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Numerical Determination on Effective Elastic Moduli of
3-D Solid with a Large Number of Microcracks using

FM-DBEM
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Abstract: Since only the boundary of the analyzed domain needs to be discretized,
the boundary element method (BEM) inherently has the advantages of solving
crack problems. In this paper, a micromechanics BEM scheme is applied to de-
termine the effective elastic moduli of three-dimensional (3-D) solids containing
a large number of parallel or randomly oriented microcracks. The 3-D analyses
accelerated by the fast multipole method were carried out to investigate the rela-
tions between the effective elastic moduli and the microcrack density parameter.
Numerical examples show that the results agree well with the available analytical
solution and known micromechanics models. From the numerical examples, we
can see that the FM-DBEM inherits the virtue of high accuracy from BIE besides
dimension reduction. It makes the method be a promising approach for analyzing
elastic materials with numerous microcracks of various shapes.

Keywords: dual boundary element method, fast multipole, large-scale, microc-
rack, effective elastic moduli, stress intensity factor

1 Introduction

Due to the semi-analytical nature and boundary-only discretization, the boundary
element method (BEM) is recognized as a powerful method in the research of elas-
tic crack problems [Cruse (1996)]. Compared with other domain methods, such
as the finite element method (FEM), the BEM can reduce the degrees of freedom
and the initial data for preparation, and simplify the crack meshing process [Dong
and Atluri (2012)]. Since there are almost no internal approximations, the singular
stress field around the crack tip can be analyzed and simulated more accurately.
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If only the conventional displacement BEM was applied to solve fracture problems,
the displacement boundary integral equation (DBIE) would degenerates when the
two surfaces of the same crack coincide [Cruse (1988)]. In order to overcome
the degeneration problem, the dual boundary element method (DBEM) is one of
the effective mathematical strategies. In the researches on the DBEM, Portrla and
Aliabali (1992, 1993) first used the method for linear elastic fracture analysis for
2-D problems, and then this method was extended to 3-D crack analysis by Mi and
Aliabadi (1992), Cisilino and Aliabadi (1997), and Wilde and Aliabadi (1999). The
DBEM adopts the DBIE for collocation on one surface of the crack, the traction
boundary integral equation on the other, and then a single-region formulation can
be built.

Since the coefficient matrix is dense and asymmetric, the conventional BEM is
not suitable for large-scale simulations. When using standard direct or iterative
solvers, the computational cost would be O(N3) or O(N2). In order to reduce the
memory requirement and CPU time, and to achieve a more efficient calculation,
the fast multipole method (FMM) originally proposed by Rokhlin (1985) for clas-
sical potential theory has gotten particular interest. The FMM was introduced to
the BEM by many authors: Fu, Klimkowski, Rodin and colleagues (1998), Popov
and Power (2001), Takahashi, Nishimura and Kobayashi (2003), Liu, Nishimura,
Otani and colleagues (2005), Wang and Yao (2005), Liu (2006), Sanz, Bonnet and
Dominguez (2008), Wang, Hall, Yu and Yao (2008), Wang and Yao (2008), Wang
and Yao (2011), Wang, Miao and Zheng (2010). A literature review has been given
by Nishimura (2002). The fast multipole BEM uses the same discretization as the
conventional BEM, and adopts iterative solutions to solve the equation system, such
as GMRES. The basic data structure for computation and storage is a quad-tree (for
2-D problems) or an octal-tree (for 3-D problems).

Many researches focused on 2-D crack problems using the fast multiple BEM,
while there is much less in the three-dimensional cases. Fu, Klimkowski and Rodin
(1998) proposed a method relied on an iterative solution strategy, in which the
matrix-vector multiplication was performed with the fast multipole method. Popov
and Power (2001) investigated the 3-D elasticity problems and presented a multi-
pole BEM strategy based on Taylor expansions. Nishimura, Yoshida and Kobayashi
(1999) discussed a three-dimensional fast multipole boundary integral equation
method for crack problems for Laplace’s equation. Then Yoshida, Nishimura and
Kobayashi (2001) discussed an application of FMM to three-dimensional bound-
ary integral equation method for elastostatic crack problems which was discretized
with FMM and Galerkin’s method. Lai and Rodin (2003) presented a fast boundary
element (FBEM) for analyzing 3-D linear elastic solids containing many cracks.

