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Time Domain BIEM with CQM
Accelerated with ACA and Truncation

for the Wave Equation

H. Yoshikawa1, R. Matsuura2, and N. Nishimura1

Abstract: The convolution integrals with respect to time in the time domain
boundary integral equation method (TD-BIEM) are calculated approximately using
the Lubich convolution quadrature method (CQM). The influence matrices in the
discretized boundary integral equation are computed with the Laplace transform
of the fundamental solution in TD-BIEM with the Lubich CQM. These matrices,
however, are dense, and both the computational cost and memory requirements
are high. In this paper, we apply Adaptive Cross Approximation (ACA) to the
influence matrices to achieve a fast solver of TD-BIEM with the Lubich CQM.
Moreover, we reduce the computational time of TD-BIEM with the Lubich CQM
for hyperbolic PDE problems considering the arrival time of the influence from the
source element to the observation point and using cast forward idea. The effect of
the proposed method is confirmed with some numerical results.
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1 Introduction

Time domain boundary integral equation methods(TD-BIEM) are efficient in solv-
ing wave scattering problems because BIEM can easily treat exterior problems and
radiation conditions in particular[Friedman and Shaw (1962)],[Mansur and Breb-
bia (1982)], [Tsinopoulos et al. (2012)],[Wei et al. (2012)]. In TD-BIEM, one
discretizes the boundary values with the spatial and temporal interpolation func-
tions, and derives algebraic equations at each time step. The RHS of the algebraic
equation at certain time step consists of the influence from the past solutions. The
influence matrices in the algebraic equations are sparse in problems governed by
hyperbolic PDEs because the components are zero before the arrival time of the
influence of the past solutions.
1 Kyoto University, Kyoto, Japan.
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In the last few years, several authors have solved time-dependent PDE problems
with TD-BIEM with the Lubich convolution quadrature method(CQM)[Schanz
(1997)],[Monegato et al. (2010)]. This is mainly in order to resolve the prob-
lem of the stability of TD-BIEM for hyperbolic PDEs, which has been a long
standing issue for the BEM community. The Lubich CQM provides a stable time
domain method of numerical computation of the convolution integrals using the
Laplace transform of the kernel of the integral equation[Lubich (1988a)],[Lubich
(1988b)],[Lubich (2004)]. In TD-BIEM with the Lubich CQM, one computes the
convolution integrals with respect to time which appear in RHS of the boundary in-
tegral equation using the Laplace transform of the fundamental solution. Carrying
out Laplace transforms with respect to time, one removes the time dependence of
the fundamental solution. In contrast to the ordinary TD-BIEM which deals with
sparse matrices, the Lubich CQM computes the influence matrices in TD-BIEM
using dense matrices (i.e. the Laplace transform of the fundamental solution) even
for hyperbolic PDEs. By this reason the computational time and the memorey re-
quirements for TD-BIEM with Lubich CQM are quite large.

Several approaches have been developed in order to reduce the computational loads
of TD-BIEM with the Lubich CQM. Banjai and Sauter[Banjai and Sauter (2008)]
proposed a reformulated CQM. Also, Messner and Schanz applied Adaptive Cross
Aproximation (ACA) to TD-BIEM with the reformulated Lubich CQM for elas-
todynamics[Messner and Schanz (2010)]. In the reformulated Lubich CQM, they
calculate the Laplace transform of the boundary values and transform the time step-
ping procedure to another of superposing the solution of Lapcace domain solutions,
thus reducing the Lubich CQM to a variant of the classical Laplace-domain ap-
proaches which date back at least to 1960s[Cruse and Rizzo (1968)]. One may
therefore say that the reformulated CQM achieved the memory redution at the cost
of losing the time domain nature of the CQM.

In this paper we stick to the original version of TD-BIEM with the Lubich CQM
and consider techniques for memory reduction and acceleration of its time stepping
procedure. We apply ACA and a truncation to the influence matrices of the alge-
braic equations in time stepping procedure in the wave equation in 3D. We present
several numerical results to confirm the effectiveness of the proposed method.

