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A Proposal of Nonlinear Formulation of Cell Method for
Thermo-Elastostatic Problems

C. Delprete1 F. Freschi2, M. Repetto2 and C. Rosso1

Abstract: The growing necessity of accuracy in analyzing engineering problems
requires more detailed and sophisticated models. Those models can include mul-
tiphysics interactions, that, sometimes, are highly nonlinear and the application of
the superposition principle is then not possible. The cell method can be suitably
used to study nonlinear multiphysics problems, because its theoretical framework
for the physical laws is intrinsically multiphysics. In this way it is possible to take
into account the mutual effects between different physics. Within the cell method
framework, the coupling terms can be directly formulated in terms of the global
variables used for the solution of the elementary problems. In this way it is possible
to solve the coupled problem in a single solver run. In this paper a nonlinear pro-
cedure for elastostatic analysis with cell method is developed and the Fixed Point
technique is applied to a 1D two-node cell and to a 3D four-node tetrahedral cell.
The procedure is numerically and experimentally validated. After the theoretical
part, a nonlinear thermo-mechanical analysis of an exhaust manifold is presented
as case-study.
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1 Introduction

The study of coupled nonlinear phenomena is increasingly becoming topical. In
order to obtain more accurate results, closer to measurements, the superposition,
often adopted in multiphysics analyses, can have some limitations. For reaching
the goal, a naturally born multiphysics approach can be used.

Generally the analysis of a multiphysics system with commercial finite element
(FE) softwares require the definition of different models, each dedicated to one
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specific physics; the results of one model are then used as input for the other mod-
els. For example, during the thermo-structural analysis of an automotive exhaust
manifold, two models must be created: one for the thermal and one for the mechan-
ical problem [Mamiya, Masuda, and Noda (2002); Su, Zubeck, Lasecki, Jr., Tang,
Sehitoglu, and Allison (2002); Hazime, Dropps, Anderson, and Ali (2003); Con-
stantinescu, Charkaluk, Lederer, and Verger (2004); Delprete and Rosso (2005);
Wohrmann, Seifert, Willeke, and Hartmann (2006)]. The results of the thermal
model are the inputs, together with the mechanical boundary conditions, for the
mechanical model. Two models, two different sets of boundary conditions and two
runs are then required for the solution of the whole problem. The cell method (CM)
[Tonti (2001); Tonti and Zarantonello (2009); Cosmi (2001, 2005); Alotto, Freschi,
Repetto, and Rosso (2013); Ferretti (2013a)] is a numerical technique suitable for
the implementation of coupled multiphysics [Delprete, Freschi, Repetto, and Rosso
(2010); Alotto, Freschi, and Repetto (2010); Moro, Alotto, Freschi, and Guarnieri
(2012); Ferretti (2013b)] allowing a coupled simulation of the different physical
phenomena, taking into account the mutual effects between the physical entities.
The elastostatic formulation with the CM is currently not able to take into account
nonlinear effects.

This paper proposes an extension of the CM for eleastostatics with nonlinear mate-
rials. Many numerical techniques can be used to study nonlinear problems. In sec-
tion 2 a brief overview of these methods is reported. For the CM, the authors sug-
gest the use of the fixed point nonlinear iterative method [Chiampi, Chiarabaglio,
and Repetto (1994)]. This choice has been adopted because the fixed point method
presents some of computational advantages with respect the other methods.

Details of the implementation of the fixed point technique within the CM frame-
work are discussed in section 3. The proposed technique is then validated in section
4 and applied to the study of an exhaust manifold for automotive applications in
section 5.

2 Overview of methods for the solution of nonlinear equations

A generic nonlinear problem can be mathematically expressed as [Zienkiewicz and
Taylor (2000)]:

K(a)a = f (1)

An iterative scheme for solving Eq. (1) is made by a set of rules that, starting from
a trial configuration, update the solution until a convergence criterion is satisfied.
The simplest iterative technique proceeds by successively solving Eq. (1) where the
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stiffness matrix is updated at each iteration with the new estimate of the solution:

K(a(i))a(i+1) = f (2)

This method is not always stable and can be slow in convergence. For this reason
is not used in commercial softwares. In the next sections other more common
methods are described.

