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On the Axisymmetric Time-harmonic Lamb’s Problem for
a System Comprising a Half-space and a Covering Layer

with Finite Initial Strains

S.D. Akbarov1,2

Abstract: By employing the Three-dimensional Linearized Theory of Elastic
Waves in Initially Stressed Bodies (TLTEWISB) the time-harmonic Lamb’s prob-
lem for a system comprising a finite pre-strained half-space and finite pre-strained
covering layer made of incompressible materials is examined for the case where
the material of the covering layer is stiffer than that of the half-space material. It
is assumed that on the upper free face plane of the covering layer the point-located
time-harmonic force acts. The elasticity relations of the materials are described
through Treloar’s potential. The corresponding boundary-value problem is solved
by employing the Hankel integral transformation. The corresponding inverse trans-
formations are found (numerically) by utilizing the Sommerfeld contour. Numeri-
cal results regarding the stresses acting on the interface plane are presented and dis-
cussed. The main focus is on the frequency response of these stresses and the influ-
ence of the initial strains on them. In particular, it is established that the mechanical
behavior of the forced vibration of the system under consideration is similar to that
of the system comprising a mass, a parallel connected spring and a dashpot. More-
over, it is established that by increasing the stiffness of the covering layer material
as well as with initial stretching of the covering layer, the “resonance” values of the
stresses decrease.

Keywords: time-harmonic Lamb’s problem, frequency response, resonance,
forced vibration, Sommerfeld contour.

1 Introduction

It is known that covering layers are widely used in various branches of modern
industry such as civil engineering, mechanical engineering, aeronautics, rocketry,
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etc. Covering layers can be used as armor to prevent external static and especially
dynamic power and thermal effects, as well as to isolate the basic material of the
structural element from direct contact with the external environment. In addition,
the covering layers may be used to redistribute the concentrated external influences
(forces) to some part of the structural element. These and many other examples
not listed here, make the fundamental research related to the mechanical behavior
of a system composed of a coating layer and base material under the influence of
external dynamic loads, important. Therefore investigations related to the corre-
sponding problems have not only theoretical but also great practical significance.
Note that among these problems there are also many which cannot be solved within
the framework of the classical linear theory of elastodynamics, such as that of elas-
todynamic problems related to elastic systems with initial strains. The initial strains
(or stresses) in the elements of construction may arise as a result of the action of
various factors. For example, the strains and stresses which arise as a result of the
action of the operating forces can be taken as the initial ones caused by additional
static or dynamic forces. Moreover, the initial stresses and strains in elements of
construction can arise as a result of the change in the environmental conditions etc.

Up to now a large number of investigations have been made in this field. Note
that almost all these investigations were made by utilizing the so-called Three-
dimensional Linearized Theory of Elastic Waves in Initially Stressed Bodies (TL-
TEWISB). The relations and equations of the TLTEWISB are obtained from the
exact relations and equations of the non-linear theory of elastodynamics by lin-
earization with respect to small dynamical perturbations. The general questions
of the TLTEWISB have been elaborated in many investigations such as in works
by Biot (1965), Truestel (1961), Eringen and Suhubi (1975), Guz (2004) and oth-
ers. It should be noted that there are some versions of the TLTEWISB which were
detailed in the monograph by Guz (2004). These versions of the TLTEWISB are
distinguished from each other with respect to the magnitude of the initial strains.
The version of the TLTEWISB developed for high-elastic materials, according to
which the initial strains in the bodies are determined within the scope of the non-
linear theory of elasticity without any restrictions on the magnitude of the initial
strains, is called the large (or finite) initial deformation version. The version of
the TLTEWISB, according to which, an initial stress-strain state in bodies is de-
termined within the scope of the geometrical non linear theory of elasticity and
under which changes to the elementary areas and volumes as a result of the initial
deformation are not taken into account, is called the first version of the small ini-
tial deformation theory of the TLTEWISB. The second version of the small initial
deformation theory of the TLTEWISB is the version, according to which, an initial
stress-strain state in bodies is determined within the scope of the classical linear
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theory of elasticity.

The subject of the present article, namely, axisymmetrically forced vibrations of
a system composed of a finite pre-strained covering layer and a finite pre-strained
half-space, also applies to the basic research specified above. Consider now a brief
review of these works beginning with a paper by Akbarov (2006a) dealing with the
study of the axisymmetric forced vibration of a system comprising a pre-stressed
covering layer and a pre-stressed half-space which was studied within the scope
of the above-noted first version of the small initial deformation theory of the TL-
TEWISB. It was assumed that the materials of the constituents are compressible
and their elasticity relations are described through the Murnaghan potential.

The same problem for a system comprising a finite pre-strained covering layer and
a finite pre-strained half-space made of high elastic incompressible materials was
also studied by Akbarov (2006b) by utilizing the large (or finite) initial deformation
version of the TLTEWISB. Numerical results were presented for the case where the
material of the half-space is stiffer than that of the covering layer and the mechani-
cal relations of the constituents are described through the Treloar potential. Below,
we will return to discuss this paper in more detail because the object of investiga-
tion of the present paper is also a finite pre-strained covering layer and a finite pre-
strained half-space made of high-elastic incompressible materials. In another paper
by Akbarov (2006c), the axisymmetric forced vibration of a finite pre-strained two-
layered slab made from high-elastic incompressible Treloar materials resting on an
absolute rigid foundation was studied. The investigations were also made by uti-
lizing the large initial deformation version of the TLTEWISB. Moreover, within
the assumptions of the last two papers, an axisymmetric problem on the frequency
response of the pre-strained slab made of incompressible functionally graded mate-
rial and resting on an absolute rigid foundation was studied in a paper by Akbarov
(2006d).

Within the scope of the second version of the TLTEWISB in a paper by Akbarov
and Guler (2007), the problem related to the plane-strain state in a half-plane cov-
ered with a pre-stretched layer under the action of arbitrary linearly located time-
harmonic forces was solved. Specific numerical results on the interface stress distri-
bution were presented for cases where steel and aluminum are taken as the materials
of the constituents.

In the above-mentioned investigations it was assumed that the materials of the con-
stituents of the system under consideration are isotropic. In a paper by Akbarov
and Ilhan (2010) these investigations were developed for the case where the ma-
terials of the constituents are orthotropic. Moreover, within the framework of the
foregoing assumptions and theories, in papers by Akbarov and Ilhan (2008, 2009),
problems related to the dynamics of moving and oscillating moving loads acting on
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the aforementioned system were investigated. Note that in these papers by Akbarov
and Ilhan the investigations were carried out within the scope of the second version
of the TLTEWISB.

The dynamics of the oscillating moving load acting on the finite pre-strained two-
layered slab resting on an absolute rigid foundation were also considered in a paper
by Akbarov and Salmanova (2009) by utilizing the large initial deformation ver-
sion of the TLTEWISB. The materials of the layers of the slab are assumed to be
compressed, the elasticity relations of which are described through the harmonic
potential.

