzer (2002); Liu and Belytschko
(2010); Sze, Chen, Sheng, and Liu (2004); Zhang (2011); Zhang and Banerjee
(2012)], numerical integration posed big challenge in MLPG because its shape
functions (especially the trial shape functions) are complex or even without explicit
expressions. In fact, if numerical integration is not carried out carefully, MLPG
may fail to simulate physical phenomena correctly. Lots of brilliant ideas have
been developed to deal with the issue, such as [Atluri and Shen (2002); Mazzia, Fer-
ronato, Pini, and Gambolati (2007); Mazzia and Pini (2010); Pecher (2006); Avila,
Han, and Atluri (2011); Sellountos, Sequeira, and Polyzos (2010); Zhang, Dong,
Alotaibi, and Atluri (2013)]. Moreover, many of integration schemes proposed in
GMM [Babuska, Banerjee, Osborn, and Zhang (2009); Liu and Belytschko (2010);
Zhang and Banerjee (2012)] could also be introduced in MLPG. In our opinion,
however, the issue has not yet been addressed efficiently.

It has been recognized from the latest researches that the integration errors in GMM
could be reduced remarkably by certain integration constraint (IC) conditions. In
[Chen, Wu, Yoon, and You (2001); Sze, Chen, Sheng, and Liu (2004)], an IC con-
dition based on divergence theorem is proposed for nodal integration rules in GMM

Numerical Integration with Constraints 237

to obtain a linear exactness of the approximate solutions. A strain smoothing stabi-
lization scheme is developed to meet the IC condition there. In [Babuska, Banerjee,
Osborn, and Li (2008); Zhang (2011)], IC assumes a zero row-sum condition of
stiffness matrix to reduce the integration errors of GMM, namely, it requires that
sum of the entries of every row in the stiffness matrix is zero. The IC condition of
zero row-sum is achieved by correcting the diagonal elements of the stiffness ma-
trix. The divergence free IC is advised for EFGM in [Liu and Belytschko (2010)]
based on the so-called support integration—the integration rule where numerical
integration is carried out on supports of the shape functions. According to the sup-
port integration also, a more general IC condition, called as IC of Green’s formula
type (GIC), is developed in [Babuska, Banerjee, Osborn, and Zhang (2009); Zhang
and Banerjee (2012)], where the integration rules are required to satisfy certain dis-
crete Green’s formulae. The above-mentioned IC in [Chen, Wu, Yoon, and You
(2001); Sze, Chen, Sheng, and Liu (2004); Babuska, Banerjee, Osborn, and Li
(2008); Zhang (2011); Liu and Belytschko (2010)] could be viewed as the special
examples of GIC in some sense. Most importantly, GIC works for moving least-
square (MLS) trial functions of any degree k, where positive integer k means the
degree of polynomials reproduced by the MLS functions; while the other IC con-
ditions in [Chen, Wu, Yoon, and You (2001); Sze, Chen, Sheng, and Liu (2004);
Babuska, Banerjee, Osborn, and Li (2008); Zhang (2011); Liu and Belytschko
(2010)] only work for k = 1, i.e., the linear exactness. As pointed out in [Babuska,
Banerjee, Osborn, and Li (2008); Babuska, Banerjee, Osborn, and Zhang (2009);
Zhang (2011); Zhang and Banerjee (2012)], the integration rules that do not sat-
isfy any IC may cause the “growing up” errors in the approximate solutions of
GMM, namely, the errors may increase as spacing of particles decreases. This
phenomenon, more or less, interprets why the conventional integration rules, e.g.,
Gaussian integration or Trapezoidal rule, behave badly in GMM. We mention that
convergence of GMM with IC was mathematically analyzed in [Babuska, Baner-
jee, Osborn, and Li (2008); Babuska, Banerjee, Osborn, and Zhang (2009); Zhang
(2011); Zhang and Banerjee (2012)].

To our best knowledge, IC has not been studied in MLPG yet. It is noteworthy that
GIC or IC in [Liu and Belytschko (2010)] are set up based on the support integra-
tion, which is just one of the major advantages of MLPG. In addition, constructing
the integration rules for GIC or IC in [Liu and Belytschko (2010)] depends on the
test functions, which are the MLS and RKP functions in EFGM and RKPM re-
spectively, both are difficult to evaluate. On the other hand, it is possible for MLPG
to choose simple test functions such that the construction of the integration rules
for GIC get easier. Due to these two aspects, designing the integration rules with
IC for MLPG is more promising. In this paper, we propose the integration al-

238 Copyright © 2013 Tech Science Press CMES, vol.95, no.3, pp.235-258, 2013

gorithms with GIC in [Babuska, Banerjee, Osborn, and Zhang (2009); Zhang and
Banerjee (2012)] for MLPG, applied to solve elliptic PDE with Neumann boundary
conditions. The trial functions in MLPG is the moving least-square (MLS) basis
functions reproducing polynomials of degree k, where k is an arbitrary positive in-
teger; while the weight functions, used to construct the MLS functions, serve as the
test shape functions. This class of MLPG is referred to as MLPG1 in the literature
[Atluri and Shen (2002); Mazzia and Pini (2010); Pecher (2006)], which is the most
popular MLPG in practice. We present a general constructive algorithm to correct
the conventional integration rules (such as Gaussian rules, Trapezoidal rule, even
Riemann sum rule) to satisfy GIC. This correction algorithm is designed accord-
ing to the weight functions and does not increase extra computation complexity.
When the conical weight with rectangular support is applied in MLPG, GIC will
hold for Gaussian rules automatically. This nice feature is attributed to the flexibil-
ity of MLPG in choosing the test functions and never occurs in EFGM or RKPM.
Therefore, we suggest to make use of the conical weight in MLPG from viewpoint
of reducing integration complexity. We also discuss approach to extending GIC in
[Babuska, Banerjee, Osborn, and Zhang (2009); Zhang and Banerjee (2012)] (for
Poisson equation) to other general elliptic PDE, by taking a plane elasticity prob-
lem as example. We numerically investigate effects of GIC for k = 1,2 in 1D and
2D problems. Without satisfaction of GIC, the errors in the approximate solutions
of MLPG may grow up as the particle density is higher; while GIC reduces the
errors in MLPG significantly. Ratios of the errors in MLPG satisfying GIC and not
satisfying GIC are between 0.011% and 2.3% at the highest particle density, and
between 9.4% and 50% at the lowest particle density. In particular, the advantages
of GIC in MLPG are more notable for the higher exactness k and particle density.