2 TD-BIEM with CQM

2.1 CQM

The Lubich CQM[Lubich (1988a)],[Lubich (1988b)] is a method of numerical cal-
culations for convolution integrals. This method computes the convolution integral
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( f ∗g)(t) =
∫ t

0
f (t− τ)g(τ)dτ, (1)

as

( f ∗g)(n∆t)'
n

∑
m=0

ωn−m(∆t)g(m∆t), n = 1,2,3, · · · , (2)

ωn(∆t) : =
1

2πi

∫
|z|=R

f̂
(

γ(z)
∆t

)
z−(n+1)dz (3)

' R−n

L

L−1

∑
`=0

f̂

(
γ(Rei 2π`

L )

∆t

)
e−in 2π`

L , (4)

f̂ (s) =
∫

∞

0
f (t)e−stdt, (5)

where ∆t is the time increment, i2 = −1, R is the radius of the circular integration
path and L is the division number of the integration path. Also, γ(z) is the quo-
tient of the generating polynomials of a linear multistep method. For the K-step
backward differential formula, we have

γ(z) =
K

∑
p=1

1
p
(1− z)p, K ≤ 6. (6)

2.2 TD-BIEM with CQM

We consider the following initial-boundary values problem for the wave equation
with the Neumann boundary condition,

ü(x, t)−u,ii(x, t) = 0 in D, t > 0, (7)

u(x,0) = 0, in D, (8)

u̇(x,0) = 0 in D, (9)
∂u
∂nx

(x, t) = q(x, t) on ∂D, t > 0, (10)

where D is the domain, ∂D is the boundary of the domain D,
∂

∂nx
is the normal

derivative, n(x) is the outward unit normal vector on the boundary ∂D, q(x, t) is the

given function, and ( ),i and ˙( ) denote
∂

∂xi
and

∂

∂ t
. The corresponding boundary

integral equation (BIE) for Eq.(7) is obtained as

0 =
∫

∂D

[
Γ(x− y, ·)∗ ∂u

∂ny
(y, ·)

]
(t) dS− lim

ξ→x

∫
∂D

[
∂Γ

∂ny
(ξ − y, ·)∗u(y, ·)

]
(t) dS,

x on ∂D, ξ ∈ De, (11)
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where De is the exterior domain of D and Γ(x, t) is the fundamental solution for the
wave equation in time domain given by

Γ(x, t) =
δ (t−|x|)

4π|x|
. (12)

Using the Lubich CQM, the convolution integrals in the RHS of the BIE(11) are
discretized as

0'
∫

∂D

n

∑
m=0

ω
B
n−m(x− y,∆t)

∂u
∂ny

(y,m∆t)dS

− lim
ξ→x

∫
∂D

n

∑
m=0

∂ωB
n−m

∂ny
(ξ − y,∆t)u(y,m∆t)dS, (13)

where

ω
B
n (x− y,∆t) :=

R−n

L

L−1

∑
`=0

Γ̂

(
x− y,

γ(Rei 2π`
L )

∆t

)
e−in 2π`

L , (14)

Γ̂(x,s) =
e−|x|s

4π|x|
. (15)

The boundary ∂D is discretized with the boundary elements S j, j = 1, · · · ,N and
the boundary values are also discretized as

u(x, t)'
N

∑
j=1

MS
j(x)u(x j, t), (16)

q(x, t)'
N

∑
j=1

MS
j(x)q(x j, t), (17)

where MS
j(x) is the spatial interpolation functions and the point x j is the collocation

point on the boundary element S j.

Using Eqs.(16) and (17), we obtain the following algebraic equations at t = n∆t, n=
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1, · · · ,NT .

