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Fast Boundary Knot Method for Solving Axisymmetric
Helmholtz Problems with High Wave Number

J. Lin1, W. Chen 1,2, C. S. Chen3, X. R. Jiang4

Abstract: To alleviate the difficulty of dense matrices resulting from the bound-
ary knot method, the concept of the circulant matrix has been introduced to solve
axi-symmetric Helmholtz problems. By placing the collocation points in a circular
form on the surface of the boundary, the resulting matrix of the BKM has the block
structure of a circulant matrix, which can be decomposed into a series of smaller
matrices and solved efficiently. In particular, for the Helmholtz equation with high
wave number, a large number of collocation points is required to achieve desired
accuracy. In this paper, we present an efficient circulant boundary knot method
algorithm for solving Helmholtz problems with high wave number.

Keywords: boundary knot method, Helmholtz problem, circulant matrix, ax-
isymmetric.

1 Introduction

The boundary knot method (BKM) [Chen and Tanaka (2002); Chen (2002); Chen
and Hon (2003); Wang, Ling, and Chen (2009); Wang, Chen, and Jiang (2010);
Zhang and Wang (2012); Zheng, Chen, and Zhang (2013)] has been widely ap-
plied for solving certain classes of boundary value problems. Instead of using
the singular fundamental solution as the basis function in the method of funda-
mental solutions (MFS) [Fairweather and Karageorghis (1998); Fairweather, Kara-
georghis, and Martin (2003); Alves and Antunes (2005); Chen, Cho, and Golberg
(2009); Drombosky, Meyer, and Ling (2009); Gu, Young, and Fan (2009); Lin, Gu,
and Young (2010); Lin, Chen, and Wang (2011)], the BKM uses the non-singular
general solution for the approximation of the solution. In the literature, both the
MFS and BKM are classified as boundary-type meshless methods [Song and Chen

1 College of Mechanics and Materials, Hohai University, Nanjing, P.R. China, 210098
2 Corresponding to: chenwen@hhu.edu.cn
3 Department of Mathematics, University of Southern Mississippi, USA
4 Nanjing Les Information Technology Co.,Ltd, Nanjing, P.R. China, 210007



486 Copyright © 2013 Tech Science Press CMES, vol.94, no.6, pp.485-505, 2013

(2009); Chen, Lin, and Wang (2011); Tan, Zhang, Wang, and Miao (2011); Liu and
Sarler (2013)]. In the MFS, the determination of the location of the source points
on the fictitious boundary is a challenging issue. The major difference between the
MFS and BKM is that no fictitious boundary is required for the BKM in the solu-
tion process. In terms of the numerical implementation, the BKM is much easier to
implement than the MFS due to the use of general solutions rather than the funda-
mental solutions. In general, the BKM is applicable as long as the general solution
of the underlying differential operator is known. Initially, the BKM had been used
exclusively for solving homogeneous problems. However, recently the BKM has
been applied to solve nonhomogeneous problems through the radial basis functions
and the method of particular solutions [Golberg and Chen (Computational Mechan-
ics Publications); Hon and Chen (2003); Lin, Chen, and Sze (2012); Mramor, Vert-
nik, and Sarler (2013)]. Since then, the BKM has been extended to solve a variety
of physical problems governed by the Helmholtz, modified Helmholtz, Laplace,
and the convection diffusion equations, including time-dependent problems and
nonlinear problems [Jing and Zheng (2005a,b)]. Similar to the MFS, the resultant
matrix of the BKM is dense and ill-conditioned [Li and Hon (2004); Liu (2008);
Chen, Cho, and Golberg (2009)]. A direct solver for solving such matrices requires
O(N3) operations and O(N2) memory storages. As such, there are not feasible
for solving Helmholtz problems with high wave-number, where a large number
of boundary collocation points is required. To our knowledge, the numerical effi-
ciency of the BKM for solving these kinds of problems has not yet been published.