We organize the paper as follows. We first introduce a model problem and its
local Petrov-Galerkin weak formulations in Section 2. The trial and test spaces of
MLPG are reviewed in Section 3. Section 4 is the main part of the paper where we
propose GIC for MLPG and present a constructive algorithm to satisfy GIC and a
useful situation that GIC holds automatically for Gaussian rules. We also discuss
approach to extending GIC to other general elliptic PDE there. The numerical
experiments and conclusion are presented in Section 5 and 6, respectively.

2 Model problem and local Petrov-Galerkin formulation

For a domain D ⊂ Rd , we denote by L2(D), C(D), Ck(D) the spaces of square
integrable, continuous and k-continuous functions, respectively. Polynomial space
of degree k is denoted by Pk. Below, the letter k will always mean the degree of
polynomials reproduced by the MLS functions.

Let Ω ⊂ Rd be a bounded domain with Lipschitz continuous boundary Γ := ∂Ω.

Numerical Integration with Constraints 239

For the model problem, we consider the Neumann problem

−∇ ·
(
A∇u

)
+ cu = f , in Ω

A∇u ·~n = g, on Γ (1)

where A(x) = [ai j(x)]1≤i, j≤d is a symmetric matrix-valued function, ai j ∈Ck(Ω), c
∈C(Ω), f ∈ L2(Ω) , g ∈ L2(Γ) and ~n is the outward unit normal vector to Γ. We
assume that there is a constant β > 0 such that

d

∑
i, j=1

uiai j(x)u j ≥ β

d

∑
i=1

u2
i , ∀u ∈ Rd and c(x)≥ β , ∀ x ∈Ω.

Remark 2.1 To highlight the integration algorithms, we consider natural boundary
conditions because essential boundary conditions in MM need to be imposed with
care [Fernandez and Huerta (2004); Babuska, Banerjee, and Osborn (2003)]. We
have in [Zhang (2014)] investigated a Nitsche’s approach to enforce the essential
boundary conditions, where the integration algorithms in this article can apply
without difficulty. Furthermore, the ideas developed here can be extended to other
elliptical PDE, for instance, the elasticity problem, see Section 4.4 below. �

Instead of the global weak forms on Ω in the conventional Galerkin methods,
MLPG employ the local variational formulations to solve the problem (1) [Atluri
and Zhu (1998); Atluri and Zhu (2000); Atluri and Shen (2002); Atluri (2004)]. As-
sume Ωi is a sub-domain of Ω and vi is a test function associated to it. Multiplying
vi on both sides of (1) and integrating on Ωi, we have
ˆ

Ωi

(−∇ ·
(
A∇u

)
+ cu)vidx =

ˆ
Ωi

f vidx.

Using divergence theorem and the boundary condition in (1), we get
ˆ

Ωi

(A∇u ·∇vi + cuvi)dx =

ˆ
Ωi

f vidx+
ˆ

∂Ωi

A∇u ·~nivids

=

ˆ
Ωi

f vidx+
ˆ

Γi

gvids+
ˆ

Li

A∇u ·~nivids, (2)

where Γi := ∂Ωi∩Γ, Li := ∂Ωi\Γi, and~ni is the outward unit normal vector to ∂Ωi.
The formulation (2) is referred to as the local Galerkin weak formulation. MM that
approximate (2) using different trial and test spaces are referred to as meshless
Petrov-Galerkin methods (MLPG). Different choices of the test function vi lead to

240 Copyright © 2013 Tech Science Press CMES, vol.95, no.3, pp.235-258, 2013

many variants of MLPG. If the test function vi is chosen to have compact support
such that vi = 0 on Li, then (2) is reduced toˆ

Ωi

(A∇u ·∇vi + cuvi)dx =
ˆ

Ωi

f vidx+
ˆ

Γi

gvids (3)

MLPG based on (3) is called as MLPG1, which is the original version of MLPG
[Atluri and Zhu (1998)]. If vi is taken as constant 1, (2) becomes

−
ˆ

Li

A∇u ·~nids+
ˆ

Ωi

cudx =
ˆ

Ωi

f dx+
ˆ

Γi

gds,

which leads to MLPG5. MLPG1 and MLPG5 seem to be most promising in the
literature. Without carrying out volume integrations in stiffness matrix, MLPG5
have less computation complexity. However, MLPG5 are less stable than MLPG1
in a sense that its stiffness matrix may be diagonally less dominant than those
of MLPG1 and cause serious computational difficulties in solving linear systems
[Mazzia, Ferronato, Pini, and Gambolati (2007); Mazzia and Pini (2010)]. There-
fore, we focus on MLPG1 (3) in this paper. Below, we assume that vi has compact
support and vanishes on Li so that we work with the variational formulation (3)
in stead of (2). We mention that it is not a restrict requirement and can be imple-
mented easily. As we will see in next sections, vi is generally taken as the weight
function of the MLS scheme, and Ωi is the intersection of Ω and support of vi so
that the requirement is fulfilled naturally.

3 Moving least-square schemes and discretization

In this section, we specify the trial and test functions and the subdomains Ωi

in meshless approach to discretize the weak formulation (3). There are several
schemes in the literature, for instance, moving least-square method (MLS) [Be-
lytschko, Lu, and Gu (1994)], reproducing kernel particle method (RKPM) [Babuska,
Banerjee, and Osborn (2003); Liu, Jun, and Zhang (1995)], partition of unity (PU)
[Babuska, Banerjee, and Osborn (2003); Griebel and Schweitzer (2002)], etc. In
these methods, the shape functions are produced through a set of particles scattered
in the domain, therefore, MM are also referred to as particle methods. In this pa-
per, the MLS approach [Belytschko, Lu, and Gu (1994)] is employed to produce the
trial space; while the weight functions used to construct the MLS functions serve
as the test functions.

3.1 Moving least-square (MLS) method

For a positive integer N, denote by IN to be the number set {1,2, · · · ,N}. Let
XN = {zi : i ∈ IN} be a set of particles scattered in Ω, ordered by the index set IN .