0'
n

∑
m=1

Φn−mqm−
n

∑
m=1

Ψn−mum, (18)

{um}i := u(xi,m∆t), (19)

{qm}i := q(xi,m∆t), (20)

{Φn}i j '
L−1

∑
`=0

Cn
` {U `}i j , (21)

{Ψn}i j '
L−1

∑
`=0

Cn
` {W `}i j , (22)

Cn
` :=

R−n

L
e−in 2π`

L , (23)

{U `}i j :=
∫

∂D
ωB(xi− y,∆t)MS

j(y)dS, (24)

{W `}i j := lim
x∈De→xi

∫
∂D

∂ωB(x− y,∆t)
∂ny

MS
j(y)dS. (25)

In the Lubich CQM, one may choose L = NT ,RNT =
√

ε if one needs the accuracy
of O(ε)[Lubich (1988b)].

In the conventional TD-BIEM with the Lubich CQM, one derives the algebraic
equations in Eq.(18) and solves them step by step.

As shown in Eqs.(21) and (22), the influence matrices Φn and Ψn are calculated as
sums of products of the time-dependent coefficients Cn

` and the time-independent
matrices U ` and W `. The algebraic equations in Eq.(18) can be rewritten as

0'
n

∑
m=1

L−1

∑
`=0

Cn−m
` U `qm−

n

∑
m=1

L−1

∑
`=0

Cn−m
` W `um. (26)

In the Neumann problems, the time-independent matrices W ` are stored in the
memory in this study. Because W ` are dense, the memory requirements for W `

are O(N2NT ).

3 Accelerations

3.1 H -matrix with ACA

3.1.1 H -matrix

We consider an approximation of the the time-independent dense matrices W ` for
the reduction of the memory requirements. {W `}i j is calculated as in Eqs.(25),(14)
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and (15). Because the Laplace transform of fundamental solution Γ̂ is nothing other
than the fundamental solution of the Yukawa equation, we can apply the H -matrix
approach with ACA to W `[Bebendorf (2000)],[Rjasanow and Steinbach (2007)].
The procedure goes as in the following.

1. The boundary is divided into clusters Qlev
i (i= 1, · · · ,2lev, lev= 0, · · · ,maxlev)

using a binary tree, where “lev” denotes the hierarchical level of the cluster
tree.

2. The boundary elements are renumbered for the ease of assembling them into
clusters.

3. If the distance between the clusters Qx and Qy fulfills the following admissi-
bility condition

min{diamQx,diamQy} ≤ η dist(Qx,Qy), 0 < η < 1, (27)

the corresponding submatrices of the hierarchized matrices W H
` are approx-

imated by low-rank matrices with ACA. Here, we define the diameters of the
clusters Qx and Qy and the distance between them by

diamQx = max
i1,i2∈Qx

∣∣xi1− xi2∣∣ , (28)

diamQy = max
j1, j2∈Qy

∣∣y j1− y j2∣∣ , (29)

dist(Qx,Qy) = min
i∈Qx, j∈Qy

∣∣xi− y j
∣∣ . (30)

3.1.2 Adaptive Cross Approximation

Let Aadm ∈Cn×m be a submatrix of the hierarchized matrices W H
` which fulfills the

admissibility condition(Eq.(27)). Using ACA, the submatrix Aadm is approximated
by a low-rank matrix Ar as

Aadm ' Ar = PQ∗, (31)

|Aadm−Ar|F ≤ εACA|Aadm|F , (32)

where P ∈ Cn×r, Q ∈ Cm×r, (·)∗ denotes the Hermitian conjugate and | · |F denotes
the Frobenius norm defined by

|Aadm|F =

√
m

∑
i=1

n

∑
j=1
|{Aadm}i j |2 =

√√√√min(m,n)

∑
j=1

σ2
j , (33)

where σ j is the singular value of Aadm. The detail for the ACA algorithm can be
found in [Rjasanow and Steinbach (2007)].
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3.2 Cast forward and Truncation

3.2.1 Cast forward

A cast forward method of evaluating the influence from the past is proposed by
Walker[Walker (1997)] (see also [Yoshikawa and Nishimura (2003)]). At t = n∆t,
the past solutions um, (m = 1, · · · ,n− 1) have already been computed in the time
stepping procedure. In the cast forward method, one computes Ψn−1 and the
matrix-vector products Ψn−1um and Ψmun−1, (m = 1, · · · ,n− 1, n+m− 1 ≤ NT )
at t = n∆t and the results are subtracted from the RHS of the algebraic equation at
t = (n+m− 1)∆t. In the cast forward method, the matrix Ψk for k ≥ NTH appear
just once and need not be stored, where NTH =

[NT+1
2

]
and [ · ] denotes the Gauss

symbol.