The purpose of this paper is to introduce a more efficient BKM for solving high
wave number Helmholtz problems in axi-symmetric domain. The key idea behind
this approach was inspired by the matrix decomposition algorithm in the literature
of the MFS [Karageorghis and Fairweather (1998, 1999, 2000); Tsangaris, Smyrlis,
and Karageorghis (2004, 2006); Karageorghis, Chen, and Smyrlis (2009)]. In gen-
eral, the proposed algorithm decomposes the large system of equations into small
linear systems of lower order. As in the traditional matrix decomposition method,
the fast fourier transform (FFT) is crucial in augmenting the speed of computation.

2 The BKM formulation

Let Ω be a bounded open set in Rd ,d = 2,3, with boundary ∂Ω = ∂ΩD∪∂ΩN and
∂ΩD∩∂ΩN = /0. In this paper we consider the following homogeneous Helmholtz
problem

(∇2 + k2)u(x) = 0, x ∈Ω, (1)

u(x) = gd(x), x ∈ ∂ΩD, (2)
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∂u(x)
∂n

= gn(x), x ∈ ∂ΩN , (3)

where k is the wave number, and gd and gn are known functions.

Let {x j}N
j=1 ∈ ∂Ω. The basic idea of the BKM is to approximate the solution of

Eqs. (1)–(3) through a series of the general solutions ψ which are non-singular as
follows:

u(x)' ũ(x) =
N

∑
j=1

β jψ(r j) (4)

where r j = ‖x− x j‖ and ‖ · ‖ is the Euclidian norm. For the Helmholtz equation,
we have [Chen (2002)]

ψ(r) =


J0(kr), in 2D,

sin(kr)
r

, in 3D.
(5)

From Eqs. (2) and (3), by the collocation method, we have

N

∑
j=1

β jψ(ri j) = gd(xi), xi ∈ ∂ΩD,

N

∑
j=1

β j
∂ψ(ri j)

∂n
= gn(xi), xi ∈ ∂ΩN .

(6)

Once the undetermined coefficient {β j}N
j=1 is obtained, the approximate solutions

at any points can be obtained through Eq. (4).

3 Circulant matrix

To solve Eq. (6) using direct solver, one requires O(N3) operations, and O(N2)
memory space, which is infeasible when the number of boundary collocation points
becomes large. In this section, we briefly introduce the concept of the circulant
matrix and the fast fourier transform to accelerate the solution process of an axi-
symmetric domain.

Note that the resultant matrix from Eq. (6) is circulant if the solution domain is
symmetric and the collocation points are uniformly distributed on the boundaries
for two dimensional problems. The resultant matrix for the 3D case is somewhat
different from the 2D case. Let xi, j = {(xi, j,yi, j,zi)}m,n

i=1, j=1 be the collocation points
on the boundary. They are distributed in the following circular form on the surface
of the boundary i.e.,

xi, j = Ri cos(θ j), yi, j = Ri sin(θ j),
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where

θ j =
2π( j−1)

n
, j = 1,2, · · · ,n.

Due to the axi-symmetry, the radius Ri of each concentreated circle is different for
each zi. At each height zi, we have the same number of collocation points evenly
distributed on a circle with radius Ri. From Eq. (6), we have

Qβ = h (7)

where

Q =


Q11 Q12 · · · Q1m

Q21 Q22 · · · Q2m
...

...
. . .

...
Qm1 Qm2 · · · Qmm

 , (8)

Qi j =


ψ(‖xi1−x j1‖) ψ(‖xi1−x j2‖) · · · ψ(‖xi1−x jn‖)
ψ(‖xi2−x j1‖) ψ(‖xi2−x j2‖) · · · ψ(‖xi2−x jn‖)

...
...

. . .
...

ψ(‖xin−x j1‖) ψ(‖xin−x j2‖) · · · ψ(‖xin−x jn‖)

 ,

and

β = [β1 β2 · · · βmn]
T .

It is clear that Qi j is formulated using the circular points on the ith and jth circles.
Due to the symmetry, the sub-matrix Qi j is circulant.