Numerical Integration with Constraints 241

Every particle zi is associated to a weight (or window) function wi(x) ≥ 0 that is
of compact support and centered at xi. In general, wi(x) can be obtained through
dilation and translation of a master weight function w(x), namely,

wi(x) = w
(

x− zi

hi

)
, (4)

where hi is a dilation parameter to adjust size of the support of wi(x). In 1D, several
common weight functions w(x) apply, for instance,

(a) Gaussian: w1(x) =
{

e− e(
x
R)

2
, |x| ≤ R

0, |x|> R,

(b) cubic spline: w1(x) =

2
3 −4(x

R)
2 +4(|x|R)3, |x| ≤ R

2
4
3 −4 |x|R +4(x

R)
2− 4

3(
|x|
R)3, R

2 < |x| ≤ R
0, |x|> R,

(c) Wendland function: w1(x) =
{

(1− |x|R)5[8(x
R)

2 +5 |x|R +1], |x| ≤ R
0, |x|> R,

(d) conical: w1(x) =
{

[(1− |x|R)2]l, |x| ≤ R
0, |x|> R,

l = 1,2, · · · ,

where R > 0 is a scaling constant adjusting the support of w1(x). In high dimension
Rd , the weight function w(x) can be constructed through the 1D weight function
w1(x) as follows:

w(x) = w1(‖x‖) or w(x) =
d

∏
i=1

w1(xi), (5)

where x = [xi]
d
i=1 is Cartesian coordinates in Rd and ‖x‖ is Euclidean distance of

x and the origin. We note that the former in (5) is radial and has circle and sphere
supports in 2D and 3D respectively; while the later is the tensor product of w1 and
has square and cubic supports in 2D and 3D respectively.

For every i ∈ IN , let {ps
i : s ∈ IQ} be a basis of polynomial space Pk. For a given

point x ∈Ω, the MLS function φi(x), associated to xi, is defined by

φi(x) = wi(x) ∑
s∈IQ

as(x)ps
i (x), (6)

where [as]s∈IQ are the undetermined coefficients, which are determined by imposing
the so-called property reproducing polynomials of degree k of φi:

∑
i∈IN

p(xi)φi(x) = p(x), x ∈Ω p ∈Pk. (7)

242 Copyright © 2013 Tech Science Press CMES, vol.95, no.3, pp.235-258, 2013

This gives rise to a linear system in [as]s∈IQ , namely,

∑
s∈IQ

[
∑
i∈IN

wi(x)ps
i (x)pt

i(x)

]
as(x) = pt

i(x), t ∈ IQ. (8)

A sufficient condition that the system (8) is solvable is that the particles {zi ∈ XN :
x ∈ suppwi} are Pk-unisolvent. The functions φi in (6) are referred to as the MLS
functions, which are employed to be the trial functions in this paper. We note
from (6) that the function φi possesses the same support as the weight function wi.
Denote ωi = suppφi∩Ω that is the support of φi constrained in Ω.

3.2 Discretization

Assume uN = ∑ j∈IN c jφ j is an approximate solution to the exact solution u of (1),
then replacing u by uN in the formulation (3), we get an equation
ˆ

Ωi

(A∇uN ·∇vi + cuNvi)dx =
ˆ

Ωi

f vidx+
ˆ

Γi

gvids, (9)

that gives an linear equation with the unknowns c j as follows:

N

∑
j=1

(γi j +σi j)c j = fi +gi (10)

where

γi j :=
ˆ

Ωi

A∇φ j ·∇vidx,σi j :=
ˆ

Ωi

cφ jvidx, fi :=
ˆ

Ωi

f vidx, and gi :=
ˆ

Γi

gvids. (11)

We note that each pair of Ωi and vi is associated to a linear equation (10). To get a
square linear system with the unknowns c j, N pairs of Ωi and vi, i ∈ IN , are needed.
In practice MLPG1 take [vi]i∈IN to be the weight functions wi used to produce φi

(see (6)). But, the support of vi could be different from wi, specifically, we assume
that

vi(x) = w
(

x− zi

ri

)
, (12)

where ri is a parameter other than the one in (4). For every i∈ IN , let Ωi = suppvi∩
Ω that is the support of vi constrained in Ω. With such vi and Ωi, we get the linear
system (10), where [γi j], [σi j], [fi], and [gi], defined in (11), are called as the stiffness
matrix, mass matrix, volume load vector, boundary load vector, respectively.

Numerical Integration with Constraints 243

Theoretically, to ensure a reliable approximate solution from the associated dis-
cretization problem, the union of all sub-domains Ωi should cover the domain Ω,
namely,

Ω =
⋃
i∈IN

Ωi.

In our numerical implementation, however, we find out that an incomplete covering
could also provide the numerical solutions of high precision, see also [Atluri and
Zhu (1998)].

Remark 3.1 The parameters hi and ri have significant influence on MLPG, and it is
not easy to get optimal size of these parameters [Nie, Atluri, and Zuo (2006)]. This,
however, is not a task in this paper. Below, we always employ a simple relationship
hi = ri to present our integration algorithm. We stress that this simplicity does not
cause any extra trouble. In our computation, we find out that the results for the
different relationships turn out to behave similarly. �

For convenience, we denote by I′N the index set of those weight functions vi such
that suppvi ∩Ω = /0. The particles indexed by I′N are called as interior particles,
and the weight functions vi, i ∈ I′N are referred to as interior weight functions. It is
obvious that Ωi = suppvi for the interior weight functions.

4 Numerical integration for MLPG

The definite integrals in the linear system (10) have to be computed numerically
during implementation, and we solve an approximate system

∑
j∈IN

(γ∗i j +σ
∗
i j)c j = f ∗i +g∗i , ∀ i ∈ IN , (13)

where, γ∗i j, σ∗i j, f ∗i , and g∗i are numerical approximations of γi j, σi j, fi, and gi,
respectively, via numerical integration. From (11), we naturally define

γ
∗
i j :=

 s

Ωi

A∇φ j ·∇vidx,σ∗i j :=
 m

Ωi

cφ jvidx, f ∗i :=
 f

Ωi

f vidx, and g∗i :=
 g

Γi

gvids,

(14)

where
ffl s

D,
ffl m

D ,
ffl f

D , and
ffl g

∂D mean numerical integration formulae for the stiffness
matrix, mass matrix, volume load vector, and boundary load vector, on a set D,
respectively.

244 Copyright © 2013 Tech Science Press CMES, vol.95, no.3, pp.235-258, 2013

Remark 4.1 We note that for every i, the integrations for γ∗i j,σ
∗
i j are carried out

on Ωi and Γi for all j ∈ { j ∈ IN : ω j ∩Ωi 6= /0}, i.e., we use the same integration
formulae for the ith line in the stiffness and mass matrices in (13). Recall that Ωi is
the support of the weight function (12), which possesses regular shape. Therefore,
a background mesh is not necessary to implement numerical integrations. This is
the reason that MLPG is known as “truly” meshless method. We emphasize that
such integration schemes are also employed in EFGM recently, which are called as
the support integration [Liu and Belytschko (2010)], see [Babuska, Banerjee, and
Osborn (2003); Zhang and Banerjee (2012); Liu and Belytschko (2010)] in detail.
�

4.1 Integration constraint in MLPG, based on Green’s formula

Now, we present the main assumptions for the integration formulae.