In all the foregoing works, two-dimensional problems related to the axisymmetric
and plane-strain states were studied. Development of these studies for the cor-
responding 3D problems was first made in papers by Akbarov et al. (2005) and
Emiroglu et al. (2009). In these papers the time-harmonic Lamb’s problem was
considered for a system comprising a bi-axially pre-stressed covering layer and a
bi-axially pre-stressed half-space. Note that the investigations in these papers were
made by employing the second version of the TLTEWISB.

This concludes our review of related works and note that despite the fact that in
these works it has been assumed that there are initial stresses or strains in the con-
stituents of the system and that these investigations have been made by utilizing the
TLTEWISB, they are also relevant in the cases where the initial stresses in these
constituents are absent. Consequently, in the works reviewed above, the theoreti-
cal and numerical results related to the classical linear theory of elasticity are also
obtained as particular cases of the general theoretical and numerical results, respec-
tively. Moreover, in the previous works the corresponding problems were solved
by employing various types of integral transformation techniques. The integrals
related to the inverse of these transformations are wavenumber integrals. Note that,
in the foregoing works of the author and his students these integrals were calcu-
lated according to Cauchy’s principal value sense. As has been noted in works by
Lamb (1904), Tsang (1978), Jensen et al. (2011) and many others listed therein,
more accurate and physically correct results can be obtained if these wave-number
integrals are calculated along the Sommerfeld contour. Therefore in the paper by
Akbarov and Ilhan (2013) which relates to the study of the Lamb’s problem for a
system consisting of the piezoelectric covering layer and piezoelectric half-plane
the corresponding wavenumber integrals are calculated by the use of the Sommer-
feld contour.

In the present paper we study again the problem which was considered in the pa-
per by Akbarov (2006 b) within the assumption that the stiffness of the covering
layer material is greater than that of the material of the half-space material. We
recall that in the paper by Akbarov (2006 b) it was assumed that the material of
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the half-space is stiffer than the material of the covering layer and the wavenumber
integrals mentioned above are calculated by the use of Cauchy’s principal value
sense algorithm. Note that in the present case, i.e. in the case where the stiffness of
the covering layer material is greater than that of the material of the half-space, the
calculation of the wavenumber integrals by the use of the Cauchy principal value
sense algorithm is not stable and consequently is not applicable. Therefore in the
present paper for calculation of such wavenumber integrals the algorithm based
on the Sommerfeld contour noted above is developed. Numerical results on the
frequency response of stresses acting on the interface plane are presented and dis-
cussed. Some attempts are also made for discussion of the difference between the
two foregoing algorithms which are employed for calculation of the wavenumber
integrals.

2 Formulation of the problem

(a) (b)

(c)

Figure 1: The geometries of the system consisting of the covering layer and half
space (a), the bi-layered slab resting on a rigid foundation (b) and the Sommerfeld
contour (c).
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As in the paper by Akbarov (2006 b), we consider the half-space covered with the
layer (Fig. 1a), the thickness of which in the natural state is h1. We determine
the position of the points of the layer and half-space in the natural state by the
Lagrange coordinates in the cylindrical system of coordinates Orθz. We assume
that the layer and half-space, before being compounded with each other, are pre-
strained separately along the radial direction and in each of them the homogeneous
axisymmetric initial finite strain state has appeared. With the initial state of the
layer and half-space, we associate the Lagrangian cylindrical system of coordinates
O′r′θ ′z′. Assume that the material of the constituents is incompressible and the
values related to the layer and half-space are denoted by upper indices (1) and (2),
respectively. Furthermore, we denote the values related to the initial state by upper
index 0. Thus, according to the above, the initial state in the layer and half-space
can be written as follows:

u(k),0r = (λ
(k)
1 −1)r, u(k),0z = (λ

(k)
3 −1)z, u(k),0

θ
= 0, k = 1,2, (λ

(k)
1 )2

λ
(k)
3 = 1, (1)

where u(k),0r , u(k),0
θ

and u(k),0z are the radial, circumferential and axial displacements
respectively, and λ

(k)
1 and λ

(k)
3 are constants.

Within the framework above, let us investigate the stress state in the considered
system in the case where the time-harmonic point-located normal force acts on the
free face plane of the covering layer. We make this investigation by the use of the
large initial deformation version of the TLTEWISB.

We introduce the notation

r′ = λ
(k)
1 r, z′ = λ

(k)
3 z, h′1 = λ

(k)
3 h1, (2)

Below, the values related to the system of coordinates associated with the initial
state, i.e. with O′r′θ ′z′ are denoted by an upper prime.

Thus, according to the monograph by Guz (2004), we write the basic relations of
the TLTEWISB for the incompressible body under the axisymmetric state. These
relations are satisfied within the layer and half-space because we use the piecewise
homogeneous body model.

The equations of motion are

∂

∂ r′
Q
′(k)
r′r′ +

∂
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Q
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r′z′ +

1
r′
(Q
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∂
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Q
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∂
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Q
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1
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Q
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The mechanical relations are
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In (3) and (4) through Q
′(k)
r′r′ ,. . . , Q

′(k)
z′r′ the perturbations of the components of the

Kirchhoff stress tensor are determined. The notation u
′(k)
r′ , u

′(k)
z′ shows the perturba-

tions of the components of the displacement vector, while p
′(k) = p

′(k)(r′,z′, t) is
an unknown function (a Lagrange multiplier). The constants χ

′(k)
1111,. . . , χ

′(k)
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are determined through the mechanical constants of the layer and half-space mate-
rials and through the initial strain state. ρ

′(k) is the density of the k− th material.
Note that the constants χ

′(k)
1111,. . . , χ
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3131, ρ(′k) are given through their expression in

the system of coordinates Orθz (we denote them by χ
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The explicit expressions of the constants χ
(k)
1111,. . . , χ

(k)
3131 are determined through the

elastic energy function (potential). In the present investigation, as in the paper by
Akbarov (2006 b), we assume that the elasticity relations of the layer and half-space
materials are given by the Neo-Hooken type (Treloar’s ) potential. This potential is
given as follows:

Φ =C10(I1−3), I1 = 3+2A1 , A1 = εrr + εθθ + εzz, (6)

where C10 is the elastic constant, A1 is the first algebraic invariant of Green’s strain
tensor and εrr, εθθ and εzz are the components of this tensor. For the considered
axisymmetric case, the components of Green’s strain tensor are determined through
the components of the displacement vector by the following expressions:
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In this case, the components of the Lagrange stress tensor S are determined as
follows:
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Note that the expressions (6), (7) and (8) are written in the arbitrary cylindrical
coordinate system without any restrictions related to the association of this system
to the natural or initial state of the considered layer and half-space.