2.1 The Newton-Raphson technique

Re-formulating Eq. (1) as:

ΨΨΨ(a) = K(a)a− f = 0 (3)

the difference function ΨΨΨ can be expanded by the truncated Taylors’ series:

ΨΨΨ(a(i+1))=ΨΨΨ(a(i))+
∂Ψ1

∂a1
∆a(i)1 +

∂Ψ1

∂a2
∆a(i)1 + · · ·+ ∂Ψ2

∂a1
∆a(i)1 +

∂Ψ2

∂a2
∆a(i)2 + · · · ≈0

(4)

or, in matrix form

ΨΨΨ(a(i))+J(a(i))∆a(i) = 0 → J(a(i))∆a(i) =−ΨΨΨ(ai) (5)

The system Eq. (5) is solved with respect to the vector of error values ∆a(i)1 then,
the improved solution a(i+1) can be written as

a(i+1) = a(i)+∆a(i) (6)

As far as the elastostatic problem is concerned, the Newton-Raphson technique is
usually coupled with the incremental approach, where the external forces at the
right-hand-side are progressively incremented from zero to their final value during
the nonlinear iterations.

The Newton-Raphson technique has a quadratic convergence when a good starting
solution is provided (for more detail see [Zienkiewicz and Taylor (2000)]), but it
presents some limitations:

• the Jacobian matrix has to be computed at each iteration step;

• if a direct solution method is used, the Jacobian matrix has to be factorized
at every step to solve Eq. (5);

• the Jacobian matrix can be ill-conditioned and can create numerical problem
in the solution.
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2.2 The modified Newton-Raphson technique

The method is based on the same algorithm of the classical Newton-Raphson, but
the Jacobian matrix J is estimated once and maintained constant at each iteration

J(i) = J(0) (7)

Different approaches for the approximation of the Jacobian matrix can be used:
the stiffness matrix can be chosen equal to the first iteration matrix or can be up-
dated after several iterations. The convergence rate is no more quadratic, but some
drawbacks of the standard Newton-Raphson method are removed.

2.3 The secant method

The procedure tries to combine the advantages of the standard and the modified
Newton-Raphson methods [Zienkiewicz and Taylor (2000)]. At each step, the
generic jk entry of the Jacobian matrix is estimated on the basis of the previous
steps:

{J(i)} jk =
{ΨΨΨ(i)} j−{ΨΨΨ(i−1)} j

{a(i)}k−{a(i−1)}k
(8)

The computation of Eq. (8) could be difficult not unique: in fact many matrices can
satisfy the initial problem and for this reason many starting alternative matrices are
used in the practice.

2.4 The fixed point method

The problem Eq. (1) can be linearized, as described in Chiampi, Chiarabaglio, and
Repetto (1994), computing the stiffness matrix for a suitable value of the material
constant as:

Kfpa = f−R (9)

Kfp is the linearized stiffness matrix computed considering the material linear with
a constant characteristic that has to be chosen in order to guarantee convergence.
The vector R is the nonlinear residual that is iteratively updated:

R(0) = 0, R(i+1) = f −K(a(i))a(i) (10)

Following the theoretical treatment proposed in [Chiampi, Chiarabaglio, and Repetto
(1994)], the linearized value of the material characteristic which ensure the conver-
gence is bounded between the minimum and maximum slope of the nonlinear char-
acteristic. A specified tolerance on variation of the residual between two successive
iterations is chosen as a convergence criterion.
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With this method the stiffness matrix is estimated once and then it is used at each
step. Only the right-hand-side of the equation is updated during the iterative pro-
cess. For this reason, the fixed point method can be easily applied in combination
with direct solvers, because the stiffness matrix is factorized once when the pro-
cess starts, and for each iteration the residual update and the forward/backward
substitutions are the only required operations.

