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Abstract: In this paper simulations of brittle fracture and hydroelastic problems
are carried out by using a numerical approach based on the Moving Particle Simu-
lation (MPS) method. It is a meshless method used to model both fluid and elastic
solid, and all the computational domain is discretized in Lagrangian particles. A
higher order accuracy gradient operator is used herein by adopting a correction
matrix. Also, in order to correctly simulate the collision of the fragments, a con-
tact detection algorithm that takes into account the presence of the solid surfaces
generated by brittle fracture is proposed. In case of fluid-structure interaction, a
partitioned coupling between fluid and isotropic elastic solid is adopted. Explicit
and semi-implicit time integration algorithms are used for elastic solid and fluid
domains, respectively. Matching of the time steps in both domains is done by sub-
cycling technique to improve the computational efficiency. The performance of
method is evaluated by analyzing the results of several cases of study. At first,
the dynamics of slender cantilever beam is analyzed to check the convergence of
the method. After that, a collision between two elastic solids with brittle fracture
and further collision between the fragments is simulated to show the improvement
achieved. Finally, to validate the fluid-structure interaction simulation approach,
comparison with available numerical results of a dam breaking on an elastic plate
is performed, as well as the comparison with available experimental measurements
of the interaction between liquid sloshing and an elastic plate.

Keywords: Fluid-structure interaction, brittle fracture, elastic solid, moving par-
ticle simulation, particle method, hydroelasticity.

1 Introduction

Over the last 50 years, numerical simulation enabled the study of complex physical
systems in several areas of sciences and engineering. The most commons meth-
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ods are the Finite Difference Method (FDM), Finite Volume Method (FVM), Finite
Element Method (FEM) and Boundary Element Method (BEM). However, gener-
ally these mesh-based methods face several restrictions when the problems involve
large deformation or displacement of the boundaries, such as free surface, frag-
mentation, merging or multibody interactions, and ingenious boundary tracking
or remeshing techniques are required, increasing the computational complexity.
Due the easy implementation and flexibility, the meshless methods has attracted
much attention in recent years. An important class of meshless method are the
particle-based methods, where the behavior of a physical problem is represented by
a collection of points (particles). In a particle method each particle moves accord-
ingly with its own mass and the internal/external forces evaluated by the interaction
with the neighboring particles [Idelsohn and Onate (2006)]. Examples of particle
methods utilized in different field of sciences and engineering are: Particle in Cell
(PIC) [Harlow (1964)], Smooth Particle Hydrodynamics (SPH) [Lucy (1977); Gin-
gold and Monagham (1977)], Material Point Method (MPM) [Sulsky, Chen, and
Schreyer (1994)], Moving Particle Semi-implicit (MPS) [Koshizuka, Tamako, and
Oka (1995)] and Particle Finite Element Method (PFEM) [Idelsohn, Onate, and Pin
(2004)].

In the recent years, problems involving dynamic flexible bodies and their inter-
action with free surface flow have received great attention in several field of engi-
neering and science. Nevertheless, their computational modeling remains as a great
challenge.

Regarding the fracture phenomenon, it is governed by interaction of micro and
macro-voids, microstructural defects and initial flaws, and involve multiple physi-
cal processes occurring at different time and length scales [Das and Cleary (2010)].
Generally, when investigating fracture problems using mesh-based methods, sev-
eral shortcomings, such as the impossibility of crack propagation along the ele-
ment’s edge and mesh distorting may occur. To overcome the constraints imposed
by mesh, particle methods have been proposed to model the fracture phenomenon.
For example, Guo and Nairn (2006) described algorithms for three-dimensional dy-
namic stress and fracture analysis using MPM. Das and Cleary (2010) used SPH to
modeling breakage of rocks under impact, common in many industrial processes.
Xiao, Han, and Hu (2011) presented a FEM-SPH coupling algorithm and proposed
an adaptive coupling technique to simulate impact problems involving large defor-
mations and fractures. Chen, Wang, Xie, and Qin (2013) presented a hybrid ap-
proach based on SPH for rapid crack simulation of brittle material in physics-based
animation area.

On the other hand, in the case of fluid-structure interaction (FSI) problems, a cou-
pling strategy to satisfy both the geometrical compatibility and the equilibrium con-
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ditions on the interface is a key issue [Ishihara and Yoshimura (2005)]. The main
approaches employed in the solution of FSI problems are roughly divided into the
monolithic methods, in which fully coupled fluid-structure interaction in the inter-
face is handled synchronously, and the partitioned methods, in which the equations
of fluid and structure are alternately integrated in time, and interface conditions
are handled asynchronously. For numerical simulations of hydroelastic problems
involving free surface, the Lagrangian formulation have been widely used, espe-
cially numerical approach based on particle methods. Idelsohn, Onate, and Pin
(2004) modeled interactions between floating and submerged bodies and free sur-
face flows by using PFEM. Antoci, Gallati, and Sibilla (2007) studied experimen-
tally and numerically based on SPH method, the deformation of an elastic plate
under the effect of a rapidly varying fluid flow. Campbell, Vignjevic, Patel, and
Milisavljevic (2009) presented a explicit SPH-finite element approach to simulate
floating body, and showed the ability of the numerical approach to represent large
structural deformation due to water impact.

Within this context and to take advantage of particle methods, a practical compu-
tational technique for modeling and simulation of brittle fracture and hydroelastic
problems is presented in this paper.

The numerical approach is based on the Moving Particle Simulation (MPS) method,
in which all the computational domain, including solid and fluid, is discretized
in Lagrangian particles. Due to fully Lagrangian description, numerical diffusion
caused by advection term does not arise. As a meshless method, it is very effective
for the simulation of problems involving complex deformations of the boundaries
and has been widely applied in several engineering problems, for example: Nonlin-
ear hydrodynamics such as green water [Shibata, Koshizuka, Sakai, and Tanizawa
(2012); Bellezi, Cheng, and Nishimoto (2013)], sloshing [Lee, Jeong, Hwang, Park,
and Kim (2013)], coupled motion of sloshing and vessel [Lee, Park, Kim, and
Hwang (2011); Kim, Lee, Kim, and Park (2011)], and sloshing motion coupled to
a moving suppression device [Tsukamoto, Cheng, and Nishimoto (2011)]; Mul-
tiphase flows [Koshizuka, Ikeda, and Oka (1999); Park and Jeun (2011); Cheng,
Gomes, Yoshino, and Nishimoto (2011)]; Elastic solid [Chikazawa, Koshizuka,
and Oka (2001); and other industrial problems [Kakuda, Ushiyama, Obara, Toy-
otani, Matsuda, Tanaka, and Katagiri (2010); Cheng, Oliveira, Favero, Oliveira, and
Gonçalves (2013); Motezuki and Cheng (2013)] and biomedical engineering appli-
cations [Chhatkuli, Koshizuka, and Uesaka (2009); Nagayama and Honda (2012)].