Before we proceed, we would like to give a brief review of the matrix decomposi-
tion of the circulant matrix. Let us consider the following n×n circulant matrix

M = circ(q1,q2, · · · ,qn) (9)

It is well-known that M can be decomposed as follows [Li and Hon (2004)]

M =U∗DU, (10)

where

U∗ =
1√
n


1 1 1 · · · 1
1 w w2 · · · wn−1

1 w2 w4 · · · w2(n−1)

...
...

...
. . .

...
1 wn−1 w2(n−1) · · · w(n−1)(n−1)

 , (11)
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and

D = diag(d1,d2, · · · ,dn), di =
n

∑
k=1

qkw(k−1)(i−1), (12)

with w = e2πi/n. Note that U is a unitary matrix i.e., U∗U = UU∗ = I and I is the
identity matrix

Let⊗ denote the matrix tensor product. The tensor product of a m×n matrix A and
a l× k matrix B is defined as follows

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB


We also note that

(Im⊗U∗)(Im⊗U) = Imn, (13)

where Im is the m×m identity matrix.

Pre-multiplying Eq. (7) by the block diagonal mn×mn matrix Im⊗U and using
the fact that U is unitary, we have

(Im⊗U)Q(Im⊗U∗)(Im⊗U)α = (Im⊗U) f . (14)

From the above equation, it follows that

Q̄ᾱ = f̄ , (15)

where

Q̄ = (Im⊗U)Q(Im⊗U∗) =


UQ11U∗ UQ12U∗ · · · UQ1mU∗

UQ21U∗ UQ22U∗ · · · UQ2mU∗
...

...
. . .

...
UQm1U∗ UQm2U∗ · · · UQmmU∗



=


D11 D12 · · · D1m

D21 D22 · · · D2m
...

...
. . .

...
Dm1 Dm2 · · · Dmm

 .

(16)

and

ᾱ = (Im⊗U)α, (17)
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f̄ = (Im⊗U) f . (18)

In Eq. (16), each of the n× n block matrix Dkl is diagonal. In particular, if the
sub-matrix of Q in Eq. (8) is circulant, i.e.,

Qi j = circ(q1,q2, · · · ,qn) =


q1 q2 · · · qn

qn q1 · · · qn−1

· · · · · ·
... · · ·

q2 q3 · · · q1

 , (19)

then Di j = diag(d1
i, j,d

2
i, j, · · · ,dn

i, j) where

dl
i, j =

n

∑
k=1

qkw(k−1)(l−1), l = 1,2, · · · ,n. (20)

Since the matrix Q in Eq. (7) has been decomposed into m2 blocks of the order n
diagonal matrices, Eq. (15) can be decomposed into solving n systems of order m;
i.e.,

Elαl = f̄l, l = 1,2, · · · ,n, (21)

where

(El)i j = dl
i, j, i, j = 1,2, · · · ,m, l = 1,2, · · · ,n,

( f̄l)i = ( f̄ )(i−1)n+l, i = 1,2, · · · ,m, l = 1,2, · · · ,n.
(22)

We can summarize the above procedures in the following matrix decomposition
algorithm:

Step I. Transform the right hand vector by f̄ = (Im⊗U) f .
Step II. Construct block matrix D by many diagonal matrices Di j in Eq. (16).
Step III. Solve the linear system to obtain the ᾱ in Eq. (15) by separating n
blocks, each one is m×m matrix equation.
Step IV. Recover the undetermine coefficient α by Eq. (17).

Note that in steps I, II, and IV, the fast fourier transform can be used to significantly
mark up the speed of the solution process. Overall, we transform the problem for
solving a large matrix system of the order mn×mn into n series of much smaller
m×m system of equations. The advantages of computational efficiency is tremen-
dous.
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4 Numerical results and discussions

To demonstrate the efficiency of the algorithm using circulant matrix in the context
of the BKM, four numerical examples in both 2D and 3D are given. To measure
the accuracy, we define the L2 relative error:

L2 relative error =

√√√√√√√√
Nt

∑
j=1

{
u(x j)− ũ(x j)

}2

Nt

∑
j=1

u2(x j)

where Nt is the total number of tested points which are randomly chosen in the
computation domain, u and ũ are the exact and numerical solutions respectively.
All the computations were carried out on Matlab 2011b platform in OS windows 7
(32bit) with AMD 2.7GHz CPU and 3GB memory.