For the considered case the relations between the perturbation of the Kirchhoff
stress tensor and perturbation of the components of the Lagrange stress tensor can
be written as follows:
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By linearization of the equation (8) and taking (9) and (1) into account we obtain
the following expressions for the constants χ

(k)
1111,. . . , χ

(k)
3131 in (5).
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It should be noted that to the above equations, the incompressibility condition

∂u
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∂ r′
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′(k)
r′

r′
+

∂u
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= 0 (11)
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of the layer and half-space materials must be added.

Thus, the stress-strain in the considered system will be investigated by the use of
Eqs. (3) – (11). In this case, we will assume that the following boundary conditions
are satisfied on the free face plane of the covering layer.

Q
′(1)
z′z′

∣∣∣
z′=0

=−P0δ (r′)eiωt 1

(λ
(1)
1 )2
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where δ (r′)is the Dirac function. Also, we assume that{∣∣∣Q′(2)r′r′
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Moreover, we assume that on the interface between the covering layer and half-
space the complete contact conditions
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(14)

are satisfied.

This completes the formulation of the problem under consideration. It should be
noted that in the case where λ

(1)
1 = λ

(2)
1 = 1.0, Eqs. (3) – (5) and (9) – (11),

and conditions (12) – (14) transform to the corresponding ones of the classical
linear theory of elastodynamics. Note that the similar relations for the compressible
materials even in more complicated cases were analyzed in a paper by Akbarov
(2013).

The foregoing mathematical formulation can be easily transformed to the formula-
tion of the corresponding problem for the bi-layered slab resting on a rigid founda-
tion (Fig. 1b). In the latter case the boundary condition (13) must be replaced with
the following one:

u′ (2)r′

∣∣∣
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(1)
1 )2−h2/(λ

(1)
1 )2

= 0, u′ (2)z′
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1 )2
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where h2 is the thickness of the lower layer of the slab. Note that the problem re-
lated to the forced vibration of the slab with a stiff upper layer and soft lower layer,
which are shown in Fig. 1b, was investigated in the paper by Akbarov (2006c).
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At the same time, the foregoing formulation can be changed with respect to the con-
tact conditions (13). Namely, shear-spring type imperfect contact conditions can be
assumed instead of the perfect conditions (13). In this case the third condition in
(13) must be replaced with the following one:

u
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Here the parameter F characterizes the degree of the imperfectness of the contact
conditions and changes in the interval [0,∞]. The case where F = 0 corresponds to
perfect contact conditions, but the case where F = ∞, corresponds to full slipping
contact conditions between the constituents. Note that investigations related to the
axisymmetric wave propagation in the pre-strained and with the foregoing type
imperfectly bonded bi-layered cylinders were made by Akbarov and Ipek (2010,
2012).

3 Solution method

For the solution of the problem formulated above, we use the Hankel integral trans-
formation with respect to the space coordinate r′. First, we substitute expression (4)
into the equation (3) and obtain the following equation of motion in displacement
terms:
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∂ r′2
+χ

′(k)
1122

∂

∂ r′

(
u
′(k)
r′

r′

)
+
(

χ
′(k)
1133 +χ

′(k)
1331

) ∂ 2u
′(k)
z′

∂ z′∂ r′
+χ

′(k)
1313

∂ 2u
′(k)
r′

∂ z′2
+

1
r′

(
χ
′(k)
1111−χ

′(k)
2211

)
∂u

′(k)
r′

∂ r′
+
(

χ
′(k)
1122−χ

′(k)
2222

) u
′(k)
r′

r′2
+
(

χ
′(k)
1133−χ

′(k)
2233

) 1
r′

∂u
′(k)
z′

∂ z′
=

ρ
(k) ∂ 2u

′(k)
r′

∂ t2 − ∂ p
′(k)

∂ r′
,

χ
′(k)
3322

∂ 2u
′(k)
r′

∂ z′∂ r′
+χ

′(k)
3131

∂ 2u
′(k)
z′

∂ r′2
+

1
r′

χ
′(k)
3113

∂u
′(k)
r′

∂ z′
+

1
r′

χ
′(k)
3131

∂u
′(k)
z′

∂ r′
+

1
r′

χ
′(k)
3322

∂u
′(k)
r′

∂ z′
+χ

′(k)
3333

∂ 2u(
′k)

z′

∂ z′2
= ρ

(k) ∂ 2u
′(k)
z′

∂ t2 − ∂ p
′(k)

∂ z′
. (17)

Eqs. (11) and (17) compose the complete system with respect to the unknown
functions u

′(k)
r′ , u

′(k)
z′ and p

′(k). According to the monograph by Guz (2004), we use
the following representation for the displacement and unknown function p

′(k):

u
′(k)
r′ =−∂ 2X

′(k)

∂ r′∂ z′
, u

′(k)
z′ = ∆

′
1X

′(k),
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p
′(k) =

[(
χ
′(k)
1111−χ

′(k)
1133−χ

′(k)
1313

)
∆
′
1 +χ

′(k)
3113

∂ 2

∂ z′2
−ρ

(k) ∂ 2

∂ t2

]
∂

∂ z′
X
′(k), (18)

where

∆
′
1 =

d2

dr′2
+

1
r′

d
dr′

(19)

and the function X
′(k)satisfies the equation[(

∆
′
1 +
(

ξ
′(k)
2

)2 ∂ 2

∂ z′2

)(
∆
′
1 +
(

ξ
′(k)
3

)2 ∂ 2

∂ z′2

)
− ρ(k)

χ
′(k)
1331

(
∆
′
1 +

∂ 2

∂ z′2

)
∂ 2

∂ t2

]
X
′(k)= 0,

(20)

The constants ξ
′(k)
2 and ξ

′(k)
3 in (20) are determined for the case under consideration

as

ξ
′(k)
2 = 1, ξ

′(k)
3 =

(
λ
(k)
1

)−6
. (21)

According to the problem statement, all dependent variables become harmonic with
respect to time and can be presented as g(r′,z′, t) = ḡ(r′,z′)eiω t where a superim-
posed dash denotes the amplitude of the relevant quantity. Below we will omit this
superimposed dash.

If the presentation g(r′,z′, t) = ḡ(r′,z′)eiω t is employed in the foregoing equations,
by replacing the operator ∂ 2

/
∂ t2 with −ω2, we obtain the same equations and

conditions for the amplitude of the sought quantities. Consequently, introducing the
dimensionless coordinates r′→ r′

/
h′1, z′→ z′

/
h′1 and the dimensionless frequency

Ω
2 =

(ωh′1)
2

ρ(2)

2C(2)
10

(22)

we obtain the following equation for the potential X ′(k)(∆
′
1 +
(

ξ
′(k)
2

)2 ∂ 2

∂ z′2

)(
∆
′
1 +
(

ξ
′(k)
3

)2 ∂ 2

∂ z′2

)
− Ω2(

λ
(k)
1

)2

(
∆
′
1 +

∂ 2

∂ z′2

)
C(2)

10 ρ(k)

C(k)
10 ρ(2)

X
′(k) = 0.