In the present paper, a higher order accuracy gradient operator is used as an attempt
to improve the accuracy. Also, in order to correctly simulate the collision of the
fragments, a simple condition of brittle fracture associated to a more generic con-
tact detection algorithm that takes into account the presence of the solid surfaces
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generated by brittle fracture is proposed. To solve hydroelastic problems involv-
ing free surface, a partitioned coupling between fluid and isotropic elastic solid is
adopted. The solid surface particles are treated like a fluid particle and the pressures
of the solid surface particles are computed by solving Poisson equation for the pres-
sure, together with the fluid particles. Therefore, the coupling between solid and
fluid is done at first by using the displacement and velocity of elastic solid as the
boundary conditions for the fluid domain. Then the pressure on the solid surface
particles is obtained by solving the fluid motion. After that the calculated pressure
field is taken into account in the calculation of the motion of the elastic solid. Ex-
plicit and semi-implicit time integration algorithms are used for elastic solid and
fluid domains, respectively. Matching of the time steps in both domains is done by
sub-cycling technique to improve the computational efficiency.

In the next sections, a brief description of the MPS model for both fluid and elastic
solid is presented, as well as the brittle fracture condition, the contact detection
algorithm and the coupling technique between fluid and elastic solid. Finally, the
performance of method is evaluated by simulations of several cases of study. At
first, the dynamics of slender cantilever beam is analyzed to check the convergence
of the method. After that, a collision between two elastic solids with brittle fracture
and further collision between the fragments is simulated to show the improvement
achieved. Finally, to validate the fluid-structure interaction simulation approach,
comparison with available numerical results of a dam breaking on an elastic plate
is performed, as well as the comparison with available experimental measurements
of the interaction between liquid sloshing and an elastic plate.

2 Governing equations

2.1 Fluid

The governing equations of incompressible viscous flow are expressed by the con-
servation laws of mass and momentum:

Dρ

Dt
+ρ(∇ ·vvv) = 0 (1)

Dvvv
Dt

=− 1
ρ

∇P+ν∇
2vvv+fff (2)

where ρ is the density, vvv is the velocity vector, P is the pressure, ν is the kinematic
viscosity, fff is the external force vector.
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2.2 Solid

For the dynamics analysis of elastic solids, the governing equation of motion can
be written as:

ρ
Dvvv
Dt

= ∇ · (2µεεε+λ tr(εεε)III)+bbb (3)

where εεε is the strain tensor and bbb is the body force vector. The Lamé’s constants µ

and λ are given by:

µ =
E

2(1+ v)
λ =

Ev
(1+ v)(1−2v)

(4)

where E is the Young’s modulus and v is the Poisson’s ratio.

The Eq. 3, can be rewritten by introducing stress tensor σσσ and isotropic pressure p
as:

ρ
Dvvv
Dt

= ∇ · (σσσ− pIII)+bbb (5)

where stress tensor and isotropic pressure are calculated as:

σσσ = 2µεεε p =−λ tr(εεε ) (6)

3 Numerical model

In MPS method, the differential operators of the governing equations are replaced
by discrete differential operators on irregular nodes [Isshiki (2011)], which are de-
rived from a model of interaction between particles. For a given particle i, the
influence of a neighbor particle j is defined by weight function w(|rrri j|) given in
Eq. 7:

w(|rrri j|) =

{
re
|rrri j| −1, |rrri j| ≤ re

0, |rrri j|> re
(7)

where re is the effective radius that limits the range of influence and rrri j is the
distance between i and j. In the other words, re defines the neighborhood of the
particle i.

The summation of the weight of all the particles in the neighborhood of the particle
i is defined as its particle number density ni:

ni = ∑
j 6=i

w(|rrri j|) (8)



92 Copyright © 2013 Tech Science Press CMES, vol.95, no.2, pp.87-118, 2013

As a result, for a scalar function φ and a vector functionφφφ, the gradient, divergence,
rotation and Laplacian operators can be defined by Eq. 9, Eq. 10, Eq. 11 and Eq. 12,
respectively:

∇φi =
d
n0

i
∑
j 6=i

(φ j−φi)

|rrr j−rrri|2
(rrr j−rrri)w(|rrri j|) (9)

∇ ·φφφi =
d
n0

i
∑
j 6=i

(φφφ j−φφφi) · (rrr j−rrri)

|rrr j−rrri|2
w(|rrri j|) (10)

∇×φφφi =
d
n0

i
∑
j 6=i

(φφφ j−φφφi) ·sssi j

|rrr j−rrri|
w(|rrri j|) (11)

∇
2
φi =

2d
λln0

i
∑
j 6=i
(φ j−φi)w(|rrri j|) (12)

where d is the number of spatial dimensions, sssi j is a versor perpendicular to rrri j

and n0
i is the initial value of ni. In case of fluid, the initial value of ni is independent

to the particle so that n0 can be used instead of n0
i . Finally, λl is a correction

parameter so that the variance increase is equal to that of the analytical solution,
and is calculated by:

λl =
∑ j 6=i |rrri j|2w(|rrri j|)

∑ j 6=i w(|rrri j|)
(13)

Adopting correction technique, initially proposed for the SPH method [Bonet and
Lok (1999)], the gradient operator (Eq. 9) can be improved by introducing a cor-
rection matrix AAA:

∇̃φi =AAA

[
1
ni

∑
j 6=i

(φ j−φi)

|rrr j−rrri|
(rrr j−rrri)

|rrr j−rrri|
w(|rrri j|)

]
(14)

AAA =

[
1
ni

∑
j 6=i

(rrr j−rrri)

|rrr j−rrri|
⊗

(rrr j−rrri)

|rrr j−rrri|
w(|rrri j|)

]−1

(15)

For two-dimensional cases analyzed herein, re is set to 2.1l0 to calculate gradi-
ent, divergence and rotation operators and re is set to 4.0l0 to calculate Laplacian
operator, where l0 is the initial distance between two adjacent particles.
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4 Solution algorithm

4.1 Algorithm for incompressible viscous flow

To solve the incompressible viscous flow, a semi-implicit algorithm is used in the
MPS method. At first, predictions of the particle’s velocity vvv ∗i and position rrr ∗i are
carried out explicitly by using viscosity and external forces terms of the momentum
conservation (Eq. 2) [Ikeda, Koshizuka, Oka, Park, and Sugimoto (2001)]:

vvv ∗i = vvv n
i +∆ t

(
ν∇

2vvv n
i +fff i

)
(16)

rrr ∗i = rrr n
i +∆ tvvv ∗i (17)

As the fluid density ρ is proportional to the particle number density ni, by applying
the conservation law of mass (Eq. 1), we have:

∇ ·vvv ′i =−
1

∆ t
ρ

n+1
i −ρ ∗i

ρ0 =− 1
∆ t

n n+1
i −n ∗i

n0 (18)

where n ∗i is the particle number density calculated after the movement of particles
in the first prediction step and the deviation of the velocity vvv

′
i is owing to the

implicit pressure term in the momentum conservation equation:

vvv
′
i =−

∆ t
ρ

∇P n+1
i (19)

By substituting Eq. 18 into Eq. 19, and considered incompressible flow, i.e. nn+1
i =

n0, the Poisson equation for the pressure can be written as:

∇
2P n+1

i =
ρ

∆ t2
n 0

i −n ∗i
n0 (20)

In this work, it is assumed that density is a linear function of pressure:

nn+1
i
n0

=
ρ

n+1
i
ρ0 = 1+

P n+1
i
ρc2 (21)

where c is the sound velocity. By substituting Eq. 21 into Eq. 20, we have:

∇
2P n+1

i =
ρ

∆ t2

(
n 0

i −n ∗i
n0 +αP n+1

i

)
(22)

where α = 1/(ρc2).