The following example shows the algebraic equations in the TD-BIEM for NT = 6.

At t = ∆t, Ψ0u1 = bS
1,

at t = 2∆t, Ψ0u2 = bS
2−Ψ1u1,

at t = 3∆t, Ψ0u3 = bS
3−Ψ2u1−Ψ1u2,

at t = 4∆t, Ψ0u4 = bS
4−Ψ3u1−Ψ2u2−Ψ1u3,

at t = 5∆t, Ψ0u5 = bS
5−Ψ4u1−Ψ3u2−Ψ2u3−Ψ1u4,

at t = 6∆t, Ψ0u6 = bS
6−Ψ5u1−Ψ4u2−Ψ3u3−Ψ2u4−Ψ1u5,

where bS
n =

n

∑
m=1

Φn−mqm. Because these underlined matrix-vector products can

be computed at t = 4∆t with the cast forward method, Ψ3,Ψ4,Ψ5 only have to be
calculated once with Eq.(22) at t = 4∆t.

3.2.2 Truncation

Here again, we consider the meaning of the influence coefficient {Ψn−m}i j. The
influence coefficient {Ψn−m}i j denotes the influence between the source element
S j at t = m∆t and the observation point xi at t = n∆t. {Ψn−m}i j are actually zero till
the arrival time of the influence from the source element S j at the observation point
xi for hyperbolic PDE problems, although the influence coefficient {Ψn−m}i j may
be calculated to be non-zero values from Eq.(22). In this paper using the H -matrix
approach we set

{ΨH
n}i j = 0 for {i ∈ Qx, j ∈ Qy | dist(Qx,Qy)> (n+1)∆t} , (34)

instead of using

{ΨH
n}i j =

L−1

∑
`=0

Cn
`

{
W H

`

}
i j . (35)
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From Eq.(34), the number of non-zero {ΨH
n}i j increases with the increasing index

n.

3.2.3 Memory reduction with cast forward and truncation

The influence matrices Ψ
H

n are calculated from the time-independent matrices
W H

` with Eq.(35). As shown above, the influence matrices Ψ
H

n, (n=NTH , · · · ,NT−
1) are calculated only once at t = (NTH +1)∆t with cast forward. We therefore store
only the component of the time-independent matrices

{
W H

`

}
i j corresponding to

non-zero component of Ψ
H

NTH−1.

4 Numerical results

The following wave scattering problem by a sphere having the radius 1 shown in
Fig.–1 is considered,

ü(x, t)−u,ii(x, t) = 0 in D, t > 0,
u(x,0) = uin(x,0), in D,
u̇(x,0) = u̇in(x,0) in D,
∂u
∂n(x, t) =

∂uin

∂n (x, t) on ∂D, t > 0.
u(x, t)−uin(x, t) satisfies radiation condition,

(36)

where the incident plane wave is given as follows:

uin(x, t) = {1− cos{π(t− x1)}}{H(t− x1)−H(t− x1−2)} . (37)

The solution of this problem is u(x, t) = uin(x, t).

1x1

x3

x2

uin

2
Figure 1: The wave scattering problems by a sphere.
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The boundary integral equation for this problem is

0 =uin(x, t)+
∫

∂D

n

∑
m=0

ω
B
n−m(x− y,∆t)

∂u
∂ny

(y,m∆t)dS

− lim
ξ→x

∫
∂D

n

∑
m=0

∂ωB
n−m

∂ny
(ξ − y,∆t)u(y,m∆t)dS, x on ∂D, ξ ∈ De. (38)

We solve this BIE with

• the conventional TD-BIEM with the Lubich CQM (“conv”),

• TD-BIEM with the Lubich CQM accelerated by ACA(“ACA”) and

• TD-BIEM with the Lubich CQM accelerated by ACA and truncation (“ACA
+ trunc”).