3 Nonlinear formulation of the elastostatic problem with the CM and the
fixed point technique

In this section the 1D and 3D analysis are analyzed. The former is considered
because the only one stress (and strain) direction is present, simplifying the formu-
lation. In the second case a complex tri-axial stress tensor is studied.

3.1 Bar element formulation

3.1.1 Linear 1D CM formulation

The CM requires the definition of two cell complexes, usually referred to as primal
and dual, linked by duality relations. If N is the dimensionality of the manifold, du-
ality implies a one-to-one correspondence between a generic primal p-geometrical
entity (node, edge, face or volume) and the correspondent dual N− p one (volume,
face, edge, node, respectively). Each physical variable is univocally associated to
an oriented spatial element. When global variables are used (e.g. integration of
pointwise quantities on the spatial element they are related to), this geometric set
up allows the use of discrete operators which are representative of the continuous
gradient, curl and divergence. It is easy to prove that these discrete operators are the
incidence matrices G (edge-to-node), C (face-to-edge), D (volume-to-face) made
of 0,1,−1. Geometric duality is required to maintain the duality relation between
primal and dual topological operators [Tonti (2002)]. As far as the elastostatics is
concerned, duality requires that:

D̃ =−GT (11)

where the˜indicates that the incidence matrix is constructed on the dual mesh. Ma-
terial operators are represented by square matrices M that link together quantities
associated to dual pairs of cell complexes. In the case of the elastostatics such oper-
ator links the difference of displacements with surface forces. The stiffness matrix
representing the discretized version of the continuous problem can be assembled
by the product of topological and constitutive matrices:

K = D̃MG =−GTMG (12)
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Figure 1: Tonti Diagram of the elastostatic problem.

Table 1: Global variables used in the CM formulation and their assignment to spa-
tial elements.

cell complex variable symbol spatial entity

primal
displacement u node

displacement difference h edge

dual
surface force t face
volume force f volume

u1 u2

Figure 2: Elementary 1D primal discretization with orientation.

These concepts are summarized in the so-called Tonti diagrams, as shown in Fig. 1.
The variables involved in the CM formulation of elastostatics are summarized in
Tab. 1

Considering for simplicity a 1D bar element as shown in Fig. 2, the displacement
difference can be written as:

h = u2−u1 =
[
−1 1

][ u1
u2

]
(13)

The surface forces, acting on dual faces, Fig. 3, are part of the balance equation
through the discrete divergence D̃ [Tonti (2001); Cosmi (2001, 2005); Tonti and
Zarantonello (2009)]

−
[

1
−1

]
t =

[
f1
f2

]
(14)
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Figure 3: Forces acting on dual columes.

The point wise constitutive equation of elastostatics links stresses and strains:

σ = Eε (15)

Within the CM, the constitutive equation is formulated by relating the variation
of displacement with the surface forces. To this aim, stresses and strains must be
related to surface forces and displacement differences, respectively (for implemen-
tation detail see [Alotto, Freschi, Repetto, and Rosso (2013)]):

t = Aσ (16)

ε =
1
L

h (17)

By combining all the above-mentioned equations it is possible to write the final
equation that solves the elastic problem:

−
[

1
−1

]
AE

1
L

[
−1 1

][ u1
u2

]
= E

A
L

[
1 −1
−1 1

][
u1
u2

]
=

[
f1
f2

]
(18)

When the problem is discretized by many 1D elements, it is easy to re-formulate
the problem in matrix form. Eq. (13) to Eq. (16) become:

h = Gu (19)

− D̃t = f (20)

σσσ = Eεεε (21)

t = Aσσσ (22)

εεε = L−1h = Ph (23)

Finally the solve equation for elastostatics reads

−D̃AEPGu = f (24)

By using the duality Eq. (11), and assembling the constitutive matrix as ME =AEP

G̃TMEGu = f (25)