Assuming a weakly compressible model of the Eq. 22, the numerical solution of the
system of equation is faster than the Eq. 20 in each time step, improving the compu-
tational efficiency. Compared with incompressible results, the weakly compressible
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condition has a neglectable effect on the accuracy of the results [Shakibaeinia and
Jin (2010)].

Also, as the pressure computational is relatively sensitive to small variation of n ∗i ,
a relaxation coefficient κ is used for improving stability of a computation method
and Eq. 22 is rewritten as:

∇
2P n+1

i −αP n+1
i = κ

ρ

∆ t2
n 0

i −n ∗i
n0 (23)

The value of κ = 0.01 is used in this study.

From Eq. 19, the velocity vvv n+1
i of a particle i is updated and the position rrr n+1

i can
be obtained by:

rrr n+1
i = rrr n

i +∆ tvvv n+1
i (24)

4.2 Algorithm for elastic solid

For elastic solid, an explicit algorithm is used in the MPS method [Chikazawa,
Koshizuka, and Oka (2001)]; [Song, Koshizuka, and Oka (2003)]. First the dis-
placement vector uuui j between particles i and its neighbor j is calculated by:

uuui j = rrri j−RRRi jrrr
0
i j (25)

where RRRi j is the rotation matrix and rrr 0
i j the initial position vector.

The displacement vector can be divided into normal (uuui j)n and shear (uuui j)s com-
ponents:

(uuui j)n =
(uuui j ·rrri j)

|rrri j|
rrri j

|rrri j|
(26)

(uuui j)s =uuui j− (uuui j)n (27)

Thus the normal εεεi j and shear γγγ i j strain vectors can be calculated by:

εεεi j =
(uuui j)n

|rrr 0
i j|

(28)

γγγ i j =
(uuui j)s

|rrr 0
i j|

(29)

The volumetric deformation tr(εεε) is described using the divergence of displace-
ment vector:

tr(εεε) = ∇ · (uuui j) =
d
n0

i
∑
j 6=i

uuui j ·rrri j

|rrr 0
i j||rrri j|

w(|rrr 0
i j|) (30)
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From the strain vectors, the normal stress vector σσσi j, shear stress vector τττ i j and
isotropic pressure pi are calculated as:

σσσi j = 2µεεεi j (31)

τττ i j = 2µγγγ i j (32)

pi =−λ tr(εεε) (33)

For elastic solid, a modified differential operators is used in governing equation. A
function φ is calculated in the intermediate position between two particles i and j,
with the variable rrr j replaced by (rrri +rrr j)/2, and the gradient operator (Eq. 9) is
rewriting as:

∇φi =
2d
n0

i
∑
j 6=i

φi j

|rrr j−rrri|2
(rrr j−rrri)w(|rrri j|) (34)

where φi j is the function calculated in the intermediate position. Similar of the
gradient operator, the divergence operator can be calculated by:

∇ ·φφφi =
2d
n0

i
∑
j 6=i

(φφφi j) · (rrr j−rrri)

|rrr j−rrri|2
w(|rrri j|) (35)

Applying Eq. 5, translation of particles can be obtained from divergence of the
displacement (normal and shear stress vector) and isotropic pressure gradient:

ρ

(
∂vvvi

∂ t

)
n
=

2d
n0

i
∑
j 6=i

σσσi j

|rrr 0
i j|

w(|rrr 0
i j|) (36)

ρ

(
∂vvvi

∂ t

)
s
=

2d
n0

i
∑
j 6=i

τττ i j

|rrr 0
i j|

w(|rrr 0
i j|) (37)

ρ

(
∂vvvi

∂ t

)
p
=

2d
n0

i
∑
j 6=i

pi j

|rrr 0
i j|
rrri j

|rrri j|
w(|rrr 0

i j|) (38)

where pi j = (pi + p j)/2 is the average pressure.

Velocity vvv n+1
i and position rrr n+1

i of a particle i can be explicitly calculated as:

vvv n+1
i = vvv n

i +∆ t

[(
∂vvvi

∂ t

)
n
+

(
∂vvvi

∂ t

)
s
+

(
∂vvvi

∂ t

)
p

]n

(39)

rrr n+1
i = rrr n

i +∆ tvvv n+1
i (40)
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To ensure the conservation of angular moment, the force due the shear stress vector
is taken in account for the rotation of particles, in order to cancel the torque between
each pair of particles. The force can be calculated as Eq. 41 and the moment can
be written as Eq. 42.

FFF i j =
2d ld

0

n0
i

τττ i j

|rrr 0
i j|

w(|rrr 0
i j|) (41)

MMM i j =−(rrr j−rrri)×FFF i j (42)

If the moment of inertia Ii is constant along the time, the angular acceleration vector
of particles can be calculated as:

Ii
∂ωωωi

∂ t
=−1

2 ∑
j 6=i
MMM i j (43)

where the moment of inertia Ii is calculated as:

Ii = m
l2
0
6
=

ρl2+d
0
6

(44)

Finally, angular velocity ωωω n+1
i and rotation θθθ n+1

i of a particle i are explicitly cal-
culated as:

ωωω n+1
i =ωωω n

i +∆ t
(

∂ωωωi

∂ t

)n

(45)

θθθ n+1
i = θθθ n

i +∆ tωωω n+1
i (46)

4.3 Boundary Conditions

In order to identify free surface particles, the particle number density and the num-
ber of neighboring particles are used as checking parameters. A particle is defined
as free surface particle and its pressure is set to zero when its particle number den-
sity ni is smaller than β1n0 and its number of neighboring particles is smaller than
β2N0, where N0 is the number of neighboring particles inside the effective radius
re in the initial distribution. The value of β1 used in this study is 0.97 and β2 is
0.85, based on Lee, Park, and Kim (2010). This double check technique improved
the effectiveness of the free surface particle detection, which results in more stable
computation of the fluid pressure.

Solid wall boundary condition is represented by three layers of fixed particles. The
particles that form the layer in contact to the fluid are denominated wall particles,
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of which the pressure is computed by solving Poisson equation for the pressure
(Eq. 23), together with the fluid particles. The particles that forms two other layers
are denominated dummy particles. Dummy particles are use to assure the correct
calculation of the particle number density of the wall particles. Pressure is not
calculated in the dummy particles.