(23)

For the solution to Eq. (23) we use the Hankel integral representation for the
function X

′(k):

X
′(k) =

∞∫
0

Y (k)
1 eγ(k)J0(sr′)sds, (24)
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where J0(sr′) is the Bessel function with zeroth order.

Substituting (24) into (23) we obtain the following algebraic equation for γ(k).

A(k)
(

γ
(k)
)4

+B(k)
(

γ
(k)
)2

+C(k) = 0, (25)

where

A(k) =
(

λ
(k)
1

)−6
, B(k) =

1(
λ
(2)
1

)2
C(2)

10

C(k)
10

ρ(k)

ρ(2) Ω
2−
(

1+
(

λ
(2)
1

)−6
)

s2 ,

C(k) = s4− s2 1(
λ
(2)
1

)2
C(2)

10

C(k)
10

ρ(k)

ρ(2) Ω
2 . (26)

We obtain from Eq. (25)

(
γ
(k)
)2

=
−B(k)±

√(
B(k)
)2−4A(k)C(k)

2A(k)
. (27)

By using the expression (26), by direct verification and transformation, it is proven
that

(
γ
(k)
1

)2
=
−B(k)+

√(
B(k)
)2−4A(k)C(k)

2A(k)
= s2,

(
γ
(k)
2

)2
=
−B(k)−

√(
B(k)
)2−4A(k)C(k)

2A(k)
= s2

(
λ
(k)
1

)6
(

1−
Ω2

k
s2

)
, (28)

where

Ω
2
k =

1(
λ
(2)
1

)2
C(2)

10

C(k)
10

ρ(k)

ρ(2) Ω
2. (29)

Thus, we obtain the following expression for the function X ′(k)

X ′(k) =
∞∫

0

[
Y (k)

1 esz′+Y (k)
2 e−sz′+Y (k)

3 eγ
(k)
2 z′+Y (k)

4 e−γ
(k)
2 z′
]

J0(sr′)sds. (30)
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Substituting (30) into expressions (18) and (4), the displacements and stresses
which enter the boundary and contact conditions (12) – (16) are determined as
follows:

u
′(1)
r′ =

∞∫
0

[
Y (1)

1 sesz′+Y (1)
2 se−sz′+Y (1)

3 γ
(1)
2 eγ

(1)
2 z′−Y (1)

4 γ
(1)
2 e−γ

(1)
2 z′
]
J1(sr′)s2ds,

u
′(1)
z′ =−

∞∫
0

s2
[
Y (1)

1 esz′+Y (1)
2 e−sz′+Y (1)

3 eγ
(1)
2 z′−Y (1)

4 e−γ
(1)
2 z′
]
J0(sr′)sds,

Q
′(1)
z′r′ =C(1)

10

∞∫
0

 2s2(
λ
(1)
1

)4

(
Y (1)

1 esz′+Y (1)
1 e−sz′

)
+

(
s2 + s2

(
λ
(1)
1

)2
(

1− Ω2
1

s2

))
×

1(
λ
(1)
1

)4

(
Y (1)

3 eγ
(1)
2 z′+Y (1)

4 e−γ
(1)
2 z′
)s2J1(sr′)ds,

Q
′(1)
z′z′ =C(1)

10

∞∫
0


Ω

2
1− s2

(
λ
(1)
1

)2
− s2(

λ
(1)
1

)4

s
(

Y (1)
1 esz′−Y (1)

2 e−sz′
)
+

γ
(1)
2

Ω
2
1− s2

(
λ
(1)
1

)2
− s2(

λ
(1)
1

)4

(Y (1)
3 eγ

(1)
2 z′−Y (1)

4 e−γ
(1)
2 z′
)J0(sr′)sds,

u
′(2)
r′ =

∞∫
0

[
Y (2)

1 sesz′+Y (2)
3 γ

(2)
2 eγ

(2)
2 z′
]
J1(sr′)s2ds,

u
′(2)
z′ =−

∞∫
0

s2
[
Y (2)

1 esz′+Y (2)
3 eγ

(2)
2 z′
]
J0(sr′)sds,

Q
′(2)
z′r′ =C(2)

10

∞∫
0

 2s2(
λ
(2)
1

)4Y (2)
1 esz′ +

(
s2 + s2

(
λ
(2)
1

)2
(

1− Ω2
1

s2

))
×

1(
λ
(2)
1

)4Y (2)
3 eγ

(2)
2 z′

s2J1(sr′)ds,
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Q
′(2)
z′z′ =C(2)

10

∞∫
0


Ω

2
1− s2

(
λ
(2)
1

)2
− s2(

λ
(2)
1

)4

sY (2)
1 esz′+

γ
(2)
2

Ω
2
1− s2

(
λ
(2)
1

)2
− s2(

λ
(2)
1

)4

Y (2)
3 eγ

(2)
2 z′

J0(sr′)sds.

(31)

Note that under selection of the solution to the function X ′(2), the boundary con-
dition (13) is taken into consideration and this condition can also be estimated as
“there are no reflected waves” at infinity. Moreover, note that, according to (28),
the foregoing expressions are written for the case where Ωk < s. But in the cases
where Ωk > s, in the foregoing expressions, i

∣∣∣γ(k)2

∣∣∣ must be written instead of γ
(k)
2

and the real part of these expressions must be taken for determination of the stresses
and displacements. To find the unknowns Y (1)

1 , Y (1)
2 , Y (1)

3 , Y (1)
4 , Y (2)

1 and Y (2)
3 in (31)

we use the boundary (12) and contact (14) conditions. For this purpose we deter-
mine the Hankel transformation of the right-hand side of the first condition in (12).
Using the equality P0δ (r′) = lim

r′→0

(
P0/(πr′2)

)
we obtain P0

/
(2π) for the Hankel

transformation of P0δ (r′) from lim
ε→0

(
ε∫
0

P0
πε2 r′J0(sr′)dr′

)
.

Thus, we derive the equations

4

∑
j=1

Y (1)
j α

(1)
i j (z′,s)

∣∣∣
z′=0

=−P0

/(
2π(λ

(1)
1 )2

)
δ

1
i , δ

1
1 = 1, δ

1
2 = 0, i = 1,2,

(32)

from the boundary condition (12), and the following equations

4

∑
j=1

Y (1)
j α

(1)
i j (z′,s)

∣∣∣
z′=−h′/(λ (1)

1 )2
−Y (2)

1 α
(2)
i1 (z′,s)

∣∣∣
z′=−h′/(λ (1)

1 )2
−

Y (2)
3 α

(2)
i3 (z′,s)

∣∣∣
z′=−h′/(λ (1)

1 )2
= 0, i = 3,4,5,6, (33)

from the contact condition (13).