Material properties, such as stiffness and strength, which are significantly influ-
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enced by cracking damage, are the important foundations of estimating the load-
ing capability of structural components. The analytic estimation of the effective
elastic moduli of a structure permeated by many flat cracks had been investigated
by many authors for various schemes. The simplest method is the approxima-
tion of noninteracting microcracks, referred to as the Taylor’s method [Krajcinovic
(1997)] or dilute concentration method (DCM) in the literature. If considering the
microcrack interaction, the analytic estimation methods include the self-consistent
method (SCM) [Budiansky and O’Connell (1976)], Mori-Tanaka method [Mori and
Tanaka, (1973)], a differential scheme method [Norris (1985)], generalized self-
consistent method (GSCM) [Huang, Xu and Chandra (1994)], Feng-Yu’s method
[Feng and Yu (2000)] and others. Most of these methods neglect the precise loca-
tions and orientations of microcracks. Most of these methods are limited to solids
that are statistically homogeneous and subjected to uniform tractions or displace-
ments.

In this paper, a micromechanics BEM scheme for evaluating the effective elas-
tic moduli of three-dimensional solids containing a large number of parallel or
randomly oriented microcracks is proposed. This FM-DBEM simulates the mi-
crostructure by fully descretizing the boundaries of the entire physical domain and
produces high accurate results. This scheme is a promising approach for analyzing
elastic materials with a large number of microcracks of both regular and irregular
shapes. A brief introduction of the governing equations in elasticity is given in Sec-
tion 2. Based on the DBIE, the fast multipole DBEM for solving crack problems
is described in Sections 3. In Section 4 and 5, different models for calculating the
effective elastic moduli are proposed. Then, the accuracy of the proposed method
and the feasibility of the computational models are verified by numerical examples
in Section 6. The numerical results by the proposed method show good agreement
with the predictions by the DCM and the method proposed by Feng and Yu (2000).
Finally, the conclusions are presented in Section 7.

2 Governing equations

Considering elastic materials, we have the basic governing field equation without
body force [Ding and Chen (2006)]

σi j, j = 0 (1)

where σi j is the elastic stress.

For elastic problem, the constitutive relation is formulated as

σi j =Ci jklεkl (2)
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where εkl is the elastic strain, Ci jkl the elastic coefficients, respectively.

The elastic strain field εi j is defined by

εi j =
1
2
(ui, j +u j,i) (3)

where ui is the elastic displacement.

The boundary conditions are given by

mechanical boundary conditions:
ti = σi jn j = t̄i on Sti

ui = ūi on Sui

(4)

where ti is the surface traction, and ni are the components of the unit outward nor-
mal vector of the surface. The upper-barred quantities indicate prescribed values.
Note that Sti ∪Sui = S, and Sti ∩Sui = /0.

For a transversely isotropic elastic material with the isotropic plane perpendicular
to x3 axis in Cartesian coordinates (x1,x2,x3), the isotropic plane is parallel with the
plane x1− x2. With the similar index mapping procedure as in Vlado and Michelle
(2008), Wu and Huang (2000), Eq. (2) can be expressed as the following matrix
form

σ11
σ22
σ33
σ32
σ31
σ12


=



C11 C12 C13 0 0 0
C21 C22 C23 0 0 0
C31 C32 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66





ε11
ε22
ε33
2ε32
2ε31
2ε12


(5)

where C12 =C21, C13 =C31 =C23 =C32, C11 =C22 and C44 =C55.