As the boundary condition for a fixed end of elastic solid, the motions of the parti-
cles are constrained by setting the displacements to zero.

4.4 Brittle fracture

A simplified condition of brittle fracture is implemented in order to simulate multi-
body dynamics with rupture of brittle solids. When the strain εi j between particles i
and j is greater than a critical value εmax, the weight function between the particles
i and j subjected to fracture is set to zero, Eq. 47. Thus the connection between the
particles is lost, characterizing the brittle fracture point of the solid.

εi j > εmax =⇒ w(|rrri j|) = 0 (47)

To avoid problems of overlapping among fractured particles, that subsequently can
collide each other, a more generic contact detection algorithm is proposed herein.

Initially the particles that forms the solids are divided into surface and internal
particles. Similar to the condition of free surface for fluid [Koshizuka and Oka
(1996)], the particle number density ni is used as criterion. If the value of ni is lower
than a certain value, Eq. 48, the particle is classified as a solid surface particle.

ni < nmax
i −nc (48)

where nmax
i is the maximum value of particle number density and nc is a constant

value. In the present work nc = 0.5 is adopted.

This reclassification of the solid particle in surface particle and internal particle is
carried out in every time step.

In practice, for each particle i, the weight functions between the particle i and its
initial neighboring particles are stored in a matrix, together the index of neighbor
particles. In case of fracture of a internal solid particle i and its neighbor j, since
the distance between them increases, their particle number density decrease. As a
result, they are reclassified as surface particles, as shown in Fig. 1, and the weight
function between the particles i and j is set to zero. As rebinding of fractures
surfaces is not considered in the present study, once a solid particle is classified as
surface one, it is not reversible.

In order to check the occurrence of collision between a pair of surface particles,
the relationship and the weight function between the particles are checked first. If
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Figure 1: Surface particles (red) and internal particles (orange) during fracture.

the pair of surface particles are neighbors and the weight function is different of
zero, it means that they are adjacent particles on the surface of a solid. Then the
pair of particles are treated like internal particles and no special treatment for the
collision is performed. In case the particles are neighbors and the weight between
them is zero, the interaction between the pair of particles is taken into account
when the distance between them is less than the initial distance l0, i.e., when they
are in compression. This results in repulsive forces acting between the particles.
By applying this collision check and treatment, new surface particles associated to
the newly formed solid surface due fracture can be detected dynamically, so that
overlapping of surface particles belonging to different surfaces can be avoided, as
well as overcoming the problem of misdetection of a pair of adjacent particles of a
solid surface as particles that belong to two distinct surfaces in collision.

4.5 Fluid-structure interaction

In case of fluid-structure interaction, a partitioned weak coupling is adopted. When
solving the fluid motion, the solid surface particles are treated like a fluid parti-
cle and their pressures are computed by solving Poisson equation for the pressure
(Eq. 23), together with the fluid particles. After that, the calculated pressure field of
the solid surface particles and its neighboring fluid particles is taken into account to
determine the motion of elastic solid by rewritten the momentum (Eq. 5) for solid
surface particles as:

ρ
Dvvv
Dt

= ∇ · (σσσ− pIII)+bbb+FFF f s (49)

where the body force vector FFF f s is calculated using the average pressure of the
particles i and j∗ as:

FFF f s =
2d
ñi

∑
j∗6=i

Pi j∗
|rrr j∗−rrri|2

(rrr j∗−rrri)w(|rrri j|) (50)
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where Pi j∗ = (Pi +Pj∗)/2 and j∗ represents fluid and solid surface particles in the
neighborhood of the particle i, excluding the dummy particles.

ñi is the particle number density computed considering only the neighborhood fluid
and solid surface particles. For a solid surface particle i, ñi can be obtained by
subtracting its initial particle number density calculated considering only solid par-
ticles (n0

i )solid from the particle number density calculated considering all of its
neighbor particles (ni)total:

ñi = (ni)total− (n0
i )solid (51)

Fig. 2 shows the coupling between the fluid and solid particles. Only fluid and solid
surface particles (blue + brown) within the neighborhood range re are considered
for the calculation of the forceFFF f s on the solid surface particles (brown) while the
solid particles (orange) within the neighborhood range re are neglected.

Figure 2: The interaction among fluid, solid surface and solid particles.

On the other hand, to complete the coupling between solid and fluid, the displace-
ment and velocity of elastic solid are used as the boundary conditions of the fluid.
This procedure is repeated for each time step.

4.6 Numerical stability

In order to avoid numerical instabilities, stability criteria should be satisfied in the
simulations. An important stability criterion utilized in Computational Fluid Dy-
namics is the CFL condition [Courant, Friedrichs, and Levy (1967)]. The CFL
condition adopted in this work is given by the following equation:

∆ t <
l0C
|v|max

, 0 <C ≤ 1 (52)

where, ∆ t is the time step, |v|max the maximum velocity and C the Courant number.
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A relevant aspect of the coupling algorithm is the time steps of fluid ∆ t f and solid
∆ ts. The transient response for each material has a different time scales and in
most cases the CFL condition requires a much smaller time step for elastic solid
than incompressible flow. To avoid the use of very small time step for the fluid
domain, which is much more time consuming due to the solution of the system of
Poisson equation for the pressure (Eq. 22), and increasing computational cost, a
sub-cycling algorithm of elastic solid is adopted during the simulation.

5 Results and discussions

In order to evaluate the performance of the method, several example simulations
are carried out. First, a cantilever beam is simulated and the maximum displace-
ment and the natural frequency obtained by the numerical simulation are compared
to analytical results, allowing to verify the convergence of the method. After that,
the simulations of a collision between two elastic solids are carried out without
and with the proposed contact detection algorithm to show the improvement when
involving brittle fracture. Finally, two FSI problems are analyzed. The first case
presents a dam-break problem, where the collapsing water column hits a fixed elas-
tic plate and horizontal displacements obtained by the numerical simulations are
compared with results available in the literature, obtained by other numerical meth-
ods. The second case consists of liquid sloshing inside a rectangular tank with a
fixed elastic plate. For this case two filling levels are considered. The horizontal
displacements of the elastic plate obtained by numerical simulations are compared
to the results provided by the experiment performed by Idelsohn, Marti, Souto-
Iglesias, and Onate (2008b).

5.1 Cantilever beam

As a simple dynamic case, the first mode shape of a cantilever beam of length
l = 2.0 m with square cross section b= 0.1 m, is considered. The material properties
are density ρ = 1000 kg/m3, Young’s modulus E = 100 MPa and Poisson’s ratio
ν = 0.3. In order to investigate the convergence of the method, different distance of
particles (dp) are considered d p= 20.00, 10.00, 5.00, 2.50 and 1.25 mm, with ratio
b/d p = 5, 10, 20, 40 and 80. All cases are simulated with time step ∆ t = 10−6 s.
The computed results are compared to analytical results of maximum amplitude
∆max and natural frequency f , approximated by Eq. 53 and Eq. 54, respectively.