IC1. For every i ∈ IN , the integration formulae on Ωi and Γi are required to satisfy
the following condition:
 s

Ωi

p̃ ·∇vidx+
 f

Ωi

∇ · p̃vidx−
 g

Γi

p̃ ·~nvids = 0, ∀ p̃ ∈Pd
k−1, (15)

where p̃ = [pi]
d
i=1 is a vector-valued polynomial function with its components pi ∈

Pk−1, i = 1, 2, · · · ,d.

Remark 4.2 We note that when the numerical integrations in (15) are exact, (15)
will hold automatically according to Green’s formula. Therefore, we refer the in-
tegration rule (15) to as integration constraint of Green’s formula-type (GIC). It
is noteworthy that the conventional integration rules, such as Gaussian or Trape-
zoidal rules, do not satisfy GIC. This provides a possible interpretation why the
conventional rules work badly in MLPG (also in other MM [Babuska, Banerjee,
Osborn, and Zhang (2009); Mazzia, Ferronato, Pini, and Gambolati (2007); Zhang
(2011); Zhang and Banerjee (2012)]). We will show this phenomenon in the nu-
merical experiments later. �
IC2. For every i ∈ IN , we assume
 m

Ωi

=

 f

Ωi

. (16)

Remark 4.3 The condition IC2 is easy to satisfy so long as for every Ωi we employ
the same integration formula to compute the entries σ∗i j in ith line of the mass matrix
and the ith component f ∗i of the volume load vector. Hence, GIC (15) is the main

Numerical Integration with Constraints 245

condition. Recently, It has been realized in MM (mainly, EFGM) that IC properly
imposed will reduce the integration errors significantly. In [Babuska, Banerjee,
Osborn, and Li (2008); Zhang (2011)], the zero row-sum IC is developed:

∑
j∈IN

γ
∗
i j = 0, ∀ i ∈ IN ; (17)

In the stabilized conformal nodal integration (SCNI) [Chen, Wu, Yoon, and You
(2001); Sze, Chen, Sheng, and Liu (2004)] and the support integration [Liu and
Belytschko (2010)], IC is employed in the form:
 s

Ωi

∇φidx =
 g

Γi

~nφids; (18)

In [Babuska, Banerjee, Osborn, and Zhang (2009); Zhang and Banerjee (2012)],
(15) with vi replaced by φi are used in the situation of EFGM. We mention that
these IC could all be viewed as the special cases of (15). In particular, (17) will
hold automatically by the support integration scheme (14); (18) is GIC (15) in
the case k = 1; while the GIC in [Babuska, Banerjee, Osborn, and Zhang (2009);
Zhang and Banerjee (2012)] is the special situation of (15) where the test function
vi is taken as the trial function φi. We emphasize that applying GIC in MLPG is
more advantageous than in EFGM because the choices of the test function vi are
more flexible in MLPG so that either construction of GIC becomes more simple or
GIC will hold automatically by Gaussian rules when vi is chosen to be polynomial
weight function (such as the conical function). We will specify it below. �
Remark 4.4 To understand (15) intuitively, we present its simple cases:

(a) 1D case. Let Ωi = [ai,bi], then for k = 1, replacing p̃ = 1 in (15), we have
 s

[ai,bi]
v′idx = vi(bi)− vi(ai). (19)

For k = 2, replacing p̃ = 1 and x in (15), we get (19) and
 s

[ai,bi]
xv′idx = bivi(bi)−aivi(ai)−

 f

[ai,bi]
vidx, (20)

therefore, for k = 1, the integration rules must satisfy (19), while for k = 2, the
integration rules must satisfy (19) and (20).

(b) 2D case. For k=1, replacing p̃ = [1,0] and [0,1] in (15), we have
 s

Ωi

∂vi

∂x1
dx =

 g

Γi

n1vids and
 s

Ωi

∂vi

∂x2
dx =

 g

Γi

n2vids, (21)

246 Copyright © 2013 Tech Science Press CMES, vol.95, no.3, pp.235-258, 2013

where~n = [n1,n2]
T . For k = 2, replacing p̃ = [1,0], [0,1], [x1,0], [0,x1], [x2,0], and

[0,x2], we get (21) and
 s

Ωi

x1
∂vi

∂x1
dx =

 g

Γi

x1n1vids−
 f

Ωi

vidx,
 s

Ωi

x1
∂vi

∂x2
dx =

 g

Γi

x1n2vids, (22)

 s

Ωi

x2
∂vi

∂x1
dx =

 g

Γi

x2n1vids,
 s

Ωi

x2
∂vi

∂x2
dx =

 g

Γi

x2n2vids−
 f

Ωi

vidx, (23)

therefore, for k = 1, the integration rules must satisfy (21), while for k = 2, the
integration rules must satisfy (21), (22), (23). �
4.2 Construction for GIC

We present a constructive algorithm to fulfill the conditions IC1 and IC2 (mainly
GIC). Firstly, for every i ∈ IN we employ the conventional integration rules (such
as Gaussian rules) for the volume load integration f ∗i (also for the entries σ∗i j of the
mass matrix such that IC2 holds) and the boundary load integration g∗i , respectively.
Secondly, we correct the integration rules for the entries

ffl s
Ω

in the stiffness matrix
to satisfy GIC (15).

Let p̃r,r ∈ IM be a basis of polynomials space P̃k−1, where M is dimensionality
of P̃k−1. For instance, in 1D, M = 1 for k = 1 and M = 2 for k = 2; while in 2D
M = 2 for k = 1 and M = 6 for k = 2. In general, M = d×Ck−1

k+d−1. Then, (15) is
equivalent to
 s

Ωi

p̃r ·∇vidx =−
 f

Ωi

∇ · p̃rvidx+
 g

Γi

p̃r ·~nvids, ∀ r ∈ IM, (24)

For every i ∈ IN , let Qs
i and Q f

i be integration rules on Ωi for the entries in the
stiffness matrix and the volume load vector, respectively, and assume Qg

i is an inte-
gration rule on Γi for the boundary load integration, namely,

Qs
i (ξ) =

 s

Ωi

ξ dx, Q f
i (ξ) =

 f

Ωi

ξ dx, and Qg
i (ξ) =

 g

Γi

ξ ds.