In terms of the engineering constants Ei, vi and Gi, Eq. (5) can be expressed as the
following form [Ding and Chen (2006)]

ε11
ε22
ε33

2ε32
2ε31
2ε12


=



1
/

E1 −v1
/

E1 −v3
/

E3 0 0 0
−v1

/
E1 1

/
E1 −v3

/
E3 0 0 0

−v3
/

E3 −v3
/

E3 1
/

E3 0 0 0
0 0 0 1

/
G3 0 0

0 0 0 0 1
/

G3 0
0 0 0 0 0 1

/
G1





σ11
σ22
σ33
σ32
σ31
σ12


(6)
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where E1 is the Young’s modulus in the isotropic plane, and E3 is the Young’s
modulus in the direction perpendicular to the isotropic plane; v1 is the Poisson ratio
characterizing transverse contraction in the isotropic plane due to applied tension
in the orthogonal direction within the isotropic plane; v3 is the same due to applied
tension perpendicular to the isotropic plane; G1 and G3 are the shear moduli in the
isotropic plane and in any plane perpendicular to the isotropic plane, respectively
[Vlado and Michelle (2008)].

The expressions in Eqs. (5) and (6) reveals the relationships between the elastic
moduli Ci j and the engineering constants Ei, vi and Gi, for example,

C13 =
E2

1 v3

E3(1− v1)−2E1v2
3

(7)

C33 =
(1− v1)E2

1

E3(1− v1)−2E1v2
3

(8)

If any plane in the medium is a plane of elastic symmetry, the material is isotropic
and the above equations are reduced to the ones of the isotropic problem with only
two independent elastic constants among the Young’s modulus E, the Poisson’s
ratio v, the shear modulus G and the bulk modulus K.

3 Fast multipole dual boundary element method for the crack problem

Consider an isotropic medium containing randomly distributed and oriented mi-
crocracks, as shown in Fig. 1. Such three-dimensional problem can be solved by
numerical methods, such as the finite element method (FEM) and the boundary el-
ement method (BEM). However, even a small number of microcracks might result
in a surprising large number of finite elements when the FEM is adopted. Since
only the outside surfaces of the medium and the the insides surfaces of the cracks
need to be meshed by using two-dimensional surface meshes, the BEM is particu-
larly suitable to solve the crack problem. The dual boundary element method for
the crack problem is based on the dual boundary integral equations (DBIEs) the-
ory, as illustrated in Mi and Aliabadi (1992) and Cisilino and Aliabadi (1997). The
FMM was introduced to the DBEM as a fast and large-scale solver to reduce the
computational time and memory [Wang and Yao (2011)]. The problem size solved
by FM-DEBM can reach a value of more than 1,000,000 surface unkowns on only
one personal computer.
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Figure 1: An isotropic solid with randomly distributed and oriented microcracks

4 The effective elastic moduli of an isotropic solid with a family of parallel
microcracks

Consider an isotropic solid weakened by a large number of parallel, randomly dis-
tributed circular microcracks, which are normal to the x3 axis, as shown in Fig.
2. At the macro scale, the microcracked solid behaves as a transversely isotropic
elastic medium with the isotropic plane parallel with the plane x1−x2. The average
strains and stresses in the microcracked solid are defined by

ε̄i j =
1
V

∫
V

εi jdV (9)

σ̄i j =
1
V

∫
V

σi jdV (10)

By using the Gauss’s theorem, the calculation of the average stress and strain can
be simplified as an integration around the boundary surfaces [Aboudi (1991); Sun
and Vaidya (1996); Suquet (1987); Xia and Zhang (2003)] and expressed as

ε̄i j =
1

2V

∫
S0

(uin j +u jni)dS (11)

σ̄i j =
1
V

∫
S0

σikx jnkdS =
1
V

∫
S0

tix jdS (12)
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Figure 2: An isotropic solid with parallel, randomly distributed circular microc-
racks

According to the constitutive Eq. (5) of the transversely isotropic elastic problem,
the material constants can be obtained by imposing appropriate boundary condi-
tions. For example, applying the boundary conditions as follows,