∆max =
ρgAl4

8EI
(53)

f =
1.8752

2π

√
EI

ρAl4 (54)
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where A is the cross section area.

The plotted results of displacement can be seen in the graphic presented in Fig. 3
and the results of natural frequency, maximum amplitude and discrepancy between
computed results and analytical results of maximum amplitude, for the first mode
shape, are shown in Tab. 1.

Figure 3: Maximum deflection of the cantilever beam.

Table 1: Results of the convergence test for the cantilever beam.

Model b/d p f (Hz) ∆max (cm) Discrepancy (%)
MPS (d p = 20.00 mm) 5 1.27 44.70 5.07
MPS (d p = 10.00 mm) 10 1.27 45.30 3.80
MPS (d p = 5.00 mm) 20 1.27 45.90 2.53
MPS (d p = 2.50 mm) 40 1.27 46.27 1.74
MPS (d p = 1.25 mm) 80 1.27 46.45 1.36

Analytical solution - 1.27 47.09 -

Results of natural frequency obtained by the simulations show excellent agreement
compared with the analytical solution. The computed maximum amplitude shows
a good agreement with analytical solutions, especially for d p = 1.25 mm, ratio
b/d p = 80, with relative discrepancy about 1.36%. Also, the results show conver-
gence of the numerical approach for the dynamic simulation. Even for the roughest
case of the relatively long elastic beam considered herein, with b/d p = 5, the dis-
crepancy of the maximum deflection is about 5.00%.
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5.2 Brittle fracture simulation

Fig. 4 shows initial conditions of the case of collision between two elastic solids
involving brittle fracture. A cube (magenta) 0.5 x 0.5 x 0.5 m with initial velocity
vy = −15 m/s collides a block (blue) 1.0 x 0.25 x 2.0 m initially without motion.
The material properties of the cube are density ρ = 1000 kg/m3, Young’s modulus
E = 6 MPa and Poisson’s ratio ν = 0.3 and the material properties of the block
are density ρ = 1000 kg/m3, Young’s modulus E = 10 MPa and Poisson’s ratio
ν = 0.3. The simulation parameters are particle distance d p = 0.05 m and time
step ∆ t = 10−6 s. The critical distance of fracture is εmax = 0.2.

Figure 4: Initial conditions of the case of collision.

Fig. 5 gives the snapshots of the relevant instants of the simulations. The left and
the right columns show, respectively, fracture without and with the proposed con-
tact detection. The collision of two elastic solids occur at 0.07 s. After the fracture
occurs in the left side of the block at 0.60 s, the collision between the newly formed
fracture surfaces is detected at 0.70 s. The repulsion due to collision between par-
ticles of fractured surface is visible in the case with contact detection at 1.00 s. As
a result, the parts of block move away from each other. Meanwhile as shown in the
left column of Fig. 5, if collision detection between the surface created by fracture
is not performed, a new and stronger collision between the fractures surfaces occurs
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at 1.70 s. Due of the absence of collision detection and treatment of the fracture
surfaces, the simulation diverged owing to the overlap of the particles.

0.07 s

0.60 s

0.70 s

1.00 s

1.70 s

1.90 s
Figure 5: Snapshots of the main instants of the fracture due to collision between a
cube and a block. Left: simulation carried out without the contact detection; Right:
simulation carried out with the contact detection.



104 Copyright © 2013 Tech Science Press CMES, vol.95, no.2, pp.87-118, 2013

5.3 Dam-break on elastic plate

A dam-break problem, similar to the case investigated by Koshizuka, Tamako, and
Oka (1995) using a rigid obstacle, is simulate with a fixed elastic plate, allowing
the investigation of interaction between fluid and elastic solid. The initial config-
uration of the problem is shown in Fig. 6. The dimensions of elastic plate, which
is highlighted in orange, are 12.0 x 80.0 mm. The physical properties of the elastic
solid are: density ρ = 2500 kg/m3, Young’s modulus E = 1 MPa and Poisson’s
ratio v = 0.0. The physical properties of the fluid are: density ρ = 1000 kg/m3 and
kinematic viscosity ν = 10−6 m2/s. As simulation parameters, the values in Tab. 2
are considered. The simulations are performed for 2 s.

Table 2: Dam-break on elastic plate. Simulation parameters.

d p (mm) ∆ t f luid (s) ∆ tsolid (s) Fluid particles Solid particles
3.00 10−4 10−6 4656 108
1.50 10−4 10−6 19208 440
0.50 10−5 10−6 170527 3840

Figure 6: Dimensions and initial conditions of dam-break on elastic plate.

Fig. 7, Fig. 8 and Fig. 9 show the time history of the horizontal displacement of
the top of the elastic plate obtained by the present simulation with d p = 3.00, 1.50
and 0.50 mm, respectively, and the results of the others methods available in the
literature [Walhorn, Kolke, Hubner, and Dinkler (2005); Marti, Idelsohn, Limache,
Calvo, and D’Elia (2006); Idelsohn, Marti, Limache, and Onate (2008a); Aman-
ifard, Hesan, and Rahbar (2011)]. Comparing the result obtained by the present
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simulation with those from other methods, it may be noted that initially all of the
results has the same tendency. The maximum displacement of 4.1 cm of the present
simulation is almost identical to that obtained by FEM and SPH, but slightly lower
than the results from PFEM computations. For d p = 3.00 mm, after the instant
0.4 s the displacement obtained by the present simulation remains in 2.1 cm, higher
than the results of the others methods. From 0.6 s the oscillating behavior of the
curve resembles the curve of SPH, but with differences in displacement amplitudes.
For d p = 1.50 mm, after the instant 0.4 s the displacement obtained by the present
simulation remains in 1.7 cm which is similar to the results from SPH and PFEM
simulations. From 0.6 s, the curve shows less vibration cycles and the obtained re-
sult is relatively close to the SPH result. Finally, the simulation with d p = 0.50 mm
presents distinct decreasing curve from the other two simulations without concav-
ity between the instants 0.3 s and 0.6 s, reaching a value of 1.7 cm at the instant
0.6 s. After the instant 0.6 s, two peaks of −1.1 cm followed by a peak of 1.1 cm
and another peak −0.9 cm are computed. Each numerical method exhibit slightly
distinct oscillating behavior and the displacement calculated by the present simu-
lation based on the MPS method shows less vibration cycles. Also, the obtained
result is relatively close to the SPH result. In addition to this, the oscillations tend
to a point of equilibrium between fluid and structure due to the damping of elastic
plate on the fluid.

Figure 7: Horizontal displacement of
the elastic plate d p = 3.00 mm.

Figure 8: Horizontal displacement of
the elastic plate d p = 1.50 mm.