The coefficients of the unknowns in Eqs. (32) and (33) are determined through the
expression (31). Thus, we determine the unknowns Y (1)

1 , Y (1)
2 , Y (1)

3 , Y (1)
4 , Y (2)

1 and
Y (2)

3 from Eqs. (32) and (33), and the stresses and displacements are determined
from the expressions in (31).
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Note that the foregoing solution procedure can also be developed easily for the
corresponding problem related to the finite pre-strained bi-layered slab resting on
a rigid foundation which has an additional boundary condition (15). Moreover, the
foregoing solution procedure can easily be repeated for the case where the shear-
spring type imperfect contact condition (16) takes place between the constituents.

4 Some remarks on the calculation of the integrals in (31)

Thus, taking the foregoing discussions into account, we can represent the unknowns
Y (1)

1 , Y (1)
2 , Y (1)

3 , Y (1)
4 , Y (2)

1 and Y (2)
3 as follows:{

Y (1)
1 , ...,Y (2)

3

}
=

1
det
∥∥α i j(s)

∥∥
(

det
∥∥∥∥β

Y (1)
1

i j (s)
∥∥∥∥ , ...,∥∥∥∥β

Y (2)
3

i j (s)
∥∥∥∥) . (34)

It should be noted that the equation

det
∥∥α i j(s)

∥∥= 0 (35)

coincides with the dispersion equation of the axisymmetric near-surface waves
guided in the radial direction in the system under consideration with respect to the
dimensionless velocity (or to the frequency) Ω(22), if we take the parameter s as
the wavenumber of the waves. Therefore the integrals in expressions (31) are called
the wavenumber integrals and the equation (35) has an infinite number of real roots
through which dispersion diagrams, i.e. graphs of the dependencies between Ω and
sh1, are constructed. These diagrams give a lot of information about the possible
dynamical behavior of the related system. For instance, if the dispersion diagram
has a point at which dΩ

/
d(sh1) = 0, the frequency which corresponds to this point

is the resonance frequency. A similar issue was also noted in a paper by Dieterman
and Metrikine (1997).

Thus, we turn to calculation of the integrals in (31). We note that similar integrals
in papers by Akbarov (2006 b, c) have been calculated by employing Cauchy’s
principal value sense approach, according to which, first, the singular points of
the integrated expressions, i.e. the roots of the equation (35) are determined and
after the corresponding isolation of these singularities, the traditional algorithm is
applied for calculation of the integrals.

However, the algorithm based on Cauchy’s principal value sense approach has the
following disadvantages: a) this approach does not take into account the waves
which are generated by the external forces and guided from the force source to
infinity and namely in this sense is estimated as physical incorrect, and b) this
approach is more sensitive to the accuracy of the determination of the roots of the
dispersion equation (35) and to the location character of the integration points in the
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near vicinity of the singular points. In the high frequencies of the external forces,
for instance in the cases where Ω > 1 the disadvantage of (b) causes more serious
difficulties under calculation of these integrals and avoiding these difficulties is al-
most impossible in the cases where the stiffness of the covering layer material is
greater than that of the half-space material, i.e. in the cases which are investigated
in the present paper. Moreover, in general, successive use of the algorithm based
on Cauchy’s principal value sense approach requires symmetry of the location of
Gauss’s integration points with respect to the singular points. However, the dis-
advantage of (a) can become more significant under calculation of the stresses or
displacements at the points which are very far from the external force source.

In a paper by Akbarov and Ilhan (2013), according to Tsang (1978), Jensen et al.
(2011) and many others listed in these references, the foregoing disadvantages are
avoided by the use of the Sommerfeld contour, i.e. the foregoing type of wavenum-
ber integrals are evaluated along the Sommerfeld contour. In the present investiga-
tion, for calculation of the integrals (31) we will also use the algorithm based on
employing the Sommerfeld contour, according to which, using Cauchy’s theorem,
the contour [0,∞] is deformed into the contour C (Fig. 1c) in the complex plane
s = s1 + is2 and in this way the real roots of the equation (35) are avoided.

Thus, in the expressions in (31) the integrals in the form
∞∫
0

f (s)ds are replaced with

the corresponding ones in the form
∫
C

f (s)ds and the stresses and displacements in

(31) are determined as a real part of this integral, i.e. as Re
∫
C

f (s)ds. According to

Fig. 1c, we can write the following relation:

∫
C

f (s)ds = i

s∗2∫
0

f (is2)ds2 +

∞∫
0

f (s1 + is∗2)ds1, (36)

Taking into account the fact that the values of the integral
∫
C

f (s)ds are independent

of the values of the parameter s∗2 > 0, then as usual (see, for example Jensen et
al. (2011) and Tsang (1978)), in order to simplify the calculation procedure of the
integral

∫
C

f (s)eisxds, the parameter s∗2 is assumed to be small. According to this

assumption, we can write∣∣∣∣∣∣
s∗2∫

0

f (is2)ds2

∣∣∣∣∣∣= O(s∗2). (37)

Taking the estimation (37) into account, for calculation of the integral
∫
C

f (s)ds we
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can use the following approximate expression:

∫
C

f (s)ds≈
∞∫

0

f (s1 + is∗2)ds1. (38)

The accuracy of the expression (38) with respect to values of the parameter s∗2 will
be discussed below. Moreover, under the calculation procedure, the improved inte-

gral
+∞∫
0
(•)ds1 in (38) is replaced by the corresponding definite integral

+S∗1∫
0

(•)ds1.

The values of S∗1 are determined from the convergence requirement of the numer-
ical results. Note that under calculation of the latter integral, the interval [0,+S∗1]
is further divided into a certain number of shorter intervals, which are used in the
Gauss integration algorithm. In this integration procedure the values of the in-
tegrated expressions, i.e. the values of the unknowns Y (1)

1 , Y (1)
2 , Y (1)

3 , Y (1)
4 , Y (2)

1

and Y (2)
3 in Gauss’s integration points are determined through (34). In the afore-

mentioned integration procedure it is assumed that in each of the shorter inter-
vals the sampling interval of the numerical integration s1 must satisfy the relation
|s1| � min

{
s∗2, 1

/
r′
}

. All these procedures are performed automatically with the
PC by use of the corresponding programs constructed by the author in MATLAB.