Surface x+1 : ū1 = u0, t̄2 = t̄3 = 0 (u0 6= 0)
Surface x−1 : ū1 = 0, t̄2 = t̄3 = 0
Surface x+2 : t̄1 = 0, ū2 = 0, t̄3 = 0
Surface x−2 : t̄1 = 0, ū2 = 0, t̄3 = 0
Surface x+3 : t̄1 = t̄2 = 0, ū3 = 0
Surface x−3 : t̄1 = t̄2 = 0, ū3 = 0

(13)

we have ε̄22 ≈ 0 and ε̄33 ≈ 0. Then, we can obtain the longitudinal stiffness coeffi-
cient Ceff

11, Ceff
12 and Ceff

13 as follows,

Ceff
11 =

σ̄11

ε̄11
, Ceff

12 =
σ̄22

ε̄11
, Ceff

13 =
σ̄33

ε̄11
(14)
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Applying the boundary conditions as follows,

Surface x+1 : ū1 = 0, t̄2 = t̄3 = 0
Surface x−1 : ū1 = 0, t̄2 = t̄3 = 0
Surface x+2 : t̄1 = 0, ū2 = 0, t̄3 = 0
Surface x−2 : t̄1 = 0, ū2 = 0, t̄3 = 0
Surface x+3 : t̄1 = t̄2 = 0, ū3 = u0 (u0 6= 0)
Surface x−3 : t̄1 = t̄2 = 0, ū3 = 0

(15)

we have ε̄11 ≈ 0 and ε̄22 ≈ 0. Then, we can obtain the longitudinal stiffness coeffi-
cient Ceff

31 , Ceff
32 and Ceff

33 as follow,

Ceff
31 =

σ̄11

ε̄33
, Ceff

32 =
σ̄22

ε̄33
, Ceff

33 =
σ̄33

ε̄33
(16)

Other elastic coefficients can also be obtained by the similar procedure.

5 The effective elastic moduli of an isotropic solid with randomly distributed
and oriented microcracks

Consider an isotropic solid with a large number of circular microcracks of randomly
distributed orientations and locations, as shown in Fig. 1. At the macro scale, the
microcracked solid behaves as an isotropic elastic medium. The effective Young’s
modulus Eeff and the effective bulk modulus Keff can be obtained by the similar
procedure. Applying the boundary conditions as follows,

Surface x+1 : ū1 = u0, t̄2 = t̄3 = 0 (u0 6= 0)
Surface x−1 : ū1 = 0, t̄2 = t̄3 = 0
Surface x+2 : t̄1 = t̄2 = t̄3 = 0
Surface x−2 : t̄1 = 0, ū2 = 0, t̄3 = 0
Surface x+3 : t̄1 = t̄2 = t̄3 = 0
Surface x−3 : t̄1 = t̄2 = 0, ū3 = 0

(17)

we can obtained

Eeff =
σ̄11

ε̄11
(18)

Applying the boundary conditions as follows,

Surface x+1 : ū1 = u0, t̄2 = t̄3 = 0 (u0 6= 0)
Surface x−1 : ū1 = 0, t̄2 = t̄3 = 0
Surface x+2 : t̄1 = 0, ū2 = u0, t̄3 = 0
Surface x−2 : t̄1 = 0, ū2 = 0, t̄3 = 0
Surface x+3 : t̄1 = t̄2 = 0, ū3 = u0
Surface x−3 : t̄1 = t̄2 = 0, ū3 = 0

(19)
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we can obtained

Keff = (σ̄11 + σ̄22 + σ̄33)/3(ε̄11 + ε̄22 + ε̄33) (20)

The bulk modulus of the matrix material can be determined as

K0 = E0/3(1−2v0) (21)

where E0 and v0 are the Young’s modulus and the Possion ratio of the matrix ma-
terial, respectively.