Fig. 10 shows a sequence of frames from the simulation obtained by SPH [Rafiee
and Thiagarajan (2009)], PFEM [Idelsohn, Marti, Limache, and Onate (2008a)] and
the simulations carried in the present study. It can be observed a good agreement
between the methods. As there are no experimental results of the present case,
taking into account the physics of the problem, the results show that, compared
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Figure 9: Horizontal displacement of the elastic plate d p = 0.50 mm.

with the methods currently available, the present approach is also able to reproduce
the main behaviors of the problems involving free surface flow and elastic solids.

5.4 Sloshing with an elastic plate

The case consists of a rectangular tank partially filled with oil, and an elastic plate
fixed at the midpoint of the tank bottom. It is a 2D experiment performed by Idel-
sohn, Marti, Souto-Iglesias, and Onate (2008b). The dimensions and initial con-
figuration of the experiment are illustrated in Fig. 11. The tank is subjected to a
oscillatory motion of amplitude α = 4◦, around the midpoint of the bottom, and
period T obtained by the following equation:

T = 2π

(√
πg
L

tanh
(

πHL

L

))−1

(55)

where L is the tank length and HL is the filling level.

Two filling levels are considered and the horizontal displacements of the elastic
plate obtained by numerical simulations are compared to the experimental mea-
surements. The horizontal displacement (x) of the elastic plate is relative to the
local reference frame fixed to the tank, Fig. 12.

It should be noted the initial differences between the experiment and numerical
simulation due to the inertia of the tank. In the experiment, the transition from
initial static state to harmonic motion occurs gradually, while in the numerical sim-
ulation, this transition is instantaneous. Thus, in the early stages, the experimental
measurement and the numerical results are different. In order to compare the results
disregarding the transient responses, the results obtained by the present simulation
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Figure 10: Dam-break on elastic plate: comparison between SPH [Rafiee and Thia-
garajan (2009)], PFEM [Idelsohn, Marti, Limache, and Onate (2008a)] and present
MPS (0.14 s, 0.16 s, 0.26 s, 0.34 s, 0.42 s, 0.62 s, 0.80 s, 1.48 s).
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Figure 11: Dimensions and initial
conditions of sloshing.

Figure 12: Local reference frame
fixed to the tank.

are shifted in time to match the first peak of the experimental and numerical results
after achieving steady state.

5.4.1 Elastic plate immersed in low filling

The tank is filled to HL = 57.4 mm and subjected to a oscillatory motion of period
T = 1.646 s. The dimensions of elastic plate, which is highlighted in orange color,
Fig. 11, are 4.0 x 57.4 mm and the physical properties are: density ρ = 1100 kg/m3,
Young’s modulus E = 6 MPa and Poisson’s ratio v = 0.49. The physical properties
of the fluid are: density ρ = 917 kg/m3 and kinematic viscosity ν = 5x10−5 m2/s.
As simulation parameters, the values in Tab. 3 are considered. The simulations are
performed for 10 s.

Table 3: Elastic plate immersed in low filling. Simulation parameters.

d p (mm) ∆ t f luid (s) ∆ tsolid (s) Fluid particles Solid particles
1.00 10−5 10−6 34485 228
0.80 10−5 10−6 54432 360
0.50 10−5 10−7 139150 920

Fig. 13 gives the computed time history and the measured results of the horizontal
displacement of the top of the elastic plate. Due to the differences in excitation in
the early stages of the experiment and numerical simulation, as mentioned above,
the experimental values have a displacement of 0.12 cm at 0.48 s and −0.47 cm at
0.92 s, while the numerical result presents a displacement of−0.8 cm at 1.00 s. Af-
ter the instant 1.00 s, the period of oscillation of the elastic plate is, approximately,
1.70 s for both experimental values and numerical results. Between the instants
1.00 s and 7.00 s, the measured magnitude of the crest and valley of the displace-
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ment are different with respect to undeformed condition of the elastic plate. On the
other hand, for the computed result, this symmetry is observed.

Figure 13: Horizontal displacement of the elastic plate immersed in low filling.
Results of present MPS simulations and the experimental measurements [Idelsohn,
Marti, Souto-Iglesias, and Onate (2008b)].

Table 4: Elastic plate immersed in low filling. Results of present MPS simulations
and the experimental measurements [Idelsohn, Marti, Souto-Iglesias, and Onate
(2008b)].

d p (mm) Experimental (cm) Present MPS (cm) Error (%)
1.00 1.44 1.83 27.08
0.80 1.44 1.84 27.78
0.50 1.44 1.71 18.75

The error of the computed is evaluated between 1.72 s and 6.76 s, which is the
interval when experiment reached the steady state and remains stable. The error
is defined as the ratio between the modulus of the difference between average am-
plitudes of the experimental measurement and numerical simulation by average
amplitudes obtained experimentally. Tab. 4 shows the errors for particle distance
d p = 1.00, 0.80 and 0.50 mm. When particle distance are 1.00 and 0.80mm, the
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Figure 14: Elastic plate immersed in low filling. Comparison between present MPS
simulations and experiment [Idelsohn, Marti, Souto-Iglesias, and Onate (2008b)]
(0.90 s, 1.20 s, 1.67 s, 2.07 s, 2.47 s, 2.87 s, 3.33 s, 3.76 s).
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error is relatively large achieving 27%. However, for particle distance 0.50mm, the
error reduces to 18.75%.

Fig. 14 shows a sequence of frames from the present MPS simulations and experi-
ment. It can be observed a similar behavior between the experiment and the present
MPS simulations.

5.4.2 Elastic plate immersed in high filling

The tank is filled to HL = 114.8 mm and subjected to a oscillatory motion of pe-
riod T = 1.211 s. The dimensions of elastic plate, which is highlighted in or-
ange, Fig. 11, are 4.0 x 114.8 mm and the physical properties are: density ρ =
1100 kg/m3, Young’s modulus E = 6 MPa and Poisson’s ratio v = 0.49. The phys-
ical properties of the fluid are: density ρ = 917 kg/m3 and kinematic viscosity
ν = 5x10−5 m2/s. As simulation parameters, the values in Tab. 5 are considered.
The simulations are performed for 10 s.