5 Numerical results and discussions

Here we focus our attention on the numerical results related to the frequency re-
sponse of the stresses Q′z′z′ and Q′z′r′ , where

Q′z′z′(r
′) = Q′(1)z′z′(r

′,z′)
∣∣∣
z′=−h 1

/
(λ

(1)
1 )2

= Q′(2)z′z′(r
′,z′)

∣∣∣
z′=−h 1

/
(λ

(1)
1 )2

,

Q′z′r′(r
′) = Q′(1)z′r′(r

′,z′)
∣∣∣
z′=−h 1

/
(λ

(1)
1 )2

= Q′(2)z′r′(r
′,z′)

∣∣∣
z′=−h 1

/
(λ

(1)
1 )2

. (39)

In all further numerical investigations we will assume that ρ(1)
/

ρ(2) =C(1)
10

/
C(2)

10

and the influence of the initial strains on the numerical results we will estimate
through the parameters λ

(1)
1 (λ (1)

3 = (λ
(1)
1 )−2) and λ

(2)
1 (λ (2)

3 = (λ
(2)
1 )−2) which

enter into the expression (1). Consequently, according to expression (1), in the case
where λ

(k)
1 = 1.0(k = 1,2 ) there are no initial strains in the k− th constituent of

the system under consideration.

First, we consider a convergence of the results obtained for various values of the
parameter s∗2, calculated with the use of the expression (37). According to the well-
known mathematical, mechanical and physical considerations, the results obtained
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(a) (b)

(c)

Figure 2: The convergence of the Sommerfield contour integration results with
respect to the parameter s∗2 in the cases where Ω = 0.5 (a), 1.0 (b) and 2.0 (c)

with the use of the expression (38) must approach a certain asymptote by decreas-
ing the parameter s∗2. We check these considerations with respect to the dependence
between Q′z′z′(r

′) (39) and r′
/

h1 calculated for various values of the dimensionless

frequency Ω under C(1)
10

/
C(2)

10 = 1.5 and λ
(1)
1 = λ

(2)
1 = 1.0. The graphs of this de-

pendence are given in Figs. 2a, 2b and 2c for Ω=0.5, 1.0 and 2.0, respectively. It
follows from the analyses of these graphs and others (which are not given here)
that the obtained numerical results approach the corresponding limit values by de-
creasing the parameter s∗2 and in the cases where 0.01 ≤ s∗2 ≤ 0.05 these results
coincide with very high accuracy, i.e. with an accuracy in the order not greater
than 10−5. Therefore, it is enough to take s∗2 = 0.01 to obtain guaranteed numeri-
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(a) (b)

Figure 3: The testing of the calculation algorithm with respect to the Boussinesq
problem (see Timoshenko and Goodier (1975)) which corresponds to the case
where C(1)

10 /C(2)
10 = 1.0 under calculation of the normal stress Q′z′z′ (a) and shear

stress Q′z′r′ (b).

cal results by the use of the expression (38). Taking this conclusion into account,
all the numerical results, which will be discussed below, are calculated in the case

where S∗1 = 50 in
+S∗1∫
0

(•)ds1. Note that the value S∗1 = 50 is determined from the

convergence requirement of the numerical results with respect to the parameter S∗1.

Now we test the algorithm and programs used in the present investigation. For
this purpose we consider the graphs given in Fig. 3 which show the distribution
of Q′z′z′ (Fig. 3a) and Q′z′r′ (Fig. 3b) with respect to r′

/
h1. Note that these graphs

are constructed for various values of C(1)
10

/
C(2)

10 in the case where Ω = 0.01 and

λ
(1)
1 = λ

(2)
1 = 1.0. According to the results by Akbarov (2006b, 2006c), the case

where Ω = 0.01 can be considered as a static loading case and the results obtained
under C(1)

10

/
C(2)

10 = 1.0 must be very near to the corresponding ones obtained for
the Boussinesq problem (see Timoshenko and Goodier (1975)). Moreover, accord-
ing to the well-known mechanical considerations, an increase in the values of the
C(1)

10

/
C(2)

10 must cause a decrease in the absolute maximum values of the stresses
Q′z′z′ and Q′z′r′ . By direct verification it is established that the foregoing predictions
are confirmed with the graphs given in Fig. 3 and this confirmation can be taken
as the successful testing of the algorithm and programs used in the present investi-
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(a) (b)

Figure 4: The testing of the calculation algorithm with respect to the influence of
the inertial terms, i.e. the frequency Ω on the distribution of the normal Q′z′z′ (a)
and shear Q′z′r′(b) stresses.

gation. Moreover, the graphs given in Figs. 4a and 4b which also show the same
distributions given in Figs. 3a and 3b can be taken as confirmation of the testing
of the algorithm and programs used in the present investigation with respect to the
mechanical consideration related to the influence of the inertial terms on the values
of the foregoing stresses. Note that the graphs given in Figs. 4a and 4b are con-
structed for various values of the dimensionless frequency Ω under C(1)

10

/
C(2)

10 = 1.5
and show that for the considered change range, i.e. for 0.01≤Ω≤ 1.0 the absolute
maximum values of the stresses increase with Ω. Moreover, Figs. 3 and 4 show
that the absolute maximum values of the stress Q′z′z′ (of the stress Q′z′r′) take place at
r′
/

h1 = 0 (at r′
/

h1 ≈ 0.5). Therefore under construction, below, of the frequency
response of these stresses, the values of Q′z′z′ (of Q′z′r′) are calculated at r′

/
h1 = 0

(at r′
/

h1 = 0.5).

Thus, we consider the frequency response graphs given in Fig. 5a (Fig. 5b) for
the stress Q′z′z′ (for the stress Q′z′r′) and constructed for various values of C(1)

10

/
C(2)

10

under λ
(1)
1 = λ

(2)
1 = 1.0. It follows from Fig. 5 that the dependence between the

normal stress Q′z′z′ and Ω, as well as between the shear stress Q′z′r′ and Ω has a non
monotonic character. In other words, the mechanical behavior of the forced vibra-
tion of the system consisting of the stiff covering layer and of the soft half-space is
similar to that of the system which comprises a mass, a parallel connected spring
and a dashpot. At the same time, Fig. 5 shows that the “resonance” frequency (de-
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note it by Ω∗) and the “resonance” values of the stresses decrease with C(1)
10

/
C(2)

10 .
Note that, according to Lamb (1904), Gladwell (1968) and others, the behavior of
the half-space or half-plane under forced vibrations is also similar to that of the sys-
tem which comprises a mass, a parallel connected spring and a dashpot. Moreover,
similar behavior is also observed under dynamical (vibrating) contact problems (see
Johnson (1985)).

(a) (b)

Figure 5: The influence of the parameter C(1)
10 /C(2)

10 on the frequency response of
normal Q′z′z′ (a) and shear Q′z′r′ (b) stresses.