404 Copyright © 2013 Tech Science Press CMES, vol.94, no.5, pp.397-420, 2013

3.1.2 Nonlinear 1D formulation

The nonlinearity that is relevant for the present discussion is inherent in the elasto-
plastic behavior of the material; therefore the fixed point method will be applied
to the nonlinear relationship between stresses and strains. Therefore, considering
that the total deformation can be divided into two components, elastic deformation
and plastic deformation, the elastic behavior can be described with the classical
relationship σ = Eε while the plastic behavior can be described by the Ramberg-
Osgood law:

σ = σ0 +KRO · εm
p (26)

where σ0 represents the yield point of the material. Considering a single point in
which it is possible to determine the strain, it is possible to calculate the corre-
sponding stress, by means of the two laws above described.

The fixed point method is applied using as linearization coefficient of the nonlinear
curve the initial slope E of the material characteristic, which is a value that guaran-
tees the convergence. Using this value for each cell of the discretized domain the
stiffness matrix is computed. The iterative process is summarized in Fig. 4, where
the functionality of the method is depicted.

The nonlinear iterative scheme, highlighted in the flow-chart of Fig. 5, starts solving
the elastostatic problem for the first step, as expressed in Eq. (25), using a stiffness
matrix estimated on the basis of the Young modulus. Then, the strains are computed
from the displacement differences:

εεε = PGu (27)

For each cell, the strain is used as the abscissa of the stress-strain curve. In this way
it is possible to estimate a stress, named σp, on the curve of the material and a stress
σ f p obtained on the line that depicts the linearization of the stiffness matrix. The
difference between the two estimated stresses (σ f p−σp) represents the residue as
defined in Eq. (9). The residual stress should be converted in a residual force, in
order to add this residual force vector to the external forces f. The advantage of this
technique is therefore to determine a unique stiffness matrix for the whole nonlinear
process, factorizing only once and re-using the factorization at each iteration. This
approach allows a reduction in the computational effort but, on the other hand,
its convergence is usually slower compared to the case of the Newton-Raphson
technique.

3.2 Nonlinear 3D formulation

In analogy with the 1D formulation, also the implementation of the technique for
a three-dimensional tetrahedral element is performed. In this case it is necessary
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Figure 4: Fixed Point method applied to the stress-strain curve. The blue curve
describes the nonlinear characteristic of the material and allows to calculate σp, the
red line depicts the linear law used to calculate the stress σ f p.

to develop a criterion to compute the value of the forces produced by the residuals
calculated at each iteration, starting from the strain and stress tensors of each in-
dividual element. Details about the 3D CM formulation can be found in [Alotto,
Freschi, Repetto, and Rosso (2013)].

It is important to underline that in the CM formulation, strains and stresses are as-
sumed uniform within the element. The stress and strain tensors should be related
each other by means of the material features and to this purpose, a multi-axial cri-
terion should be adopted. In order to pass from the triaxial stress and strain state to
an equivalent scalar, the Von Mises criterion is used. This equivalent state is useful
for computing the residual stress, but this quantity should be then transformed in a
residual force. A reverse process should be then adopted to extend the calculated
residue (that is a one-dimensional value) in three dimensions, with the aim to ob-
tain a force value for each direction and for each node. The assumption behind
the von Mises criterion is that the principal directions of stress and strain remain
parallel to each other and thereby it is possible to define a scale factor between the
main directions of stress and strain. Once the stress and strain tensors for each el-
ement using the three-dimensional linearized model [Alotto, Freschi, Repetto, and
Rosso (2013)] are calculated, the main stress and strain directions should be com-
puted, and then applying the von Mises criterion to evaluate the equivalent strain,
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Figure 5: Flow-chart for the determination of the displacement in the nonlinear bar
element.

the equivalent stress can be evaluated on the material curve. Using the equivalent
stress and the main stresses, a weighting factor α can be determined for each main
direction and the residual force can be projected along them:

α1 =
σ1

σV M
; α2 =

σ2

σV M
; α3 =

σ3

σV M
(28)

Therefore, by using the nonlinear stress and the fixed point stress, the residual stress
can be computed. By using the coefficients calculated in Eq. (28) and the principal
directions, the residual stress is projected in a stress tensor. As in the previous case
the residual force is computed and it can be added to the external loads in order to
start the iterative process. In Fig. 6, the algorithm is sketched; the residual force
thus assumes a physical meaning of force which is added to the linear case in order
to compensate the nonlinearity of the material.
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Figure 6: Flow-chart for determining the displacement in the three-dimensional
nonlinear element.