Table 5: Elastic plate immersed in high filling. Simulation parameters.

d p (mm) ∆ t f luid (s) ∆ tsolid (s) Fluid particles Solid particles
1.00 10−5 10−6 69920 460
0.80 10−5 10−6 108864 720
0.50 10−5 10−7 278300 1840

Figure 15: Horizontal displacement of the elastic plate immersed in high filling.
Results of present MPS simulations and the experimental measurements [Idelsohn,
Marti, Souto-Iglesias, and Onate (2008b)].
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Figure 16: Elastic plate immersed in high filling. Comparison between present
MPS simulations and experiment [Idelsohn, Marti, Souto-Iglesias, and Onate
(2008b)] (1.10 s, 1.34 s, 1.74 s, 1.98 s, 2.30 s, 2.54 s, 2.94 s, 3.18 s).
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Table 6: Elastic plate immersed in high filling. Results of present MPS simulations
and the experimental measurements [Idelsohn, Marti, Souto-Iglesias, and Onate
(2008b)].

d p (mm) Experimental (cm) Present MPS (cm) Error (%)
1.00 14.65 17.24 17.68
0.80 14.65 17.22 17.54
0.50 14.65 16.86 15.08

Fig. 15 shows the computed time history and the measured results of the horizontal
displacement of the top of the elastic plate. Similar to the former low filling case,
computed results show transient behavior different from the experimental measure-
ment because the inertia of the system is not considered in the numerical simula-
tion. After the instant 1.00 s, the oscillation of the elastic plate becomes stable with
a period of approximately 1.20 s for both experimental measurement and numer-
ical results. The experimental measurement shows peak values around −7.52 cm
and 7.38 cm, while the numerical result presents peak values around −8.70 cm
and 8.70 cm. Both experiment and numerical results show that the plate oscillates
symmetrically with respect to initial undeformed position of the elastic plate.

The errors evaluated from 2.44 s to 9.08 s are given in Tab. 6, for particle distance
d p = 1.00, 0.80 and 0.50 mm. In relation to the former low filling case, the error re-
duced significantly and the convergence of the numerical results can also observed.

Fig. 16 shows a sequence of frames from the present MPS simulations and experi-
ment. As in the previous case, it is again observed a similar behavior between the
experiment and the present MPS simulations.

6 Concluding remarks

A computer code for the modeling and simulation of brittle fracture and hydroe-
lastic problems has been implemented in the present work. A more generic con-
tact detection algorithm that takes into account the presence of the solid surfaces
generated by brittle fracture is proposed. To solve hydroelastic problems involv-
ing free surface, a partitioned coupling between fluid and isotropic elastic solid is
adopted. Explicit and semi-implicit time integration algorithms are used for elastic
solid and fluid domains, respectively. Matching of the time steps in both domains is
done by sub-cycling technique to improve the computational efficiency. A dynamic
case of slender cantilever beam is analyzed and the convergence of the method
is verified. After that, a collision between two elastic solids with brittle fracture
and further collision between the fragments is simulated showing the improvement
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achieved. Finally, to validate the fluid-structure interaction simulation approach,
two FSI problems are simulated and compared with other computational methods
or experimental results found in literature. Comparisons with available numerical
results of a dam breaking on an elastic plate are performed and it can be observed a
good agreement between the results of present method and another methods, taking
into account the physics of the problem. In the second case, available experimen-
tal measurements of the interactions between liquid sloshing, and an elastic plate
are compared with numerical results. For the low filling case, it was noted signifi-
cant errors in displacements, while in the high filling case the improvement on the
accuracy can be observed. On the other hand, the convergence of the numerical
results can be observed in the both filling cases. The comparisons of the results
showed the effectiveness of the present approach to reproduce the main behaviors
of the problems involving fracture of brittle materials and interaction between free
surface flow and elastic solids.

Acknowledgement: This work had financial support from CAPES and the au-
thors are thankful to Petrobras for financial support on the development of the sim-
ulation system based on MPS method.

References

Amanifard, N.; Hesan, M.; Rahbar, B. (2011): An SPH approach for fluid-
hypoelastic structure interactions with free surfaces. In Proceedings of the World
Congress on Engineering.

Antoci, C.; Gallati, M.; Sibilla, S. (2007): Numerical simulation of fluid-
structure interaction by SPH. Computers & Structures, vol. 85, no. 11–14, pp.
879–890.

Bellezi, C. A.; Cheng, L. Y.; Nishimoto, K. (2013): A numerical study of the
effects of bow shape on green water phenomenon. In Proceedings of the Twenty-
third (2013) International Offshore and Polar Engineering - ISOPE2013.

Bonet, J.; Lok, T.-S. L. (1999): Variational and momentum preservation aspects
of smooth particle hydrodynamic formulations. Computer Methods in Applied
Mechanics and Engineering, vol. 180, no. 1–2, pp. 97–115.

Campbell, J. C.; Vignjevic, R.; Patel, M.; Milisavljevic, S. (2009): Simulation
of water loading on deformable structures using SPH. Computer Modeling in
Engineering & Sciences, vol. 49, no. 1, pp. 1–21.

Chen, F.; Wang, C.; Xie, B.; Qin, H. (2013): Flexible and rapid animation of
brittle fracture using the smoothed particle hydrodynamics formulation. Computer
Animation and Virtual Worlds, vol. 24, no. 3–4, pp. 215–224.



Brittle Fracture and Hydroelastic Simulations 115

Cheng, L. Y.; Gomes, D. V.; Yoshino, A. M.; Nishimoto, K. (2011): Numerical
simulation of oil leakage, water flooding and damaged stability of oil carrier based
on moving particle semi-implicit (mps) method. In Second International Confer-
ence on Particel-based Methods - Fundamentals and Applications - PARTICLES
2011.

Cheng, L. Y.; Oliveira, L. H.; Favero, E. H.; Oliveira, I. B.; Gonçalves, O. M.
(2013): Simulation of drainage system in building using particle-based numerical
method. In 39th International Symposium of CIB W062.

Chhatkuli, S.; Koshizuka, S.; Uesaka, M. (2009): Dynamic tracking of lung
deformation during breathing by using particle method. Modelling and Simulation
in Engineering.

Chikazawa, Y.; Koshizuka, S.; Oka, Y. (2001): A particle method for elas-
tic and visco-plastic structures and fluid-structures interactions. Computational
Mechanics, vol. 27, no. 2, pp. 97–106.

Courant, R.; Friedrichs, K.; Levy, H. (1967): On the partial difference equations
of mathematical physics. IBM Journal of Research and Development, vol. 11, no.
2, pp. 215–234.

Das, R.; Cleary, P. (2010): Effect of rock shapes on brittle fracture using
smoothed particle hydrodynamics. Theoretical and Applied Fracture Mechanics,
vol. 53, no. 1, pp. 47–60.

Gingold, R. A.; Monagham, J. J. (1977): Smoothed particle hydrodynamics:
theory and application to non-spherical stars. Monthly Notices of the Royal Astro-
nomical Society, vol. 181, pp. 375–389.

Guo, Y. J.; Nairn, J. A. (2006): Three-dimensional dynamic fracture analysis
using the material point method. Computer Modeling in Engineering & Sciences,
vol. 16, no. 3, pp. 141–155.

Harlow, F. H. (1964): The particle-in-cell computing method for fluid dynamics.
Methods in Computational Physics, vol. 3, pp. 319–343.

Idelsohn, S. R.; Marti, J.; Limache, A.; Onate, E. (2008a): Unified la-
grangian formulation for elastic solids and incompressible fluids: application to
fluid-structure interaction problems via the PFEM. Computer Methods in Applied
Mechanics and Engineering, vol. 197, no. 19–20, pp. 1762–1776.