In each method, we have N = 980, ∆t = 0.04 and NT = 2
∆t = 50. In the H -matrix

approach with ACA, we set η = 0.9 and εACA = 1.0×10−3. In this paper we use
GMRES as the solver for linear equations and all computation are executed with
one CPU(Intel Xeon E5 2.6GHz).

The CPU time, memory requirements and relative error for each of these methods
are shown in Tab.–1, where the relative error is calculated as

(relative error) =

(
∑

N
i=1 ∑

NT
n=1

(
{un}i−uin(xi,n∆t)

)2

∑
N
i=1 ∑

NT
n=1 uin(xi,n∆t)2

) 1
2

. (39)

Table 1: The comparisons in the case of one scatterer. (NT = 50.)

conv ACA ACA+trunc
CPU time(sec) 22.8 38.2 32.4

mem. reduction(%) 100 (381MB) 85.6 57.4
relative error(%) 1.72 1.74 1.74

In this numerical example, ACA is not effective because the boundary, i.e., the
surface of the sphere, is not very large and N is small. However, the truncation is
effective in memory reduction. This is because the matrices are not compressed
much by ACA(Fig.–2).

We also solve the scattering problem by three spheres shown in Fig.–3. In this
problem, we have N = 3× 980 = 2940, NT = 7

∆t = 175. The results are shown
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stored
cf+trunc.

Figure 2: The truncation for the compressed matrix.

1x1

x3

x2

uin

1 1

7
Figure 3: The wave scattering problems by three spheres.

Table 2: The comparisons in the case of three scatterers. (175 time steps.)

conv ACA ACA+trunc
cpu time(sec) 2331 1113 856

mem. reduction(%) 100 (11.3GB) 49.6 49.6
relative error(%) 4.09 4.76 4.76
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storedcf+trunc.

Figure 4: The truncation for the well-compressed matrix.

1x1

x3

x2

uin

1 1 11

12
Figure 5: The wave scattering problems by five spheres.

in Tab.–2. ACA is effective because the boundary is large in this problem. We
have little difference between “ACA” and “ACA+trunc” in the memory reduction,
although. “ACA+trunc” is faster than “ACA”. This is because the compressed sub-
matrix by ACA (Eq.(27)) and the truncated submatrix (Eq.(34)) are overlapped
considerably in this problem. Indeed, if the matrix has been well-compressed with
ACA, the truncation is ineffective in reducing memory (Fig.–4). Additionally in
“ACA+trunc”, the computational time of matrix-vector product

Ψ
H

num =
NT−1

∑
`=0

Cn
`W H

`um (40)

decreases, because the products in the RHS of Eq.(40) are computed only for non-
zero components of the truncated Ψ

H
n.

Tab.–3 shows the comparisons of the effectiveness for the case of five scatterers
(Fig.–5). In this problem, we have N = 5× 980 = 4900, NT = 12

∆t = 300. The
boundary is large in this problem which means that the reduction methods are more
effective as seen in Tab.–3.
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Table 3: The comparisons in the case of five scatterers. (300 time steps.)

conv ACA ACA+trunc
cpu time(sec) 21906 4792 3936

mem. reduction(%) 100 (54.0GB) 34.5 34.1
relative error(%) 3.62 4.96 5.37

5 Conclusions

In this paper we have applied ACA to the time stepping procedure in TD-BIEM
with the Lubich CQM and reduced the CPU time and memory requirements. We
have confirmed that ACA is effective for the problems having large boundaries.
We have also truncated the dense influence matrices of TD-BIEM with the Lubich
CQM for the wave equation considering the arrival time of influences between the
source element and the observation point and using cast forward. The truncation
is effective in memory reduction for problems where ACA is not effective. With
the truncation, we can further reduce the CPU time of TD-BIEM with the Lubich
CQM accelerated with ACA for hyperbolic PDE problems. We will try to apply
these accelerations to wave attenuation problems in future works.
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