4 Validation of the proposed procedure

4.1 Test case for the nonlinear one-dimensional bar element formulation

In order to validate the procedure a L = 50 mm (a = 30 mm, b = 20 mm), steel
bar is considered. Fig. 7 shows the geometry and the 1D discretization. The bar is
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Figure 7: Geometry and model of the bar used to validate the proposed procedure.

constrained at one end and subjected to a tensile force F = 40 kN at the opposite
extreme. It presents two cross sections (d = 12.5 mm, D = 17.7 mm) designed to
generate a stress state beyond the yield limit in the lower section portion, while in
the other section the tensile stress does not exceed the yield strength of the mate-
rial. The mechanical behavior is described as σ = σ0 +KROεm

p = 290+610 · ε0.56
p ,

where the yield stress is equal to 290 MPa. In Tab. 2 the displacements and the
strains computed by the proposed model are summarized with respect to the initial
and final iterations and compared with the analytical values computed using the
material curve. The analytical values are computed with the following process:

• the stresses in the sections are computed using the external force and the
areas of the two sections;

• then, the corresponding strains are evaluated using the material characteristic
curve and the computed stresses;

• finally, the strains are multiplied by the section lengths and the final displace-
ments are computed.

The value of the strain remains constant in the two elements that do not reach
plasticization, while in the three plasticized elements the strain varies within the
iteration process until it reaches a value at which the errors are below a tolerance
equal to 10−8.

4.2 Test cases for the nonlinear three-dimensional formulation

The 3D nonlinear iterative technique is numerically compared versus a commercial
software and with respect to experimental data.
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Table 2: Computed values of node displacement and element strain in the iterative
process.

geometric entity Initial value Final value Analytical value

di
sp

l.
(1

0−
4

m
) node 1 0 0 0

node 2 0.155 0.729 0.729
node 3 0.310 1.458 1.458
node 4 0.466 2.188 2.188
node 5 0.543 2.265 2.265
node 6 0.621 2.343 2.343

st
ra

in
(1

0−
3

m m
) element I 1.55 7.29 7.30

element II 1.55 7.29 7.30
element III 1.55 7.29 7.30
element IV 0.77 0.77 0.77
element V 0.77 0.77 0.77

4.2.1 Comparison with FE analysis

The numerical comparison is performed on a simple a cylindrical bar of 100 mm
length with two different sections, for half of its length with a diameter d1 = 10 mm
and for the second half with a diameter d2 = 20 mm. The bar is fixed at the larger
end, whereas on the other end it is loaded with a shear force of 590 N that creates
a bending moment. The benchmark is solved with the DualLab code [Freschi,
Giaccone, and Repetto (2008)], a Matlab Toolbox that implements the cell method,
and with the commercial FE software Abaqus 6.10. Both in CM and FE analysis
share the same mesh, made of 1767 nodes and 7791 tetrahedra. The results are
obtained with a tolerance of the nonlinear iterations on displacement equal to 10−8.

Fig. 9 shows the comparison between the displacements calculated with the CM
and FE. With reference to the maximum displacement of the bar, the CM esti-
mates a value of 3.64×10−4 m, while Abaqus calculates a displacement of 3.62×
10−4 mm Fig. 8 shows the colormaps of Von Mises stresses calculated via the CM
and FE. The maximum stress calculated with the CM is 292 MPa, while Abaqus
returns a value of 290 MPa. In both analysis, the relative difference between the
two methods is lower than 1 %, proving the accuracy of the method.