In general, the character of the frequency response of elastic systems has an im-
portant significance for understanding of the dynamic behavior of these systems.
For instance, according to the frequency response graphs, the range of the forced
vibration frequency under which the resonance type behavior takes place can be
determined. Note that the character of the frequency response graphs depends not
only on the ratio of the mechanical constants of the constituents, but also on their
characteristic geometrical size. However in the system under consideration, i.e. in
the system consisting of the covering layer and half-space, such geometric size is h1
only and this size is taken under consideration when the distribution of the stresses
with respect to the space coordinates is taken into account. But, for the systems
such as those shown in Fig. 1b, the ratio of the geometric sizes, i.e. the ratio of
the thicknesses of the layers h2

/
h1 can influence significantly the character of the

foregoing frequency response. For illustration of this prediction we consider the
graphs given in Figs. 6a and 6b which show the dependence between Q′z′z′ and Ω
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(a) (b)

Figure 6: The comparison of the frequency response of the normal stress Q′z′z′
obtained for the system shown in Fig. 1a with the corresponding one obtained
for the system shown in Fig. 1b in the cases where h2/h1 = 0.5,1.0,2.0,4.0,6.0 (a)
and h2/h1 = 8.0,10.0,12.0,∞ (b)

for the system depicted in Fig. 1b. These graphs are constructed for various values
of h2

/
h1 under C(1)

10

/
C(2)

10 = 3.0 and λ
(1)
1 = λ

(2)
1 = 1.0. For clarity of the illustration

in Fig. 6a, graphs are given related to the cases where h2
/

h1 = 0.5, 1.0, 2.0, 4.0 and
6.0, but in Fig. 6b graphs are given related to the cases where h2

/
h1 = 8.0, 10.0,

12.0 and ∞. It is evident that the case where h2
/

h1 = ∞ corresponds to the system
consisting of the covering layer and half-space. Note that under construction of
these graphs the values of Q′z′z′ are calculated at z′ =−h1

/
(λ

(1)
1 )2 by the use of the

corresponding integral expression which is determined by utilizing the method dis-
cussed in the previous section and these integrals are also evaluated along the Som-
merfeld contour. Moreover, we note that the forced vibration problem related to the
system shown in Fig. 1b was already investigated in a paper by Akbarov (2006 c) in
which the numerical results were given in the cases where h2

/
h1 = 0.05, 0.10, 0.5,

1.0 and 2.0. We recall that the numerical results discussed in the paper by Akbarov
(2006 c) were obtained by the use of the algorithm based on Cauchy’s principal
value sense approach. Consequently, we can compare the results obtained in the
cases where h2

/
h1 = 0.5, 1.0 and 2.0 and which are shown in Fig. 6a with the cor-

responding ones given in the paper by Akbarov (2006 c). This comparison shows
that for the problem related to the system shown in Fig. 1b the results obtained by
the use of the algorithm based on the Sommerfeld contour integration coincide with
very high accuracy with the corresponding results obtained by utilizing Cauchy’s
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principal value sense approach. This comparison also confirms the reliability of
the algorithm and programs used in the present investigation. At the same time,
the results given in Fig. 6 show that in the quantitative sense the results obtained
for the system shown in Fig. 1b approach the corresponding ones obtained for the
system shown in Fig. 1a with h2

/
h1. However, the results obtained for the system

depicted in Fig. 1b do not coincide “exactly” (i.e. such as in the corresponding
static problems) with the corresponding ones obtained for the system depicted in
Fig. 1a because the system in Fig. 1b takes the waves reflected from the lower

boundary z′ = −h1

/
(λ

(1)
1 )

2
− h2

/
(λ

(2)
1 )

2
into account, but the system in Fig. 1a

does not.

It follows from the analyses of the results given in Fig. 6 that indeed, the frequency
response of the system shown in Fig. 1b depends significantly on the values of the
ratio of the geometrical sizes, i.e. on the ratio h2

/
h1. For instance, in the cases

where h2
/

h1=1.0 and 2.0 for certain values of the dimensionless frequency Ω, a
sudden jump occurs in the values of the stress. Note that this jump is similar to that
which arises in the near vicinity of the ordinary resonance frequency. Besides all
of this, the results given in Fig 6 and their comparison with the corresponding ones
obtained in the case where h2

/
h1 = ∞ give a certain orientation on the application

fields of the results obtained for the system consisting of the covering layer and the
half-space in real cases.

Thus, we turn again to consideration of the results related to the system consisting
of the covering layer and half space (Fig.1a), and analyze the influence of the initial
strains, i.e. the influence of the parameters λ

(1)
1 and λ

(2)
1 on the frequency response

of the stresses Q′z′z′ and Q′z′r′ . The graphs of these responses for the normal stress

Q′z′z′ are given in Figs. 7 and 8 for the cases where C(1)
10

/
C(2)

10 = 1.5 and 3.0, respec-

tively, but for the shear stress Q′z′r′ in Fig. 9 for the case where C(1)
10

/
C(2)

10 = 1.5.
The graphs given in the figures which are indicated by the letter a(b) are obtained
in the case where the initial strains occur in the covering layer (in the half-space)
only, but the graphs given in the figures indicated by the letter c are obtained for
the case where the initial strains occur in both constituents simultaneously and are
equal to each other.

Figs. 7a, 8a and 9a show that the initial stretching of the covering layer causes a
decrease in the “resonance’ values of the stresses and an increase in the “resonance’
frequency Ω∗. Moreover Figs. 7b, 8b and 9b show that after a certain frequency
(before which the influence of the initial strains of the half-space on the stresses is
insignificant), as a result of the initial compressing (stretching) of the half-space,
the “resonance” values of the stresses increase (decrease). It follows from the fore-
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(a) (b)

(c)

Figure 7: The influence of the initial strains on the frequency response of the normal
stress Q′z′z′ in the cases where the initial strains exist in the covering layer only (a),
in the half-space only (b) and in both the constituents simultaneously and which
are equal to each other (c) under C(1)

10 /C(2)
10 = 1.5.

going results that the influence of the initial compression of the half-space on the
stresses is more significant than the influence of the initial stretching.

The analyses of the Figs. 7c, 8c and 9c show that the simultaneous initial com-
pression (stretching) of the constituents of the system under consideration causes
an increase (a decrease) in the resonance values of the stresses. In this case the
resonance values of the frequencyΩ∗ increase with λ (= λ

(1)
1 = λ

(2)
1 ). At the same
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(a) (b)

(c)

Figure 8: The influence of the initial strains on the frequency response of the normal
stress Q′z′z′ in the cases where the initial strains exist in the covering layer only (a),
in the half-space only (b) and in both the constituents simultaneously and which
are equal to each other (c) under C(1)

10 /C(2)
10 = 3.0.

time, Figs. 7c, 8c and 9c show that under simultaneous initial compression of the
constituents of the system, after a certain λ the “resonance” values of the stresses
increase sharply with decreasing λ . For a clear illustration of this sharp increase,
in Fig. 10 the graphs of the dependence between Q′z′z′ and Ω are given for smaller

values of the parameter λ in the cases where C(1)
10

/
C(2)

10 = 1.5 (Fig. 10a) and 3.0
(Fig. 10b). Note that the “resonance” values of the stresses approach infinity as
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(a) (b)

(c)

Figure 9: The influence of the initial strains on the frequency response of the normal
stress Q′z′r′ in the cases where the initial strains exist in the covering layer only (a),
in the half-space only (b) and in both the constituents simultaneously and which
are equal to each other (c) under C(1)

10 /C(2)
10 = 1.5.