We mention that Qs
i , Q f

i , and Qg
i could be any conventional rules, such as Gaussian

rules, Trapezoidal formula, and even Riemann sum rule. We fix Q f
i (same as

ffl m
Ωi

)
and Qg

i , then correct Qs
i to satisfy the condition (24). To this end, let Qs

i be an
p-point integration rule with the integration points and weights {ys,ws}s∈Ip . We
correct them as follows:{

ys,c = ys

ws,c = ws +ws ∑
M
r=1 θr p̃r(ys) ·∇vi(ys)

, s ∈ Ip (25)

Numerical Integration with Constraints 247

such that the new integration rule with the points and weights {yc,s,wc,s}s∈Ip satis-
fies the condition (24), where θr,r ∈ IM are determined by the condition (24). This
rule is referred to as k-corrected integration rule, denoted by Qs,c

i . To determine
the parameters θr, integrating (24) by Qs,c

i , Q f
i , and Qg

i , we get

Qs,c
i (p̃t ·∇vi) =−Q f

i (∇ · p̃tvi)+Qg
i (p̃t ·~nvi), ∀ t ∈ IM. (26)

Replacing the integration points and weights (25) of Qs,c
i in LHS in (26), we get a

linear system with the unknowns θr as follows:

∑
r∈IM

Qs
i ((p̃t ·∇vi)(p̃r ·∇vi))θr =−Q f

i (∇ · p̃tvi)+Qg
i (p̃t ·~nvi)−Qs

i (p̃t ·∇vi), ∀ t ∈ IM.

(27)

We note that the coefficients matrix [Qs
i ((p̃r ·∇vi)(p̃t ·∇vi))]r,t∈IM

can be expressed
by[

∑
s∈Ip

[p̃r(ys) ·∇vi(ys)][p̃t(ys) ·∇vi(ys)]ws

]
r,t∈IM

,

which is Gram matrix of the vectors in Rp

[p̃r(ys) ·∇vi(ys)]s∈Ip
, r ∈ IM (28)

under a weighted inner product

〈m,n〉w = ∑
s∈Ip

msnsws.

Therefore, the linear system (27) is solved uniquely as long as the vectors (28) is
linearly independent. Solving the linear system (27), we get the parameters θr and
further get the k-corrected integration rule Qs,c

i , which satisfy GIC (15).

Remark 4.5 In our computation, we find out that in almost all cases the linear in-
dependence of (28) is ensured by the condition p ≥M, namely, the number of the
integration points is not less than the dimensionality of P̃k−1. Indeed, there are
extremely exceptional cases where the vectors (28) may be linearly dependent for
p ≥M. Fortunately, even in those cases, the linear system (27) is compatible and
can be solved efficiently by the singular value decomposition method. We note that
for each Ωi, we only correct Qs

i one time to get Qs,c
i by solving a linear system of

degree M (27). Therefore, the correction algorithm above does not increase ex-
tra complexity in computation. In addition, the integration algorithms constructed
above are problem-independent, namely,they do not depend on the coefficients A
and c of the equation (1). �

248 Copyright © 2013 Tech Science Press CMES, vol.95, no.3, pp.235-258, 2013

4.3 A useful special situation of GIC

In fact, the constructive algorithm developed above is a quite general approach and
can be applied to the various weight function vi, the arbitrary shapes of Ωi and
integration rules on Ωi (even Riemann sum rule). As we comment in Introduction,
applying GIC in MLPG is more advantageous than in other MM (such as EFGM or
RKPM) thanks to its flexibility in choosing the different test functions. Importance
of GIC in MLPG consists in that it provides us with a direction to choose the test
functions from viewpoint of reducing integration complexity.

Indeed, it is possible for us to propose a MLPG that both maintains the underly-
ing approximation properties and possesses the less integration complexity. We
have investigated a useful but not trivial situation of GIC. Using the conical weight
function w1 and constructing vi through the tensor product of w1 (5), we obtain the
polynomial weight function vi that has square support in 2D and cubic support in
3D. If suppvi ⊂Ω, then Ωi = suppvi, and such a vi is called as interior weight func-
tion. For every interior weight function vi, the conventional Gaussian rules make
GIC (15) holds automatically because the integrands in (15) are all polynomials,
which could be integrated exactly by Gaussian rules. This case also occurs to those
vi, which intersect the boundary Γ but have the regular integration domains Ωi such
that Gaussian rules could integrate the integrands in GIC (15) exactly.

It is concluded from this discussion that the weight functions of the tensor product
of the conical weight w1 are suggested to be used in MLPG from viewpoint of
computation complexity. In this case, GIC (15) is satisfied automatically for the
interior weight functions (the majority of the weight functions) by using Gaussian
rules , while for few remaining vi, the constructive algorithm in Subsection 4.2
is applied to construct the integration rules to satisfy GIC. As a consequence, the
efficiency of numerical integration in MLPG is increased significantly.

4.4 Extension to elasticity problem

We extend GIC (15) to 2D elasticity problem, and the extensions to other elliptic
PDE could be carried out in the same idea. Denote by u and [τ] a vector-valued
function [u1(x),u2(x)]T and a matrix-valued function [τi j]i, j=1,2, respectively. For
every u and [τ], we difine

gradu =

[
∂u1
∂x1

∂u1
∂x2

∂u2
∂x1

∂u2
∂x2

]
and div [τ] =

[
∂τ11
∂x1

+ ∂τ12
∂x2

∂τ21
∂x1

+ ∂τ22
∂x2

]
.

Numerical Integration with Constraints 249

For a displacement function u, we denote σu to be the stress tensor relative to u.
For any [τ] and [η], we define

[τ] : [η] =
2

∑
i=1

2

∑
i=1

τi jηi j.

Below, we will use the notations in Section 2, without repeating their definition
again.

Consider the plane linear elasticity problem in Ω with traction boundary condition:

−divσ
u = f, in Ω

σ
u~n = g, on Γ, (29)

where f and g are the body force and the boundary condition, respectively. Multi-
plying vi on both sides of (29) and integrating on Ωi, we have
ˆ

Ωi

−divσ
u ·vidx =

ˆ
Ωi

f ·vidx.

Using divergence theorem and the traction boundary condition, we get
ˆ

Ωi

σ
u : gradvidx =

ˆ
Ωi

f ·vidx+
ˆ

∂Ωi

σ
u~ni ·vids

=

ˆ
Ωi

f ·vidx+
ˆ

Γi

g ·vids+
ˆ

Li

σ
u~ni ·vids. (30)

As specified above, we assume that the test function vi has compact support such
that vi = 0 on Li, then (30) is reduced to
ˆ

Ωi

σ
u : gradvidx =

ˆ
Ωi

f ·vidx+
ˆ

Γi

g ·vids. (31)

Motivated from (31), we propose GIC for the plane elasticity problem as follows:
EIC. For every i ∈ IN , the integration formulae on Ωi and Γi are required to satisfy
the condition:
 s

Ωi

[τ] : gradvidx+
 f

Ωi

div [τ] ·vidx−
 g

Γi

[τ]~n ·vids = 0, ∀ [τ] ∈ [Pk−1], (32)

where [Pk−1] denotes the space of symmetric matrix-valued polynomials of degree
k−1:

[Pk−1] :=
{[

p1 p2
p2 p3

]
: p1, p2, p3 ∈ Pk−1

}
.