The effective Young’s modulus Eeff
1 , Eeff

2 and Eeff
3 along different directions of the

traversely isotropic problem can also be obtained by this method. The relationship
between these effective Young’s modulus Eeff

1 , Eeff
2 and Eeff

3 and the effective lon-
gitudinal stiffness constant Ceff

11, Ceff
12, Ceff

13 and Ceff
33 can be obtained by Eqs. (7) and

(8).

6 Numerical results

Following Wang and Yao (2011), the C++ code of the 3-D fast multipole DBEM
has been used for the analysis of 3-D solid containing a large number of micro-
crack and the determination of its effective elastic moduli. The code runs on a
personal computer with a processor of Intel Core i7-3770 (3.4GHz) and physical
memory of 16GB. In order to assess the accuracy of the proposed method, numeri-
cal tests were carried out, involving the analysis of single and multiple microcracks
for which analytical solutions exist for comparison. And then, isotropic solids with
a large number of parallel or randomly oriented microcraks were analyzed and
the effective elastic moduli were obtained. For comparison between the effective
elastic moduli obtained by the proposed method and the ones by micromechanical
models, the values are also shown for the corresponding solutions obtained by us-
ing two micromechanics methods, the DCM [Krajcinovic (1997)] and the method
proposed by Feng and Yu (2000).

Following Budiansky and O’Connell (1976), Bristow (1960) and Feng and Yu
(2000), the microcrack density parameter for a 3-D solid is defined as

ω =
1
V

N

∑
i=1

a3
i (22)

where V is the area of the 3-D solid, N is the number of the microcracks, and ai is
the radius of the i-th circular microcrack.

In the following, The Young’s modulus E0 and Poisson’s ratio v0 of the matix are
taken to be 250.0 and 0.3, respectively. In the DBEM, the eight-node quadratic ele-
ment is adopted. Following Mi and Alibadi (1992) and Wang and Yao (2011), three
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kinds of elements are used: (1)discontinuous elements for the crack modelling;
(2)edge-discontinuous elements on surfaces approaching the corner or intersecting
the crack surface; (3)continuous elements on all other surfaces. For discontinuous
and edge-discontinuous elements, the positioning parameter λ is taken to be 0.67.
Gaussian quadrature is adopted for direct evaluations of both the singular and near-
field regular integrals, and empirical values of the number of integration points are
chosen to guarantee the high accuracy. In the GMRES, the relative error is taken to
be 10−5.

6.1 Stress intensity factors and effective elastic moduli of an isotropic solid with
periodically distributed microcracks

This test involves the analysis of isotropic cubic solids with one centered circu-
lar microcrack and 4× 4× 4(= 64) periodically distributed circular microcracks
with the same radius a. The radius is varied by changing the microcrack density.
The edge length of the cubes with one centered microcrack is L, and the one with
periodically distributed microcracks is 4×L. The normals of the microcracks are
parallel to the x3 axis. The boundary conditions were applied according to Eq. (15).

Fig. 3 shows the boundary mesh model of a cube with one center microcrack and
the one with the periodically distributed microcracks with the radius a = L/20. As
shown in this figure, all surfaces are discretized into discontinuous elements. Due to
the large distance from the center of the microcracks to the surfaces of the cube and
the periodicity of the structures, the state of microcracks can be treated as a crack
in an infinite solid under tension. Therefore, theoretically the values of the stress
intensity factor KI at the fronts of all microcracks are the same to be 2σ

√
a/π . By

using the FM-DBEM, the stress intensity factor is evaluated and the normalized
factors KI/

(
2σ
√

a/π

)
at the fronts of all microcracks are plotted in Fig. 4. It

is shown that the calculated normalized stress intensity factors of 32 points evenly
distributed at the front of one centered microcrack and the ones of 512 points at
the fronts of periodically distributed microcracks (8 points evenly distributed at
each crack front) agree very well with the analytical solution. The relative errors
are all within 1.5%. The results shows the accuracy of the FM-DBEM for solving
large-scale crack problems.