λ → λcr, whereas under λ = λcr (the values of λcr are given in the field of Fig. 10),
the near-surface stability loss of the system under consideration takes place. Ac-
cording to Biot (1965), Guz (2004), Akbarov (2013) and others, this near-surface
stability loss occurs in the case where the stiffness of the covering layer material
(i.e. the elastic constant C(1)

10 in the expressions (6) and (10)) is greater than that
of the half-space material (i.e. than the elastic constant C(2)

10 ). Consequently, in the
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(a) (b)

Figure 10: The illustration of the parametric resonance appearing with simultane-
ous initial compression of the constituents, i.e. with the approach of the parameter
λ to λcr, which corresponds to the near surface stability loss of the system under
consideration in the cases where C(1)

10 /C(2)
10 = 1.5 (a) and 3.0 (b).

(a) (b)

Figure 11: The influence of the initial strains on the distribution of the normal stress
Q′z′z′ with respect to the radial space coordinate in the cases where the initial strains
occur in the covering layer only (a) and in the half-space only (b).
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(a) (b)

Figure 12: The influence of the initial strains on the distribution of the shear stress
Q′z′r′ with respect to the radial space coordinate in the cases where the initial strains
occur in the covering layer only (a) and in the half-space only (b).

(a) (b)

Figure 13: The influence of the shear-spring type imperfection parameter on the
frequency response of the normal stress Q′r′r′ in the cases where C(1)

10 /C(2)
10 = 1.5 (a)

and 3.0 (b).
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case where λ = λcr the ordinary resonance of the system takes place and this reso-
nance can be called a parametric resonance. This conclusion shows that the initial
strains in the constituents of the system act on dynamical behavior of this system
not only qualitatively, but also quantitatively.

Now we consider the results illustrated by the influence of the initial strains on the
distribution of the stresses with respect to the radial coordinate r′

/
h1. These results

are given in Figs. 11 and 12 for the stresses Q′z′z′ and Q′z′r′ respectively in the case

where Ω = 2.0 and C(1)
10

/
C(2)

10 = 1.5. Note that the graphs given in Figs. 11a and
12a (Figs. 11b and 12b) show the influence of the initial strains in the covering
layer (in the half-space) on the distributions. It follows from these figures that the
initial stretching in the covering layer causes the stresses to decay more rapidly
with r′

/
h1. But the initial compression of the half-space is the opposite, that is it

causes the stresses to decay more slowly with r′
/

h1.

Note that all the numerical results discussed above have been obtained in the case
where, between the covering layer and half-space, complete contact conditions (14)
are satisfied. Now we consider how the shear-spring type imperfectness (16) acts
on the frequency responses. For this purpose we consider the graphs given in Fig.
13 which show the frequency response of the normal stress Q′z′z′ in the cases where

C(1)
10

/
C(2)

10 = 1.5 (Fig.13a) and 3.0 (Fig.13b) under λ
(1)
1 = λ

(2)
1 = 1.0. Note that

these graphs are constructed for various values of the shear-spring imperfection
parameter F which enters into the condition (16). Thus, it follows from Fig. 13 that
the shear spring type imperfectness of the contact conditions acts in the quantitative
sense only on the frequency response. In this case an increase in the values of
the parameter F causes an increase in the “resonance” values of the stress and a
decrease of the resonance values of the frequency Ω∗. However, after a certain
value of the frequency, it is the opposite, that is, an increase in the values of the
parameter F causes a decrease in the absolute values of the stress Q′z′z′ . Also,
it follows from Fig. 13 that the results obtained for the stress approach certain
limit values with the parameter F and these limit values correspond to the results
obtained under full slipping contact between the constituents, i.e. in the case where
F = ∞.

6 Conclusions

Thus, in the present paper within the scope of the piecewise homogeneous body
model, with the use of the large initial deformation version of the three-dimensional
linearized theory of elastic waves in an initially stressed body, the axisymmetric
time-harmonic Lamb’s problem for a system consisting of a pre-strained half-space
and a pre-strained covering layer made of incompressible materials has been stud-
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ied for the case where the elastic constant C(1)
10 , which enters the expression of

Treloar’s potential (6), of the covering layer material is greater than the elastic con-
stant C(2)

10 of the half-space material. For the solution of the corresponding bound-
ary value problems, the Hankel integral transformation method is employed. The
algorithm based on the Sommerfeld contour integration method is developed for
calculation of the corresponding inverse transformations. By utilizing this algo-
rithm, numerical results related to the distribution and the frequency response of
the stresses acting on the interface plane between the constituents are presented
and discussed. In this discussion attention is also focused on the influence of the
initial strains in the constituents on the foregoing frequency responses and distribu-
tions. Numerical results related to the same problem, which has been formulated
for the pre-strained bi-layered slab resting on a rigid foundation are also presented
and compared with the corresponding ones obtained for the system under consid-
eration. At the same time, the numerical results which illustrate the influence of
the shear-spring type imperfect contact conditions between the constituents on the
foregoing frequency responses, are presented and analyzed.

According to the numerical results the following main conclusions can be made

• the frequency response for stresses has a non-monotonic character, i.e. the
mechanical behavior of the axisymmetric forced vibration of the system con-
sisting of the stiff covering layer and soft half-space is similar to that of the
system comprising a mass, a parallel connected spring and a dashpot;

• the “resonance” values of the frequency and absolute maximum values of the
stresses decrease with an increase in the ratio C(1)

10

/
C(2)

10 ;

• the initial stretching of the covering layer causes the “resonance” values of
the stresses to decrease, but the initial compression of the half-space causes
them to increase;

• in the case where the magnitude of the simultaneous initial compression of
the constituents is near to that which corresponds to the near-surface stabil-
ity loss of the system under consideration, ordinary resonance under forced
vibration is caused. Note that this resonance can be called a parametric res-
onance. Consequently, the influence of the initial strains on the frequency
response of the system under consideration is not only quantitatively, but
also qualitatively important.

The results obtained in the case where the initial strains are absent correspond to
those obtained within the framework of the classical linear theory of elastodynam-
ics. Consequently, the numerical results presented in the paper are also significant
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from this viewpoint. At the same time, the obtained numerical results can be taken
as standard for a stratified ground vibration under which the stratified ground is
modeled by a system composed of a mass, a parallel connected spring and a dash-
pot.
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