4.1 Two dimensional annular domain with mixed boundary conditions

We first consider a Helmholtz problem with mixed boundary conditions in two
dimensional annular domain with inner radius 90 and outer radius 100 as shown in
Fig. 1.

 

 

O

90

100

∂ ΩN

∂ ΩD

Figure 1: The profile of the two dimensional annular domain.
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The problem can be described as

(∇2 + k2)u(x,y) = 0, (x,y) ∈Ω,

u(x,y) = gd(x,y), (x,y) ∈ ∂ΩD,

∂

∂n
u(x,y) = gn(x,y), (x,y) ∈ ∂ΩN ,

(23)

where gd and gn are given based on the following exact solution:

u(x,y) = sin
(

kx√
2

)
cos
(

ky√
2

)
.

Using k = 103 and N = 2×106, we show in Fig. 2 the maximum absolute error at
50 test points (ri cos(π/4),ri sin(π/4)), where

ri = 90+
10
49

(i−1), i = 1,2, ..,50.

In Fig. 2, we observe that high accuracy can be achieved using a large number of
collocation points.

To show the impact of the number of collocation points, L2 relative errors versus N
is shown in Fig. 3 using 50 randomly distributed test points inside the annular do-
main. We observe that the BKM performs exceptionally well in terms of accuracy
when the number of boundary points is increased. When k becomes larger, more
boundary points are required to obtain the desired accuracy. Fig. 4 shows the effi-
ciency of the circular BKM using k = 103. It is clear that the CPU time increases
linearly with respect to N; i.e., O(N).
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Figure 2: Maximum absolute errors distribution at test points in the annular domain.
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Figure 3: Errors versus the number of boundary points with different wave-number
k.
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Figure 4: The number of boundary points N versus the CPU time for k = 103.

4.2 Three dimensional pulsating sphere interior problem under Neumann bound-
ary condition

In this subsection, we consider the following interior problem in pulsating sphere
(see Fig. 5)

(∇2 + k2)u(x) = 0, x ∈Ω,

∂

∂n
u(x) = ik, x ∈ ∂Ω,

(24)
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where k is the wave number and x = (x,y,z). The exact solution u at a distance
from the center of the sphere is given by

u(r) =
a
r

ikaz0

kacos(ka)− sin(ka)
sin(kr), (25)

where r = ‖x‖, a is the radius of the sphere, z0 = ρ0c0 is the characteristic impedance
of the medium in which ρ0 represents the density of the medium, and c0 is the sound
velocity. In the numerical implementation, we set a = 3 and z0 = 1.

−2
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2

−2

0
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z

xy

Figure 5: Three dimensional pulsating model of a sphere.

In Fig. 6 we show the number of boundary collocation points N versus L2 relative
error for various k using the circulant and traditional BKM. The traditional BKM
can only handle up to 1.728×104 points due to the limitation of the computer mem-
ory while the circulant BKM has no problem in handling much more collocation
points. For the case of high wave-number, we need much more collocation points
to maintain the required accuracy. Fig. 7 shows that the circulant BKM (CBKM)
is much superior than the traditional BKM for k = 100 in term of the efficiency.

In the spirit of reproducible research, we provide the Matlab code of this example
in the Appendix. In line 7, the subroutine ’bpellipsoid’ generates the boundary col-
location points and the corresponding normal vectors on the surface of the sphere.
In line 13, we define the derivative of general solution ∂ψ/ ∂ r as shown in Eq. (6).
In line 20, pdist2 is a Matlab function that returns a matrix DM containing the Eu-
clidean distances between each pair of collocation points. In lines 23–27, we obtain
Q in Eq. (14). In lines 29–31, Q̄ in Eq. (15) is obtained by the fast fourier trans-
form. In lines 33-35, the task of Eq. (21) is performed. The rest of the code is self-
explanatory. For the convenience of the readers who are interested in reproducing
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the results in this example, the Matlab function subroutines ’CMBKM’ and ’bpel-
lipsoid’ are available at the following website: www.math.usm.edu/cschen/cmbkm
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Figure 6: The number of boundary points versus L2 relative errors with various
wave-numbers for both the traditional and circulant BKM.