By changing the microcrack density, a series of crack models were solved. Fig.
5 shows the effective longitudinal stiffness constants Ceff

13, Ceff
23 and Ceff

33 versus the
microcrack density parameter. In this figure and the following ones, the superscript
“eff” indicates the effective material property dertamined by the FM-DBEM. The
results of one centered microcrack and the ones of periodically distributed microc-
racks are nearly the same. Using Eqs. (7) and (8), the corresponding solutions CD

13
and CD

33 by the DCM and CF
13 and CF

33 by the Feng-Yu’s method can also be ob-
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(a)

(b)

Figure 3: Global translucent view of element distribution on a cube containing (a)
one center microcrack and (b) periodically distributed microcracks



540 Copyright © 2013 Tech Science Press CMES, vol.94, no.6, pp.529-552, 2013

Figure 4: Normalized stress intensity factors of one center microcrack and period-
ically distributed microcracks

tained and ploted in Fig. 5. From the comparison, the numerical results are always
located between the predictions of the DCM model and the ones by the Feng-Yu’s
method for each fixed microcrack density. The differences between the numerical
results and the analytical predictions increase with increasing the microcrack den-
sity. The constants Ceff

13 and Ceff
23 are the same, since the x1−x2 plane is an isotropic

plane. Because of the periodicity of the structures and the applied boundary condi-
tions, the numerical results of one crack and the ones of the periodically distributed
microcracks are very close.

6.2 The convergence of the calculation

In the determination of the effective elastic moduli, an important criterion is the
convergence of the calculation as the number of microcrack increases. Fig. 6 shows
the results of the convergence test for isotropic solids with randomly distributed,
parallel circular microcracks with the crack density ω = 0.05. Five different sam-
ples were analyzed for each fixed number of microcracks. The results show that the
effective Young’s modulus in the x3 direction tends to be stable when the number
is greater than 50.

Another convergence test for isotropic solids with randomly distributed and ori-
ented circular microcracks with the crack density ω = 0.05 were performed, and
the relationships between the effective elastic modulus and the number of microc-
racks are plotted in Figs. 7 and 8. Five different samples were analyzed for each
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(a)

(b)

Figure 5: The effective longitudinal stiffness constants versus crack density

fixed number of microcracks. The results show that the effective Young’s modu-
lus and the effective bulk modulus tends to be stable when the number is greater
than 200. The stability of the effective bulk modulus is better than the one of the
effective Young’s modulus.
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Figure 6: The convergence test for the effective Young’s modulus (with randomly
distributed, parallel microcracks)

Figure 7: The convergence test for the effective Young’s modulus (with randomly
distributed and oriented microcracks)
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Figure 8: The convergence test for the effective bulk modulus (with randomly dis-
tributed and oriented microcracks)

6.3 Effective elastic moduli of an isotropic solid with a family of parallel micro-
cracks

In order to evaluate the influence of a large number of parallel, randomly distributed
microcracks on the weakness of the elastic moduli in different direction, a test in-
volves the analysis of isotropic solids with parallel microcracks was made. All
microcracks are circular with the same radius a, which is determined by the micro-
crack density and the number of the microcracks. The position of each microcrack
center in the plane x1tx2 is randomly distributed, while the x3 value of each mi-
crocrack center is random. There is no intersection between any two microcracks.
All microcracks are in the same orientation, with their normal vectors parallel to x3
axis.

Fig. 9 shows the boundary mesh model of a cube containing 300 parallel circular
microcracks with the microcrack density parameter ω = 0.05. As shown in this fig-
ure, surfaces of all microcracks are discretized into discontinuous elements, while
surfaces of the cube are discretized into edge-discontinuous elements at the corners
and continuous elements at the rest areas.