250 Copyright © 2013 Tech Science Press CMES, vol.95, no.3, pp.235-258, 2013

We note that GIC (32) is problem-independent in a sense that the integration al-
gorithms derived from (32) do not depend on the Lamé constants involved in the
stress tensor σu of (29). The algorithms proposed in Subsections 4.2 and 4.3 can
also be employed to construct the integration algorithms to satisfy GIC (32), and
we will not specify it here.

5 Numerical experiments

We present 1D and 2D numerical results to demonstrate the advantages of the
integration rules developed in Section 4.2 and 4.3. We consider Ω = (0,1) and
Ω = (0,1)× (0,1) in 1D and 2D examples, respectively, for simplicity. However,
we mention that the integration algorithms in Section 4.2 and 4.3 do not depend on
shapes of the domain Ω. In 1D, we assume in (1) the exact solution u(x) = e2x,
A(x) = (1+x3), and c(x) = 1+sin2 x; while in 2D, let u(x1,x2) = e2x1+x2 , A(x) = I,
c(x) = 1, where I is the identity matrix in R2. The body force f and the boundary
condition g are derived in the initial equation (1) from u, A, and c.

The uniformly distributed particles {zi, i ∈ IN} are employed to discretize the do-
main Ω, where positive integer N represents number of the particles. The particle
spacing is denoted by h, which equals to 1

N−1 in 1D and 1√
N−1

in 2D. The weight

function vi(x) is defined by vi(x) = ω(x−zi
h). In 2D, we get vi from the tensor prod-

uct of the 1D weight function w1 (see (5)) so that the support of vi is a square with
side length 2Rh. We produce the MLS trial functions φi based on vi by following
the procedure in Subsection 3.1. In this setting, it is shown in [Babuska, Banerjee,
and Osborn (2003)] that existence of the MLS shape functions φi is under the con-
dition R > k+1

2 in both 1D and 2D. In these numerical experiments, we take R = 1.4
for k = 1 and 1.8 for k = 2, respectively. Recall that I′N ⊂ IN denotes the index set
of the interior weight functions, namely, Ωi = suppvi for i ∈ I′N .

Below, once writing p-Q integration rule (such as p-Gaussian rule) on Ωi in 1D
case, we mean that we employ p-point Q integration rule on Ωi with its integration
points and weights {ys, ws}s∈Ip . If we write p-Q integration rule in 2D case, we
are using the p× p-point Q integration rule on Ωi, where its integration points and
weights are obtained from tensor product of p-point Q rule in 1D, namely, they are
{(ys,yt), ws×wt}s,t∈Ip . In addition, in both 1D and 2D, if we write k-corrected p-Q
rule on Ωi, we integrate the entries fi and gi in the load vector and the entries mi j in
the mass matrix by p-Q rule, and then we correct p-Q rule on Ωi for the entries γi j

in the stiffness matrix to satisfy GIC (15), by following the constructive algorithm
in Subsection 4.2.

In 1D case, for every i ∈ I′h, we employ the conventional Gaussian integration on
Ωi := (ai,bi), and because of symmetry of Gaussian rule and anti-symmetry of the

Numerical Integration with Constraints 251

derivative of vi on (ai,bi), we get
 bi

ai

v′idx = vi(bi)− vi(ai) = 0, ∀ i ∈ I′N . (33)

It means that there is a coincidence for Gaussian rule in 1D such that GIC for k = 1
is satisfied automatically for the interior particles, see (15) or (19). Therefore, it
is not convenient for us to show the advantage of GIC in this case. To avoid this
coincidence, we develop an non-symmetric Gaussian rule based on Gaussian rule.
To this end, for every i ∈ IN , we consider a mapping Ti : (ai,bi)→ (ai,bi), defined
by

z = Ti(y) = y+
0.2

bi−ai

[
(y− ai +bi

2
)2− (

bi−ai

2
)2
]
.

For a smooth function f , we have
ˆ bi

ai

f (z)dz =
ˆ bi

ai

f (Ti(y))T ′i (y)dy.

Using p-point Gaussian rule with the integration points and weights {ys,ws}s∈Ip

on RHS of the above equality, we get a new integration formula on (ai,bi) with
the points and weights {Ti(ys),T ′i (ys)ws}s∈Ip , which is called as non-symmetric
Gaussian rule on (ai,bi). It is known that algebraic precision of p-point Gaussian
rule is 2p− 1. It can be shown that algebraic precision of such non-symmetric
Gaussian rule, presented above, is p− 1. For the non-symmetric Gaussian rules,
the integration equality (33) will not hold automatically.

The solution, computed from the system (13) with numerical integration, is denoted
by u∗N , and we will compare the relative energy error

EN :=
‖u−u∗N‖H1(Ω)

‖u‖H1(Ω)

for the various integration rules.

The case k = 1

We employ the following integration rules and the weight functions

• Rule 1: p-point non-symmetric Gaussian rule and the cubic spline weight
function;

• Rule 2: 1-corrected p-point non-symmetric Gaussian rule and the cubic spline
weight function;

252 Copyright © 2013 Tech Science Press CMES, vol.95, no.3, pp.235-258, 2013

• Rule 3: p-point non-symmetric Gaussian rule and the conical weight func-
tion;

to compute the approximation solution u∗N and draw the loglog plot of the energy
errors EN with respect to N in Fig. 1 (a) and (b) for 1D and 2D cases, respectively.
We note that Rule 1 does not satisfy GIC; while GIC holds for Rule 2 and 3 because
of the constructive algorithm in Subsection 4.2 and the polynomial property of the
conical weight (see Subsection 4.3), respectively.

10
1

10
2

10
−3

10
−2

10
−1

10
0

10
1

Number of Particles

EN

Rule1
Rule2
Rule3

1D k=1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

10
1

Number of Particles

EN

Rule1
Rule2
Rule3

2D k=1

(a) (b)
Figure 1: The loglog plot of EN with respect to N for k = 1 in 1D (a) and 2D (b). u∗N is
computed using 10-point non-symmetric Gaussian rule and the cubic weight; 1-corrected
10-point non-symmetric Gaussian rule and the cubic weight; and 10-point non-symmetric
Gaussian rule and the conical weight. The later two satisfy GIC (15) for k = 1.