Idelsohn, S. R.; Marti, J.; Souto-Iglesias, A.; Onate, E. (2008b): Interaction
between an elastic structure and free-surface flows: experimental versus numerical
comparisons using the PFEM. Computational Mechanics, vol. 43, no. 1, pp. 125–
132.



116 Copyright © 2013 Tech Science Press CMES, vol.95, no.2, pp.87-118, 2013

Idelsohn, S. R.; Onate, E. (2006): To mesh or not to mesh. That is the question...
Computer Methods in Applied Mechanics and Engineering, vol. 195, no. 37–40,
pp. 4681–4696.

Idelsohn, S. R.; Onate, E.; Pin, F. D. (2004): The particle finite element method:
a powerful tool to solve incompressible flows with free-surfaces and breaking
waves. International Journal for Numerical Methods in Engineering, vol. 61,
no. 7, pp. 964–989.

Ikeda, H.; Koshizuka, S.; Oka, Y.; Park, H. S.; Sugimoto, J. (2001): Numerical
analysis of jet injection behavior for fuel-coolant interaction using particle method.
Journal of Nuclear Science and Technology, vol. 38, no. 3, pp. 174–182.

Ishihara, D.; Yoshimura, S. (2005): A monolithic approach for interaction of
incompressible viscous fluid and an elastic body based on fluid pressure poisson
equation. International Journal for Numerical Methods in Engineering, vol. 64,
no. 2, pp. 167–203.

Isshiki, H. (2011): Discrete differential operators on irregular nodes (DDIN).
International Journal for Numerical Methods in Engineering, vol. 88, no. 12, pp.
1323–1343.

Kakuda, K.; Ushiyama, Y.; Obara, S.; Toyotani, J.; Matsuda, S.; Tanaka, H.;
Katagiri, K. (2010): Flow simulations in a liquid ring pump using a particle
method. Computer Modeling in Engineering & Sciences, vol. 66, no. 3, pp. 215–
226.

Kim, K.-S.; Lee, B.-H.; Kim, M.-H.; Park, J.-C. (2011): Simulation of sloshing
effect on vessel motions by using MPS (moving particle simulation). Computer
Modeling in Engineering & Sciences, vol. 79, no. 3, pp. 201–221.

Koshizuka, S.; Ikeda, H.; Oka, Y. (1999): Numerical analysis of fragmentation
mechanisms in vapor explosions. Nuclear Engineering and Design, vol. 189, no.
1–3, pp. 423–433.

Koshizuka, S.; Oka, Y. (1996): Moving-particle semi-implicit method for frag-
mentation of incompressible fluid. Nuclear Science and Engineering, vol. 123, no.
3, pp. 421–434.

Koshizuka, S.; Tamako, H.; Oka, Y. (1995): A particle method for incom-
pressible viscous flow with fluid fragmentation. Computational Fluid Dynamics
Journal, vol. 4, no. 1, pp. 29–46.

Lee, B.-H.; Jeong, S.-M.; Hwang, S.-C.; Park, J.-C.; Kim, M.-H. (2013): A
particle simulation of 2-D vessel motions interacting with liquid-sloshing cargo.
Computer Modeling in Engineering & Sciences, vol. 91, no. 1, pp. 43–63.



Brittle Fracture and Hydroelastic Simulations 117

Lee, B.-H.; Park, J.-C.; Kim, M.-H. (2010): Two-dimensional vessel-
motion/liquid-sloshing interactions and impact loadings by using a particle method.
In Proceedings of the ASME 2010 29th International Conference on Ocean, Off-
shore and Arctic Engineering - OMAE2010.

Lee, B.-H.; Park, J.-C.; Kim, M.-H.; Hwang, S.-C. (2011): Moving particle
simulation for mitigation of sloshing impact loads using surface floaters. Computer
Modeling in Engineering & Sciences, vol. 75, no. 2, pp. 89–112.

Lucy, L. (1977): A numerical approach to the testing of the fission hypothesis.
Astronomical Journal, vol. 82, pp. 1013–1024.

Marti, J.; Idelsohn, S. R.; Limache, A.; Calvo, N.; D’Elia, J. (2006): A
fully coupled particle method for quasi-incompressible fluid-hypoelastic structure
interactions. Asociacion Argentina de Mecanica Computacional, vol. 25, no. 9,
pp. 809–827.

Motezuki, F. K.; Cheng, L. Y. (2013): Coupled particle based simulation of con-
crete casting and thermal diffusion. In Proceedings of the Fourteenth International
Conference on Civil, Structural and Environmental Engineering Computing.

Nagayama, K.; Honda, K. (2012): 3d particle simulations of deformation of red
blood cells in micro-capillary vessel. Fluid Dynamics, Computational Modeling
and Applications, pp. 463–474.

Park, S.; Jeun, G. (2011): Coupling of rigid body dynamics and moving parti-
cle semi-implicit method for simulating isothermal multi-phase fluid interactions.
Computer Methods in Applied Mechanics and Engineering, vol. 200, no. 1–4, pp.
130–140.

Rafiee, A.; Thiagarajan, K. P. (2009): An SPH projection method for simulating
fluid-hypoelastic structure interaction. Computer Methods in Applied Mechanics
and Engineering, vol. 198, no. 33–36, pp. 2785–2795.

Shakibaeinia, A.; Jin, Y.-C. (2010): A weakly compressible MPS method for
modeling of open-boundary free-surface flow. International Journal for Numerical
Methods in Fluids, vol. 63, no. 10, pp. 1208–1232.

Shibata, K.; Koshizuka, S.; Sakai, M.; Tanizawa, K. (2012): Lagrangian
simulations of ship-wave interactions in rough seas. Ocean Engineering, vol. 42,
pp. 13–25.

Song, M.; Koshizuka, S.; Oka, Y. (2003): Dynamic analysis of elastic solids by
mps method. In International Conference on Global Environment and Advanced
Nuclear Power Plants.



118 Copyright © 2013 Tech Science Press CMES, vol.95, no.2, pp.87-118, 2013

Sulsky, D.; Chen, Z.; Schreyer, H. L. (1994): A particle method for history-
dependent materials. Computer Methods in Applied Mechanics and Engineering,
vol. 118, no. 1, pp. 179–196.

Tsukamoto, M. M.; Cheng, L. Y.; Nishimoto, K. (2011): Analytical and nu-
merical study of the effects of an elastically-linked body on sloshing. Computers
& Fluids, vol. 49, no. 1, pp. 1–21.

Walhorn, E.; Kolke, A.; Hubner, B.; Dinkler, D. (2005): Fluid-structure cou-
pling within a monolithic model involving free surface flows. Computers & Struc-
tures, vol. 83, no. 25–26, pp. 2100–2111.

Xiao, Y.; Han, X.; Hu, D. (2011): A coupling algorithm of finite element method
and smoothed particle hydrodynamics for impact computations. Computer Mod-
eling in Engineering & Sciences, vol. 23, no. 1, pp. 9–34.