4.2.2 Comparison with experimental results

The comparison with an actual test case is conducted using a specimen subject
to bending on three points as shown in Fig. 10. The characteristics of the speci-
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(a) Cell method (DualLab)

(b) Finite element (Abaqus)

Figure 8: Color map visualization of Von Mises stresses.
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(a) Cell method (DualLab)

(b) Finite element (Abaqus)

Figure 9: Color map visualization of displacements.
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Table 3: Comparison between measured and computed displacements.

Force (N) Displacements (mm)
Measured Computed by CM

50 0.023 0.023
1000 0.460 0.453
3000 1.568 1.509
4000 2.255 2.423

Figure 10: Experimental test and corresponding modelling.

men material are known through a tensile test campaign conducted by the authors
to evaluate the experimental relationship between stress and strain. The specimen
has a maximum external diameter of 10 mm and it is made to reach plastic de-
formation in the middle of its span; the geometry presents two little flattenings in
order to obtain an easy fit on the fixed supports. During the experimental test the
curve force-crosshead displacement is recorded and the process is then numerically
modeled in DualLab. The material features are implemented as a look-up table in
DualLab code in order to follow the material law. Boundary conditions are defined
as simply supported conditions and the loading force is applied on a little area in
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the middle of the model span. The model is made by 13194 nodes and 64417 tetra-
hedra. It is subject to different load conditions and the relative tolerance on the
displacements for the convergence of the nonlinear iterations is set to 10−8. The
obtained results are summarized in Tab. 3; the deviation between the experimental
and the numerical results (less than 4% in any case) could be ascribed to the com-
pliance of the support devices of the specimen in the actual test system, while the
model has not deformable constraints.

5 Analysis of a commercial automotive exhaust manifold

In order to test the procedure on an actual application, a multiphysics example is
studied. Using the same model described in [Alotto, Freschi, Repetto, and Rosso
(2013); Delprete, Rosso, and Vercelli (2010)] and introducing the material proper-
ties in terms of strain vs stress and temperature, the computation of four heating
cycles is then performed and the obtained results are analyzed.

5.1 Model description

The model has a 3D mesh of first order four-node tetrahedral elements gener-
ated by means of a commercial pre-processing code; the total number of nodes
is 13567, while 45990 are the solid elements (for complete model information and
details see [Alotto, Freschi, Repetto, and Rosso (2013); Delprete, Rosso, and Ver-
celli (2010)]). The thermal part of the model is the same of [Delprete, Rosso, and
Vercelli (2010)] and the variation of the material properties with temperature is re-
ported in Tab. 4. The boundary conditions are represented by a fully locked flange
(the most severe analysis condition, not corresponding to the actual application, but
useful to understand the quality of the overall exhaust manifold design) and by the
application of a constant mass to simulate the turbo unit (4 kg). The exhaust gas
temperature variation in the ducts and the heat conduction condition on the external
surfaces of the exhaust manifold complete the time variant boundary conditions. In
Fig. 11(a) a sketch of the model is shown and the corresponding DualLab model
is presented in Fig. 11(b). In Fig. 12 the four heating cycles imposed as thermal
boundary conditions are shown.

5.2 Nonlinear behavior of the material

The most important nonlinearities in this model are concentrated in the material
behavior. The material changes its features with respect to the temperature and the
increment of strain, so different curves are needed to describe the material. In order
to extract those curves, experimental tests on specimens of the same cast iron the
manifold is made of are conducted by the authors and the material parameters are
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(a) Main dimensions (in mm)

(b) Discretization and mechanical boundary conditions

Figure 11: Exhaust manifold model.
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Figure 12: Temperature trend [Delprete, Rosso, and Vercelli (2010)] imposed to the
numerical model as thermal boundary condition; in particular the trend is associated
to the warmer zone of the manifold model.

Table 4: Material (Si-Mo-Cr cast iron, [Delprete, Rosso, and Vercelli (2010)]) pa-
rameters at different temperature.