It is observed that without satisfaction of GIC, the energy errors EN increase as N
increases, on the contrary, the errors are reduced by Rule 2 and Rule 3 significantly
due to GIC. At the highest particle density, the ratios of EN of Rule 2 and 3 to Rule 1
are 0.071% and 1.4% respectively in 1D, and are 0.4% and 2.3% in 2D respectively;
while at the lowest particle density, they are 35% and 26% in 1D respectively, and
are 26% and 21% in 2D respectively. This implies that GIC is more advantageous at
the higher particle density. We do not use symmetric Gaussian rule to demonstrate
the advantage of GIC because in this case GIC will hold automatically for the
interior weight functions due to symmetry of Gaussian rules and anti-symmetry of
∇vi on Ωi.

The case k = 2

We compute the approximate solutions u∗N using Rule 1, Rule 3 and

Numerical Integration with Constraints 253

• Rule 4: 2-corrected p-point non-symmetric Gaussian rule and the cubic spline
weight function

and present the loglog curves of the errors EN with respect to N in Fig. 2 (a) for 1D
and (b) for 2D cases, respectively. Similarly, when GIC does not hold, the errors
grow up as N increases. After we correct Rule 1 or replace the cubic weight with
the conical weight such that GIC for k = 2 satisfies, Rule 4 and Rule 3 will reduce
the errors greatly. We note that in the case k = 2 improvement of the errors is more
notable than in the case k = 1. At the highest particle density, the ratios of EN of
Rule 4 and 3 to Rule 1 are 0.075% and 0.011% respectively in 1D, and are 0.25%
and 0.038% respectively in 2D; while at the lowest particle density, they both are
14% 1D, and are 12% and 9.4% respectively in 2D. Therefore, GIC behaves more
notably at the higher particle density.

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Number of Particles

EN

Rule1
Rule4
Rule3

1D k=2

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Number of Particles

EN

Rule1
Rule4
Rule3

2D k=2

(a) (b)
Figure 2: The loglog plot of EN with respect to N for k = 2 in 1D (a) and 2D (b). u∗N is
computed using 10-point non-symmetric Gaussian rule and the cubic weight; 2-corrected
10-point non-symmetric Gaussian rule and the cubic weight; and 10-point non-symmetric
Gaussian rule and the conical weight. The later two satisfy GIC (15) for k = 2.

We also check the situations for symmetric Gaussian rules. We apply

• Rule 5: p-point symmetric Gaussian rule and the cubic spline weight func-
tion;

• Rule 6: 2-corrected p-point symmetric Gaussian rule and the cubic spline
weight function;

• Rule 7: p-point symmetric Gaussian rule and the conical weight function;

254 Copyright © 2013 Tech Science Press CMES, vol.95, no.3, pp.235-258, 2013

to compute the approximate solutions u∗N and present the loglog curves of the errors
EN with respect to N in Fig. 3 (a) for 1D and (b) for 2D cases, respectively. For
Rule 5, the errors EN are controlled (not growing up) as N increases because it
satisfies GIC for k = 1. But, Rule 5 does not present an asymptotical convergence
behavior as N increases because it does not satisfy GIC for k = 2. Again, after the
correction scheme or replacement of the weight function, the associate Gaussian
rules improve the errors markedly. At the highest particle density, the ratios of EN

of Rule 6 and 7 to Rule 5 are 0.14% and 0.074% respectively in 1D, and are 0.51%
and 0.54% respectively in 2D; while at the lowest particle density, they are 32%
and 50% respectively in 1D, and are 34% and 43% respectively in 2D. Again, we
see the better feature of GIC at the higher particle density.

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

Number of Particles

EN

Rule5
Rule6
Rule7

1D k=2

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

Number of Particles

EN

Rule5
Rule6
Rule7

2D k=2

(a) (b)
Figure 3: The loglog plot of EN with respect to N for k = 2 in 1D (a) and 2D (b). u∗N
is computed using 10-point symmetric Gaussian rule and the cubic weight; 2-corrected
10-point symmetric Gaussian rule and the cubic weight; and 10-point symmetric Gaussian
rule and the conical weight. The fist one satisfies GIC (15) only for k = 1; while the later
two satisfy the GIC (15) for k = 2.

We also repeated these numerical experiments by changing the support size R of
the weight functions and the number p of the integration points, and the results are
very similar to the situation above. We will not present them here.

6 Conclusion

An integration constraint condition, GIC, is proposed for MLPG applied to solve
elliptic PDE with Neumann boundary conditions. Designing the integration rules
with GIC in MLPG is more beneficial than in other Galerkin meshless methods,

Numerical Integration with Constraints 255

such as EFGM or RKPM, thanks to the advantages of MLPG of the support inte-
gration and the flexibility in choosing the test functions. A constructive algorithm
not increasing extra computation complexity is presented to correct the conven-
tional integration rules, for instance, Gaussian rules, Trapezoidal rule, and even
Riemann sum rule, to satisfy GIC. We also present a useful situation where GIC
holds automatically for Gaussian rules. This nice but not trivial property only oc-
curs in MLPG and never in EFGM and RKPM. From this reason, we suggest use of
the conical weight in MLPG in viewpoint of reducing integration complexity. GIC
in [Babuska, Banerjee, Osborn, and Zhang (2009); Zhang and Banerjee (2012)]
only works for Poisson equations, and approach to extending it to more general
elliptic PDE is addressed in this paper, by taking a plane elasticity problem as ex-
ample. The numerical experiments demonstrate that without GIC the errors in the
approximate solutions of MLPG may increase as the particles are denser; while
the integration rules with GIC reduce the errors significantly. GIC behaves more
notably for the higher exactness k and particle density.

Acknowledgement: This research was partially supported by the Natural Sci-
ence Foundation of China under grant 11001282, Guangdong Provincial Natural
Science Foundation of China under grant S2011040003030, and the Fundamen-
tal Research Funds for the Central Universities. Much of work reported here was
completed when Q. Zhang was a postdoctoral fellow at the University of Hong
Kong. Q. Zhang wish to express sincere appreciation to Professor K. Y. Sze for his
insightful discussion and suggestion on this paper.

References

Atluri, S. N. (2004): The Meshless Method (MLPG) for Domain and BIE Dis-
cretizations. Tech Science Press, Forsyth. GA. USA.

Atluri, S. N.; Shen, S. (2002): The Meshless Local Petrov Galerkin Method. Tech.
Sci. Press, Duluth.

Atluri, S. N.; Zhu, T. (1998): A new meshless local petrov-galerkin (mlpg) ap-
proach in computational mechanics. Computational Mechanics, vol. 22, pp. 117–
127.

Atluri, S. N.; Zhu, T. (2000): New concepts in meshless methods. Int. J. Numer.
Meth. Engng., vol. 47, pp. 537–556.