10
2

10
3

10
4

10
50

50

100

150

200

250

N

C
P

U
 t

im
e
 (

s)

 

 

k = 100 BKM
k = 100 CBKM

Figure 7: The number of collocation points versus CPU time for both the traditional
and circulant BKM.

4.3 Basketball court simulation

In this subsection, a homogeneous Helmholtz equation with Dirichlet boundary
condition in a basketball court (Fig. 8 (left)) in 3D and its revolving solid in 2D
(Fig. 8 (right)) is considered as follows:

(∇2 + k2)u(x,y,z) = 0, (x,y,z) ∈Ω,

u(x,y,z) = 10ei(k1x+k2y+k3z), (x,y,z) ∈ ∂Ω,
(26)
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where k =
√

k2
1 + k2

2 + k2
3. The exact solution is given by

u(x,y,z) = 10ei(k1x+k2y+k3z). (27)
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Figure 8: Profile of the basketball court in 3D (left) and 2D view (right).

In the numerical implementation, we fix k1 = k2 = 0.25, and thus k depends purely
on k3. In Fig. 9, we show the CPU time versus the number of collocation points
with wave-number while k3 = 5π , i.e. the non-dimensional wave-number knon =
k×L≈ 1.1×103 where

L = max‖x−y‖2, x,y ∈ ∂Ω.

We can obtain the solution efficiently in less than 12 seconds using 7×104 colloca-
tion points. In Fig. 10, we observe that the solution of the circulant BKM converges
very well with respect to the number of collocation points for k3 = 0.1. However,
for k3 = 4, much more boundary knots are required to achieve the same accuracy.
For k3 = 7.9, the error is still unacceptable even after using the 105 boundary knots.
In Fig. 11, we show the real and imaginary part of the acoustic pressure at point
(1,1,64.9992). For knon < 400, we can obtain accurate solutions but inaccurate
when knon > 400.

4.4 Three dimensional multi-connected tyre-shaped domain

In this subsection, we consider the homogeneous Helmholtz equation for the Dirich-
let boundary condition in a multi-connected domain. As shown in Fig. 12, the inner
and outer radius of the tyre-shaped domain are 0.3 and 0.5 respectively.
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Figure 9: CPU time versus the number of collocation points with non-dimensional
wave number knon ≈ 1.1×103
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Figure 10: Errors versus the number of boundary collocation points.
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Figure 11: Numerical solution verses non-dimensional wave-number using various
boundary collocation points.

The Dirichlet boundary condition is imposed based on the following exact solution

u(x,y,z) = sin
(

kx√
3

)
cos
(

ky√
3

)
cos
(

kz√
3

)
, (28)

where k is the wave number. In the implementation, m×n circular knots are placed
on the boundary which consist of m circles and n knots on each circle. In addition,
50 random test knots are selected inside the domain for the evaluation of error (see
Fig. 12).

In Fig. 13, we show the accuracy verses the number of boundary points where
n = 1.2m for k = 10,100,300. The results shown in Fig. 14 were obtained by
fixing the number of circle m = 100 and then increasing the number of points in
each circle n for the overall number of collocation points N = mn. By comparing
these two figures, we observe that the results obtained in Fig. 13 are more accurate
than those in Fig. 14. In Fig. 15, we show the CPU time of the above two types of
boundary point allocation. From above three figures, we observe that the selection
of m and n has an impact on both the CPU time and accuracy.
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Figure 12: The profile of tyre-shaped domain.
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Figure 13: The accuracy of various wave numbers with respect to the number of
boundary knots.
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Figure 14: Error analysis by fixed the number of circles and increased the number
of knot on each circle for various wave numbers k.
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5 Concluding remarks