With the change of the circular radius, the microcrack density parameter varied
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(a)

(b)

Figure 9: (a) Global translucent view and (b) local view of element distribution on
a cube containing parallel circular microcracks

from 0.01 to 0.19. The normalized effective Young’s modulus in the x3 direction
versus the microcrack density parameter is ploted in Fig. 10, and the effective
longitudinal stiffness constants Ceff

13, Ceff
23 and Ceff

33 versus the microcrack density pa-
rameter are ploted in Fig. 11. These numerical results by FM-DBEM are compared
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with the predictions of the DCM and Feng-Yu method. From the comparison, either
the normalized effective Young’s modulus or effective longitudinal stiffness con-
stants are always located between the predictions of the DCM model and the ones
by the Feng-Yu’s method for each fixed microcrack density. The effective Young’s
modulus agree very well with the analytical results by the Feng-Yu method at low
volume fraction (say, lower than 0.08). On the contrary, the effective longitudinal
stiffness constants are closer to the prediction of the DCM than the one of the Feng-
Yu model. The constants Ceff

13 and Ceff
23 are very close, which means the influence of

these microcracks on the weakness along the x1 direction and the one along the x2
direction are nearly the same.

Figure 10: The normalized effective Young’s modulus in the x3 direction versus
crack density

6.4 Effective elastic moduli of an isotropic solid with randomly distributed and
oriented microcracks

This test involves the analysis of isotropic solids with a large number of circular
microcracks with the same radius a. The orientation and locations of these micro-
cracks are randomly distributed. During the process of building geometries, inter-
section between any two microcracks was avoided. Fig. 12 shows the surface mesh
model of a cube containing 300 circular microcracks of randomly distributed orien-
tation and locations with the microcrack density parameter ω = 0.05. As shown in
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(a)

(b)

Figure 11: The effective longitudinal stiffness constants versus crack density

this figure, surfaces of all microcracks are discretized into discontinuous elements,
while surfaces of the cube are discretized into edge-discontinuous elements at the
corners and continuous elements at the rest areas.

The normalized effective Young’s modulus versus the microcrack density param-
eter is ploted in Fig. 13. The crack density parameter is varied from 0.01 to 0.15
by changing the crack size. The numerical results was compared with the corre-
sponding solutions of two micromechanics methods, the DCM and the Feng-Yu’s
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(a)

(b)

Figure 12: (a) Global translucent view and (b) local view of element distribution
on a cube containing randomly distributed and oriented circular microcracks

method. It is noted that effective Young’s modulus are always higher than the pre-
dictions by the DCM model and the Feng-Yu’s method. The differences between
the numerical results and the analytical prediction by the Feng-Yu’s method in-
crease with increasing the microcrack density.
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Figure 13: Effective Young’s modulus versus crack density

Figure 14: Effective bulk modulus versus crack density
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Figure 14 shows the numerical determination of the effective bulk modulus by the
fast multipole DBEM in comparison with the corresponding solutions of the DCM
and the Feng-Yu’s method. It is shown that the numerical reslutls agree well with
the estimations of the micromechanics methods. The DCM model always gives
higher values and the Feng-Yu’s method always gives lower values. At lower mi-
crocrack density, the effective bulk modulus obtained by the FM-DBEM is closer
to the result by the Feng-Yu’s method , (say, lower than 0.1). On the contrary, this
value is closer to the result by the DCM at higher microcrack density.

7 Conclusions

In this paper, a micromechanics BEM algorithm is presented to evaluate the effec-
tive elastic moduli of 3-D solids containing a large number of parallel or randomly
oriented circular microcracks. The numerical results illustrate great agreement with
the analytical predictions by the DCM and the method proposed by Feng-Yu. It has
been noted that the FM-DBEM is applicable to simulate structures of elastic ma-
terials with microcracks of arbitrary locations and orientations because the method
fully discretizes the boundaries of the entire physical domain. Since no assump-
tions are induced for discretizing the inner boundaries of cracks, this method can
be easily extended to analyze the problems of elastic materials with cracks of vari-
ous shapes.
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