Avila, R.; Han, Z.; Atluri, S. N. (2011): A novel MLPG-finite-volume mixed
method for analyzing Stokesian flows & study of a new vortex mixing flow. CMES:
Computer Modeling in Engineering & Sciences, vol. 71, pp. 363–396.

256 Copyright © 2013 Tech Science Press CMES, vol.95, no.3, pp.235-258, 2013

Babuska, I.; Banerjee, U.; Osborn, J. E. (2003): Survey of meshless and gen-
eralized finite element methods: a unified approach. Acta Numerica, vol. 12, pp.
1–125.

Babuska, I.; Banerjee, U.; Osborn, J. E.; Li, Q. (2008): Quadrature for meshless
methods. Int. J. Numer. Meth. Engng., vol. 76, pp. 1434–1470.

Babuska, I.; Banerjee, U.; Osborn, J. E.; Zhang, Q. (2009): Effect of Numerical
Integration on Meshless Methods. Comput. Methods Appl. Mech. Engrg., vol. 198,
pp. 2886–2897.

Beissel, S.; Belytschko, T. (1996): Nodal integration of the element-free Galerkin
method. Comput. Methods Appl. Mech. Engrg., vol. 139, pp. 49–74.

Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P. (1996): Mesh-
less methods: An overview and recent developments. Comp. Meth. Appl. Mech.
Engrg., vol. 139, pp. 3–47.

Belytschko, T.; Lu, Y.; Gu, T. (1994): Element-free Galerkin methods. Int. J.
Numer. Meth. Engng., vol. 37, pp. 229–256.

Carpinteri, A.; Ferro, G.; Ventura, G. (2002): The partition of unity quadrature
in meshless methods. Int. J. Numer. Meth. Engng., vol. 54, pp. 987–1006.

Chen, J.S.; Wu, C.T.; Yoon, S.; You, Y. (2001): A stabilized conformal nodal
integration for a Galerkin mesh-free method. Int. J. Numer. Meth. Engng., vol. 50,
pp. 435–466.

De, S.; Bathe, K. J. (2000): The method of finite spheres. Computational Mechan-
ics, vol. 25, pp. 329–345.

Dolbow, J.; Belytschko, T. (1999): Numerical integration of the Galerkin weak
form in meshfree methods. Computational Mechanics, vol. 23, pp. 219–230.

Duan, Q.; Belytschko, T. (2009): Gradient and dilatational stabilizations for
stress-point integration in the element-free galerkin method. Int. J. Numer. Meth.
Engrg., vol. 77, pp. 776–798.

Fernandez-Mendez, S.; Huerta, A. (2004): Imposing essential boundary condi-
tions in mesh-free methods. Comput. Methods Appl. Mech. Engrg., vol. 193, pp.
1257–1275.

Fries, T. P., Belytschko, T. (2008): Convergence and stabilization of stress-point
integration in mesh-free and particle methods. Int. J. Numer. Meth. Engrg. vol. 74,
pp. 1067–1087.

Fries, T. P.; Matthies, H. G. (2004): Classification and overview of meshfree meth-
ods. Technical report, Technical University Braunschweig, Brunswick, Germany.

Numerical Integration with Constraints 257

Griebel, M.; Schweitzer, M. A. (2002):A particle-partition of unity method. ii.
efficient cover construction and reliable integration. SIAM J. Sci. Comput., vol. 23,
pp 1655–1682.

Li, S.; Liu, W. K. (2002): Meshfree and particle methods and their application.
Applied Mechanics Review, vol. 55, pp. 1–34.

Liu, W. K.; Jun, S.; Zhang, Y. F. (1995): Reproducing kernel particle methods.
Int. J. Numer. Meth. Fluids., vol. 20, pp. 1081–1106.

Liu, Y.; Belytschko, T. (2010): A New support integration scheme for the weak-
form in meshfree methods. Int. J. Numer. Meth. Engng., vol. 82, pp. 699–715.

Mazzia, A.; Ferronato, M.; Pini, G.; Gambolati, A. (2007): A comparison of
numerical integration rules for the Meshless Local Petrov-Galerkin method. Nu-
merical Algorithms, vol. 45, pp. 61–74.

Mazzia, A.; Pini, G. (2010): Product Gauss quadrature rules vs. cubature rules
in the meshless local Petrov Galerkin method. Journal of Complexity, vol. 26, pp.
82–101.

Nie, Y. F.; Atluri, S. N.; Zuo, C. W. (2006): The optimal radius of the support
of radial weights used in moving least squares approximation. CMES: Computer
Modeling in Engineering & Sciences, vol. 12, pp. 137–147.

Pecher, R. (2006): Efficient cubature formulae for MLPG and related methods.
Int. J. Numer. Meth. Engng., vol. 65, pp. 566-593.

Schaback, R.; Wendland, H.(2006): Kernel techniques: from machine learning
to meshless methods. Acta Numer., vol. 15, pp. 543–639.

Sellountos, E. J.; Sequeira, A.; Polyzos, D (2010): Solving Elastic Problems
with Local Boundary Integral Equations (LBIE) and Radial Basis Functions (RBF)
Cells. CMES: Computer Modeling in Engineering & Sciences, vol. 57, pp. 109.

Sladek, J.; Stanak, P.; Han, Z. D.; Sladek, V.; Atluri, S. N. (2013): Applications
of the MLPG Method in Engineering & Sciences: A Review. CMES: Computer
Modeling in Engineering & Sciences, vol. 92, pp. 423–475.

Sze, K. Y.; Chen, J. S.; Sheng, N.; Liu, X. H. (2004): Stabilized conforming nodal
integration: exactness and variational justification. Finite Elements in Analysis and
Design, vol. 41, pp. 147–171.

Zhang, Q. (2011): Theoretical analysis of numerical integration in the Galerkin
meshless methods. BIT Numerical mathematics, vol. 51, pp. 459–480.

Zhang, Q. (2014): Quadrature for meshless Nitsche’s method. Numerical Methods
for Partial Differential Equations, vol. 30, pp. 265–288.

258 Copyright © 2013 Tech Science Press CMES, vol.95, no.3, pp.235-258, 2013

Zhang, Q.; Banerjee, U. (2012): Numerical integration in Galerkin meshless
methods, applied to elliptic Neumann problem with non-constant coefficients. Ad-
vances in Computational Mathematics, vol. 37, pp. 453–492.

Zhang, T.; Dong, L.; Alotaibi, A.; Atluri, S. N. (2013): Application of
the MLPG Mixed Collocation Method for Solving Inverse Problems of Lin-
ear Isotropic/Anisotropic Elasticity with Simply/Multiply-Connected Domains.
CMES: Computer Modeling in Engineering & Sciences, vol. 94, pp. 1–28.