Characteristic SI units Temperature
20 ◦C 400 ◦C 700 ◦C

Young modulus Pa 1.768×1011 1.483×1011 0.84×1011

Poisson ratio - 0.26 0.26 0.26
Density kg/m3 7100 7100 7100

Thermal expansion K−1 1.14×10−5 1.21×10−5 1.33×10−5

Thermal conduction W/(m2K) 25.1 30 29
Heat capacity J/(kgK) 607 607 607
Yield stress σ0 Pa 338.592×106 209.191×106 101.333×106

Yield constant KRO Pa 7×108 3.3×108 1.5×108

Plastic exponent m - 0.12 0.048 0.135
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figured out; at present the paper reporting the material parameters is under editing
process. In Tab. 4 the parameters used to define the material behavior are reported.

In order to take into account the presence of the elastic strain before the plastic
zone, the Ramberg-Osgood law Eq. (26) should be modified in:

σ = σ0 +KROε
m−KRO

(σ0/E)m+1

ε
(29)

So it is possible to divide the material behavior in two regions: one where strains are
lower than the yield strain, that is represented by a linear relationship, and a second
region where the Ramberg-Osgood law works, that depicts the plastic behavior of
the material. This procedure is applied for three temperatures, as shown in Fig. 13.

Figure 13: Material characteristics computed at three different temperatures by
using data of Tab. 4 and Eq. (29).

5.3 Computational scheme for the solution of the coupled problem

The implemented solution scheme starts with the solution of the combined thermal
and linear elastic problem for each time instant. The elastic and thermal constitutive
matrices are estimated on the basis of the temperature computed at the previous
step.

A note has to be underlined: temperature is a configuration variable whereas stress
is a source variable, so the material characteristics are defined in the center of grav-
ity of the cell and a rule for evaluating the temperature in the dual cell should be
defined. The implemented approach computes the cell temperature as the mean of
the nodal temperatures. Then, by knowing the cell temperature, the material fea-
tures are selected, so the cell stiffness is defined and each thermal force is computed
(for detail see [Alotto, Freschi, Repetto, and Rosso (2013); Delprete, Rosso, and
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Figure 14: Exhaust manifold strains computed after four thermal cycles.

Vercelli (2010)]). In each time instant, after the first computation of temperatures
and displacements, the nonlinear procedure starts following the flow-chart reported
in Fig. 6. When the convergence of the fixed point method is found, the solution
procedure passes to the next time instant and the solution goes on until the final
time instant.

5.4 Computed results

In Fig. 14 the colormap of the exhaust manifold strains after four thermal cycles
is reported; it is comparable with that usually computed in the industrial practice
using FE procedures (for example see [Watanabe, Shiratani, Iwanaga, and Nishino
(1998); Hazime, Dropps, Anderson, and Ali (2003); Fan, Kuba, and Nakanishi
(2004)]). The maximum value of strain of about 0.04 m/m is reached because no
rupture conditions are specified in the model and the constraints are more rigid than
the actual ones. The same consideration can be highlighted in terms of stresses as
reported in Fig. 15, where the maximum value of stress after four thermal cycles
is about of 800 MPa compatible with the stress/strain behavior of the material at
room temperature (that is the final temperature of the heating process).
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Figure 15: Exhaust manifold stresses computed after four thermal cycles.

6 Conclusions

On the basis of the shown results, it can be stated that the proposed procedure is able
to analyze with adequate precision nonlinear problems in the mechanical structural
field.

The advantage of the presented technique is to allow a truly multiphysics approach
to engineering problems and the introduction of a nonlinear solver able to deal with
all the nonlinearities present in physical coupled problems, opens very interesting
scenarios of future research works.

As also presented in [Delprete, Freschi, Repetto, and Rosso (2009); Delprete, Rosso,
and Vercelli (2010)], thermo-structural investigations of mechanical components
appear to be optimal candidates for the application of the procedure here proposed.
The necessary step for the analysis of an actual component is the introduction of a
policy that cumulates plasticity and permits the recognition of the breaking point
of the material, at the moment not yet covered by the proposed technique and that
will represent a future development of the research.
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