In this paper, coupled with the concept of circulant matrix, the BKM is applied
to solve Helmholtz problems with high wave-numbers in axi-symmetric domains.
Due to the symmetric property of the circulant matrix, a matrix decomposition
algorithm is implemented to accelerate the solution process. Hence, even when
a large number of collocation points is used, the computational time is still very
reasonable. Coupled with radial basis functions as shown in [Karageorghis, Chen,
and Smyrlis (2009)], the circulant BKM can be extended to solving inhomogeneous
Helmholtz problems. The conformal mapping can also be considered in extending
the axi-symmetric domain to a general domain in the 2D case. These will be the
subjects of our future research.
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Appendix

1 function CMBKM (wn,n,m,rz,nt)
2 % Three dimensional pulsating sphere problem with Neumann condition
3 % m: # of circle on sphere;
4 % n: # of points on each circle;
5 % wn: wave number;
6 % rz: radius of the sphere;
7 % nt: number of test points.
8 % Generate boundary collocation points, normal vectors,
9 % and random interior test points

10 [xc,yc,zc,nvxc,nvyc,nvzc] = bpellipsoid(rz,rz,rz,m,n);
11 theta = 2*pi*rand(nt,1); phi = rand(nt,1);
12 t = rand(nt,1)*rz*2−rz; rad = sqrt(rz^2 − t.^2);
13 tx =rad.*cos(theta).*phi;
14 ty = rad.*sin(theta).*phi;
15 tz = t .* phi;
16 % General solution, exact solution, Neumann condition
17 GS = @(r) sin(wn*r)./r; % General solution
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18 dGS = @(r) (wn*r.*cos(wn*r)−sin(wn*r))./r.^2; %Derivative of GS
19 r = @(x,y,z) sqrt(x.^2+y.^2+z.^2);
20 exact = @(x,y,z) 1i*rz./r(x,y,z).*wn.*rz.*sin(wn*r(x,y,z))./...
21 (wn*rz*cos(rz*wn) − sin(rz*wn)); %Exact solution
22 Neu = @(x,y,z) 1i*ones(size(x))*wn; %Neumann boundary condition
23 % DM: distance matrix;
24 % QM: Interpolation matrix with Neumann condition
25 hat_coe = zeros(m*n,1);
26 DM = pdist2([xc(1,:);yc(1,:);zc(1,:)]',[xc(:),yc(:),zc(:)]);
27 pMnv = @(x,sx,nv)(repmat(x(1,:),size(x,2)*size(x,1),1) − ...
28 repmat(sx(:),1,size(x,2))).*repmat(nv(1,:),...
29 size(x,2)*size(x,1),1);
30 QnvM = pMnv(xc,xc,nvxc) + pMnv(yc,yc,nvyc) + pMnv(zc,zc,nvzc);
31 QM = dGS(DM)./DM.*QnvM.';
32 for k = 1:m
33 QM(k,k*n−n+1) = 0;
34 end
35 clear DM QnvM
36 for kn = 1:m
37 QM(:,kn*n−n+1:kn*n) = fft(QM(:,kn*n−n+1:kn*n),[],2);
38 end
39 hat_f = ifft(Neu(xc,yc,zc)).';
40 for k = 1:n
41 hat_coe(k:n:end) = QM(:,k:n:end) \ hat_f(:,k);
42 end
43 coef = fft(reshape(hat_coe,n,m));
44 % evaluate the approximate solution at the test points (tx,ty,tz)
45 DM = pdist2([tx,ty,tz],[xc(:),yc(:),zc(:)]);
46 approx = GS(DM) * coef(:);
47 err = norm(approx−exact(tx,ty,tz))/norm(exact(tx,ty,tz));
48 fprintf('k = %4d, m = %4d, n = %4d, error = %e\n',wn,m,n,err);
49 end
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